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ABSTRACT. For an orientable closed surface (2, g) of genus G with Anosov geodesic flow,
we show the existence of an open subset U, of finite-dimensional irreducible representations
of the fundamental group of its unit tangent bundle, whose complement has complex
codimension at least one and such that for any p € U, the twisted Ruelle zeta function
(g,p(s) vanishes at s = 0 to order dim(p)(2G - 2) if p factors through 71 (3), and does not
vanish otherwise. In the second case, we show that (, ,(0) is given by the Reidemeister—
Turaev torsion, thus extending Fried’s conjecture to a generic set of acyclic (but not
necessarily unitary) representations. Our proof relies on computing the dimensions of the
spaces of generalized twisted Pollicott—Ruelle resonant states at zero for any p € U,.

1. INTRODUCTION

1.1. Twisted Ruelle zeta function. Let (¥, g) be an orientable closed surface of genus
G >2 and let M = SY = {(x,v) e TY | g(v,v) = 1} be its unit tangent bundle. Suppose
that the geodesic flow ¢f : M - M is Anosov (e.g., g is negatively curved). We say that g
is an Anosov metric or that (3, ¢) is an Anosov surface.

Let r € N and let p € Hom(m(M),GL,(C)) be a r-dimensional representation of the
fundamental group m (M) of M. We define the twisted Ruelle zeta function of (M,g,p)
for any s € C with Re(s) > 1, by the infinite product:

Cop(s) = T] det(Id - p([7])e*), (1.1)

vyeP
where P is the set of primitive g-geodesics, [] is the class of v in m (M) and £,(v)
denotes the length of v. The zeta function is convergent and holomorphic in a half plane
{s € C| Re(s) > 1} and admits a meromorphic extension to C, see §2.2. In this paper, we
study the order of vanishing m(g, p) of the meromorphic extension of (, ,(s) at s =0.

There is natural map 7, : 7 (M) — m(2) induced by the projection 7 : M — X. Any
representation of 7 (X) induces a representation of m(M). In this case, we say that
the induced representation factors through m1(2). Note, however, that there are also
representations of m (M) that do not factor through m(3), see §2.1.2. We denote by

Homy,, (71 (M), GL,(C)) the subset of irreducible representations. Note that it is an affine
1
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algebraic set by looking at its description using generators and relations. The main result
of this paper is the following theorem.

Theorem 1. Let (X,9) be a closed Anosov surface of genus G > 2. There exists a subset
U, c Homy,, (m (M), GL,.(C)) satisfying the following properties:

o the subset Uy, 1s open;
o its complement Hom,, (1 (M), GL,(C)) N\ U, has complex codimension > 1;
o for any pel,,

(1) if p factors through m (%), one has

m(g.p) = ~dim(p)y(E) = dim(p)(2G - 2), (1.2)

where x(X) is the Euler characteristic of ¥;
(2) if p does not factor through m(X), one has m(g,p) =0.

In Case 1, the study of the order of vanishing of (, ,(s) at s = 0 was initiated by Fried
[Fri84, Theorem 1 and Corollary 2] for hyperbolic metrics and unitary representations p
of m(X). His result was recently extended by Frahm and Spilioti in [F'S23, Corollary C].
They showed that for a hyperbolic metric g and any p € Hom(m(X), GL,.(C)), one has
m(g,p) = —dim(p)x(2). When ¢ is hyperbolic, (, ,(s) can be expressed as a quotient of
shifted twisted Selberg zeta functions whose behavior at s = 0 can be analyzed using a
twisted Selberg trace formula. The zeros of (, ,(s) can be computed from the eigenvalues
of the twisted Laplacian A, acting on L?(X, C), see for instance [F'523, Theorem 4.2.6].

For an Anosov (not necessarily hyperbolic) metric g' and the trivial representation piy,
Dyatlov and Zworski showed in [DZ17] that m(g, piiv) = —x(2). When ¢ has non-constant
curvature, there is no Selberg trace formula and no direct relation to the spectrum of a
twisted Laplacian on the base 3. They instead use that m(g, puiv) can be expressed as an
alternate sum of dimensions of generalized eigenspaces of the Anosov geodesic vector field
X acting on specially designed anisotropic spaces. The formula for m(g, puiv) then follows
from an explicit computation of these dimensions.

The order of vanishing of ¢, ,(s) for general Anosov 3-flows was studied by Ceki¢ and
Paternain in [CP20, CP25]. In particular, (1.2) was obtained in [CP20, Corollary 1.9] under
the condition that p is unitary. In higher dimensions, the order of vanishing of the (non-
twisted) zeta function near 3-hyperbolic metrics was studied by Ceki¢, Delarue, Dyatlov
and Paternain [CDDP22]. They showed that the order of vanishing of the zeta function at
s = 0 is not a topological invariant [CDDP22, Theorem 1] but conjectured that it should
still be constant on a set of generic metrics [CDDP22, Conjecture 1].

ITheir work applies to the more general setting of contact Anosov 3-flows.
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Case 2 is related to the Fried conjecture. Fried’s conjecture [Fri86, Fri95] states that for
an acyclic unitary representation p of m (M), the twisted Ruelle zeta function ¢, ,(s) is
well-defined and nonvanishing at 0, and

GO — 7 (), (1.3)

where 7,(M) is the Reidemeister torsion. It is known for locally symmetric spaces [Fri&6,
Fri95, MS91, Shel8]. When dim (M) = 3, it is known for unitary representations under some
mild assumptions [SM96, DGRS20], see Shen [She21] for a recent survey. It is natural to
ask if an analog of (1.3) holds for non-unitary acyclic representations on M = S¥ with
respect to the geodesic flow, see for instance [Mue20, BFS23, CD24, BS25]. For Fried’s
conjecture for pseudo-Anosov flows, see [J724].

Theorem 1 computes the order of vanishing of the zeta function at s = 0 for an Anosov
metric g, and for a generic representation p € Homy,, (71 (M), GL,(C)). The main novelty
from the previously cited works is that we consider non-unitary twists p of non-hyperbolic
metrics g.

1.2. Twisted Pollicott—Ruelle resonances. Theorem 1 follows from a more general
statement about twisted Pollicott—Ruelle resonances, see Theorem 2 below.

Let X = 4], ;! denote the generator of the geodesic flow (¢7)sr. We write dV» for the
differential on the flat vector bundle &, induced by p € Hom(m (M), GL,(C)), see §2.1.1
for the precise definitions. The vector field X lifts to the bundle £, as the Lie derivative
Lxe =1xdVe +dVeiLx, where 1y denotes the contraction by X.

For k = 0,1,2, denote by QF the space of smooth k-differential forms on M that are in
the kernel of ¢x. Note that the action of Lx,» extends to Q’g ® &,. Since (¢])ter is Anosov,
one can associate to Ly, a discrete spectrum Res” (X, p) c C, the twisted Pollicott—Ruelle
resonances, by making Lx, act on anisotropic spaces, see §2.2 for a precise definition. For a
twisted Pollicott—Ruelle resonance A € C, the corresponding (generalized) eigenvectors are
called (generalized) resonant states at A. Let Resf'(p,0) (resp. Resg™(p,0)) denote the
space of resonant states at 0 (resp. generalized resonant states at 0) for the action of Ly,
on QF ® £,. The order of vanishing at s =0 of ¢, ,(s) is given by

m(g,p) = dim( Resy ™ (p, 0)) — dim( Resy ™ (p, 0)) — dim( Res> ™ (p, 0)), (1.4)
see §2.2 for a proof. We show the following result.

Theorem 2. Let (X,9) be a closed Anosov surface of genus G > 2. There exists a subset
U, c Homy, (m1 (M), GL,(C)) satisfying the following properties:

e the subset U, 1s open;
e its complement Homy, (71 (M), GL,(C)) \U, has complex codimension > 1;
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o for any p €Uy,
(1) if p factors through 7 (%), one has

dim(Res{"™(p,0)) =0, k=0,2,

1.5
dim(Resy™ (p,0)) = dim(Res" (p,0)) = ~dim(p)x (). ()

(2) if p does not factor through m (%), one has
Resp™(p,0) =0, k=0,1,2. (1.6)

It is clear from (1.4) that Theorem 1 follows from Theorem 2. Theorem 2 shows that for
a generic p € Hom(m (M), GL,.(C)), the space of resonant states at 0 for k£ = 0,2 is trivial
and Lx, has no Jordan block for k£ = 1, with a corresponding space of resonant states of
dimension —dim(p)x(X) in Case 1 and 0 in Case 2.

For an acyclic representation p, one can define the Reidemeister—Turaev torsion:

Tegeoao (P) € €~ {0}

Here, ¢ge0q is the Euler structure induced by the geodesic vector field, and o is a homological
orientation, see [CD24, §10] and [BFS23, §2] for the detailed definitions. In particular,
when p is unitary, one has |1 ,.(p)| = 7,(M) where 7,(M) is the Reidemeister torsion.
In [BFS23, Theorem A], the authors showed that for gy hyperbolic and p an irreducible
representation which does not factor through 7;(X)?, one has

Cgo,p(Oy1 = iTegeod,O(P) = xdet(Id - p(c))*“2, (1.7)

where ¢ € (M) is defined in (2.3). This can be seen as a generalization of (1.3) in the
non-unitary case. In this paper, we extend their result for a non-hyperbolic metric g and
a set of generic representations.

Corollary 1.1. Let (X,g) be a closed negatively curved surface of genus G > 2. There
exists a subset U, c Homy,, (11 (M), GL,(C)) satisfying the following properties:

o the subset Uy, is open;
e its complement Homy, (1 (M), GL,(C)) \U, has complex codimension > 1;
e for any p € U,, which does not factor through m (X), one has

Cop(0)7! = 470, 00(p) = £ det(Id - p(c) )**2. (1.8)

2Such a representation has to be acyclic, see Lemma 2.1.
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1.2.1. Dimensions of the space of generalized resonant states. We note that (1.5) is not
satisfied for every p € m; (M) in Case 1. Indeed, for p = pyiy, Dyatlov and Zworski showed
in [DZ17, Proposition 3.1] that

dim(Res{' (paiv, 0)) =1, k=0,2,
dim(Resé’“(ptriV, 0)) = dim(ReSé’l(ptriv, 0)) =-b. (M),

where by (M) is the first Betti number of M. Moreover, using the work of Naud and Spilioti
[NS22], we obtain the following result.

Theorem 3. Let (X, g) be a closed hyperbolic surface of genus G. Let p = Ad be the adjoint
representation of SL(2,R). Then

dim(Resy ™ (Ad,0)) =2G+1, k=0,2;

(1.9)
dim(Resy*(Ad,0)) = 10G - 4.

Theorem 3 shows that the spaces of generalized resonant states need not be trivial for
k = 0,2 even when p is a nontrivial and irreducible representation. Moreover, the dimensions
can be as large as we want when G — +o0.

1.2.2. Presence of Jordan blocks. We prove in Proposition 4.1 that if there is no Jordan
block at zero for k = 0,1,2, then m(g,p) = dim(p)(2G - 2) in Case 1 and m(g,p) = 0 in
Case 2.

However, we obtain that in Case 2, there exist pairs (g, p) for which there is a Jordan
block at zero, which shows that the general picture is more complicated than the generic
one depicted in Theorem 2. For a metric g on X, we denote by A, its (positive) untwisted
Laplace—Beltrami operator acting on L?(3).

Theorem 4. Let (2, g) be a closed hyperbolic surface such that } € Spec(A,). Then there
exists an irreducible representation T of m (M) which does not factor through m (%), for
which m(g,7) =0 and such that Lx- has a non-trivial Jordan block at zero for k=0,1,2.

The representation 7 is constructed explicitly in §6.2. Using the quantum-classical cor-
respondence of Guillarmou, Hilgert and Weich [GHW18], we give in Proposition 6.2 an
explicit description of the Jordan block structure of (g, 7) at zero in terms of ker(A, - 7).
Finally, we show in Proposition 6.3 that for any G > 2, there exists a hyperbolic surface of
genus G for which ; € Spec(A,).

Theorem 4 is, to the best of our knowledge, the first example of an Anosov flow and
acyclic representation with a non-trivial Jordan block at zero. For unitary representations
in our setting, the resonant spaces were shown to be trivial in [DGRS20]. Theorem 4 shows
that this is not always the case for non-unitary representations.
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1.3. Further questions. We are not aware of an example of a pair (g, p) for which m(g, p)
is not given by dim(p)(2G-2) in Case 1 and 0 in Case 2. We make the following conjecture.

Conjecture 1. Let X be a genus G > 2 closed surface.

(1) There ezists a negatively curved metric g on ¥ and a finite dimensional represen-
tation p € Hom(m(X), GL,(C)) for which m(g,p) + (2G - 2)r.
(2) If p is acyclic, i.e., H*(M,p) =0, then we always have m(g, p) = 0.

It is interesting to ask what happens for a metric perturbation of (g, 7) in Theorem 4.

1.4. Structure of the paper. In §2.1.1, we recall the construction of the flat bundle
associated to a representation p. Next, we compute in Lemma 2.1 the dimensions of the
first twisted cohomology groups of (M, p) in Cases 1 and 2. We define in Proposition 2.2
a Zariski open subset V ¢ Homy,, (71 (M), GL,(C)) which decomposes as a union of a finite
number of path-connected components which all contain an irreducible representation. In
§2.2, we recall the definition of twisted Pollicott—Ruelle resonances and prove (1.4).

In §3, we show that flat bundles &, for different p can be identified. Moreover, the
identification can be chosen to depend analytically on p, see Lemma 3.1. This allows
us to use perturbation theory for Pollicott—Ruelle resonances and show that the spectral
projectors at zero depend analytically in p, see Proposition 3.2.

In §4, we adapt the argument of [DZ17] to compute m(g,p) for representations with
no Jordan block at zero, see Proposition 4.1. The end of the section is dedicated to the
showing that unitary representations have no Jordan block at zero, see Proposition 4.6.

We prove Theorem 2 in §5. The strategy is the following:

e For each p e V, there is a path (p(t) )sqo0,1] € V such that p(1) = p and p(0) is unitary.

e We use the perturbation theory developed in §3 to show that for each s € [0,1],
p(s) has a neighborhood U,y in which the conclusion of Theorem 2 does not hold
for a Zariski closed subset.

e Using the fact that p(0) is unitary and Proposition 4.6, we show that this Zariski
closed subset is proper and thus of complex codimension > 1.

We show Corollary 1.1 at the end of the section, using [CD24] and [BFS23].

Finally, Theorems 3 and 4 are proved in §6. Theorem 3 follows from results of [NS22]
on the twisted Selberg zeta function. To obtain Theorem 4, we use the quantum-—classical
correspondence obtained in [GHW18].
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2. PRELIMINARIES

2.1. Representations of the fundamental group.

2.1.1. Flat bundles. Let (3,g) be a closed orientable Riemannian surface of genus G > 2
and let M = {(z,v) € TY | |||, = 1} be its unit tangent bundle. Let m (M) be the
fundamental group of M. Recall that m; (M) acts (on the left) on the universal cover M
by deck transformations. Note that the set of deck transformations induced by (M)
is isomorphic to the opposite group m1(M)°P of m (M) and we will identify these two
groups by a small abuse of notation. Let p € Hom(m (M), GL,.(C)) be a finite dimensional
representation of 7 (M). The flat vector bundle £, is defined as

E, =TT x T/, (2,0) ~ (v(£),p(1)0), Vv em(M). (2.1)

The bundle &, is equipped with a flat connection V,. We recall here its definition. Consider
the trivial connection V¥ on M x C’:

Vse C®(M; M xCr)=C>(M,C"), V"Vs:=dseC®(M;T*M&C").

We note that the trivial connection descends to &,. Indeed, recall that a section s of &,
identifies to a function C*°(M,C") which is w1 (M )-equivariant, i.e, s(y-x) = p(v)s(x) for
any x € M and 7 € w1 (M). In this identification, we check that

Voe M, Vyem(M), d(p(v)s(v"x)) = p(7)ds(y" - x).

The induced connection is denoted V, and is clearly flat. We conversely check that the
holonomy of &, is given by p.” We can define a flat differential dVe from v ,. For k =0,1,2,3,
let QF = C(M;A*T*M) denote the space of smooth k-forms on M. The flat differential
acts on smooth A-forms with values in &,.

AV : C®(M; AFT* M ® £,) > C°(M; AF'T* M & £,).

3From (2.1), one sees that the holonomy along a closed geodesic v is given by v + p~1([7]°P), where
[7]°P € w1 (M)°P is the class defined by ~ in the group of deck transformations. Since [7]°P = [y]™!, where
[v] is the class of v in 1 (M), we get that the holonomy, seen as a representation of 71 (M), is given by p.
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It is uniquely determined by the requirements that it coincides with Vv, on O-forms and
that it satisfies the Leibniz rule:

Vw,ne C°(M, AN T*M ®E,), d"(wnan)=d " wnn+(-1)%w A dven. (2.2)

2.1.2. Twisted cohomology groups. Since the connection is flat, one has dVe o dVe = 0. In
particular, we can consider the twisted de Rham cohomogy of M. For k =0,1,2,3, denote
by H*(M, p) := H*(M,E,) the twisted cohomology groups of M by p.

The natural projection 7 : M — ¥ induces a map 7, : w1 (M) — m(X). Since M - ¥ is a
St-bundle, we have the following short exact sequence:
11— 7T1(Sl) ~7 — 7T1(M) ji) Wl(z) — 17

where the map 7, is surjective. Recall that the groups m;(3) and 7, (M) have the following
presentations:
m(2) = (a1, b1, aq,bg | [a1,b1]+[ac,ba] = 1), (23)
71 (M) = {a1,by, -, aq, ba, c|[ai, c] = [bi,c] = 1, [a1,b1 ] [ag, ba] = 272), '
where ¢ is a generator of 7 (S') = Z.

A representation p : m (M) - GL,(C) is said to factor through m(X) if there exists a
representation p : m(3) - GL,(C) such that p = pom,. Note that p factors over m (%) if
and only if p(c) =1d.

For a representation p: m (M) - GL,(C), let pm (M) := {y e C" | Vy e m (M), p(y)v =1}
be the invariant subspace. With these notations, we compute in the next lemma the
dimensions of the first twisted cohomology groups of (M, p).

Lemma 2.1. Let 3 be a closed surface of genus G > 2 and let p € Hom(m (M), GL,(C))
be a finite dimensional representation of w(M).

(1) If p factors through 71 (X), and dim(p™(M)) =r,. Then
dim(H°(M, p)) =ry, dim(H'(M, p)) = -rx(2) +2r; = r(2G - 2) + 2ry.
(2) If p is irreducible and does not factor through m (%), then p is acyclic, i.e.,
Hi(M,p)=0, i=0,1,2,3.
Proof. Suppose that we are in case (1), i.e., there exists a representation p : m(X) —
GL,(C) such that p = por,. One can define a flat bundle E; - ¥ using the same construction

recalled above. Moreover, we check that £, = 7*E;, where 7 : M — ¥ is the projection.
Since M — ¥ is a circle bundle, applying the Gysin exact sequence gives for any k:

o BN, Ey) D HY(MLE) = HY(S, E,) 25 HYY(S,E,) > ...
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where 7, is the integration in the circle fiber and ue denotes the cup product with the
Euler class e = x(X) € H2(X,Z) 2 Z. For k =0, we obtain
0> H(S, E,;) 5> HO(M,E,) =0,
which gives
HO(M, p) = H'(M,&,) 2 H'(S, Ep) = {v e C" | Vy emy(S), p(7)o = v}

This then implies

dim(H(M, p)) = dim{v e C" | Vy e 11 (%), p(y)v =0} =ry.
Next, we compute the groups in degree k = 1:

0> HY(S,E,) = H\(M,E,) = H(S, E,) %5 HX(S, E,).
In particular, applying the rank-nullity theorem to 7, yields

dim(H" (M, p)) = dim H'(Z, E;) + dim (ker(ve : H(S, E;) » H*(Z, E;))).

Note however that the cup product with the Euler class e # 0 is injective on H°(X, E;)
so dim(HY(M, p)) = dim HY(X, E;). We can compute this last dimension from Poincaré
duality which gives HY(X, E;) 2 H?(X, E;) 2 C and the definition of the twisted Euler
characteristic of (X, p):

(2, p) = i(—l)idim(Hi(E, E;)) = dimH'(Z,E;) = 2r - x(Z, p).

Since the bundle is flat, x(%, p) is equal to dim(p)x(X) = r(2 - 2G) which concludes the
proof of the lemma in the first case.

Suppose now that p is irreducible and does not factor through 71 (%). We will show that
it is acyclic. First, by Schur’s lemma, we know that p(c) = (Id for some ( € C. Taking the
determinant in (2.3) implies that ¢ is a root of unity. Moreover, since p does not factor
through 71 (X), we have ¢ # 1. This implies the differential in the fiber is null homotopic.
Indeed, let ¢ : S' - M be the inclusion of a circle fiber. The twisted differential along the
fiber is

dy, : QU(SY, ) = QNS Ey).
One can compute the twisted cohomology groups of the fiber from the monodromy:
HO(S', &) =ker(p(c) -1d) =0, H'(S',+*E,) = coker(p(c) —1d) = 0.
This shows that dg, : QO(SY,*E,) - Q(S!,1*E,) is an isomorphism.

We can then define a chain homotopy fiberwisely to show the de Rham complex of

(M,dVr) is also exact. More precisely, suppose dVe f = 0 and f € QF ® £, for some k > 1.



10 TRISTAN HUMBERT AND ZHONGKAI TAO

The goal is to find u € Q*1®¢&, with dVeu = f. Let V be a nonvanishing vector field tangent
to the fiber direction. The vanishing of the fiberwise cohomology implies that

,C‘Yv = dv"LV + Lvdv”

is invertible on Q*®¢&,. In order to check this claim, we note that L’X acts on each fiber and
the action is given by dgvlav + LVdSVl. On zero forms, it is given by LvdSVl where each map is
invertible since V' is nowhere vanishing. On 1-forms, it is given by dgvll,v where again each
map is invertible. We can then write u = ty/(£y,)~! f, which solves

A= 7y (L) f = (EF = d™)(E9) S = = (£0) wd™ f = f
This shows that p is acyclic. 0

To conclude this section, we recall an important result on the representation vari-
ety Hom(m (M), GL,(C)), which follows from the arguments in [RBC96]. Recall that
Homjy, (71 (M), GL,(C)) denotes the subset of irreducible representations.

Proposition 2.2. There exists a Zariski open subset V in Homy, (m (M), GL,.(C)), such
that the following properties hold:

(1) V=USTDV; where V; = {peV:p(c) = e2miilr2G-2)},
2) EachV; is a smooth and path-connected algebraic variety of dimension (2G-1)r2+1.

(2)
(3) Each V; contains a unitary representation.
(4) dim¢(Homy,, (71 (M), GL,.(C)) N\ V) < (2G - 1)r2.

Proof. For a matrix M € M,.,.(C), we denote by Z(M) :={N € M,.(C) | [M,N] =0} its
centralizer. We will say that M is regular if Z(M) has dimension r (equivalently, M has r
distinct eigenvalues). We define

V= {p e Homy, (7 (M), GL,(C)) : there exists ¢ such that
p(ar), p(by) are regular and Z(p(as)) n Z(p(be)) = CId}.

Since the complement of V is given by some algebraic relations, we know that V is Zariski
open. We now show the four properties of V claimed in the proposition.

(1) Let p e V. Since p(c) commutes with all the elements in p(m;(M)), by the definition
of V, p(c) must be a scalar matrix. Since det(p(c)) = 1, we know p(c) = 274/(r(2G-2))
for some .

(2) The smoothness comes from the submersion theorem. By [RBC96, Lemma 6], the
differential of the map

(A, B) & [A, B] : GL,(C) x GL,(C) - SL,(C)
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is surjective at (A, B) if A, B are regular and Z(A) n Z(B) = CId. Therefore, the
following map

(A1, Ag, B1,+, Bg) = [A1, B1]-+[Aq, Be] : GL,(C)* > SL,(C)

has surjective differential at A; = p(a;) and B; = p(b;) in V. By the submersion
theorem, we conclude V is smooth with dimension 2Gr? - (r2 - 1) = (2G - 1)r?2 + 1.
In order to show the connectedness, we note that it suffices to show that

Vf :={p e Hom(7 (M), GL,(C)) : p(as), p(be) are regular and
Z(p(a)) 0 Z(p(be)) = Cld, p(e) = 25/

is connected, since they have a nontrivial intersection for different ¢. Consider the
projection p : Vf — GL,(C)%¢-2 to the components not equal to p(ac), p(b;). By
[RBCI6, Proposition 5|, for a Zariski open set C of C € SL,(C), the variety

{(A,B) e GL,(C)*:[A,B] = C and A, B regular with Z(A)n Z(B) = CId}

is connected. Therefore, the fibers over a Zariski open subset D in GL,(C)?¢-2 are
connected. Since GL,(C)2¢-2 is irreducible, D is connected and p~1(D) is connected.

Since p~1(D) is also dense, this implies the connectedness of Vf .
First we find A, B € U(r) such that

[A,B]= ABA'B™ =wld,, w=e?/"

We can just take

01 0 1 0 0 0
0 01 0 0 0 0
A= I <~ ], B=10 0 w? 0
00 -1 R
100 -0 00 0 - wt

It is direct to check that A, B are regular and Z(A)n Z(B) = CId. Then we can
similarly construct As, By € U(r) such that

[Ag, By] = AyBoA3' Byt =w™'CId,, ¢ =e*",

We can define a representation by

plar) = A, p(br) = B, p(az) = Az, p(b2) = Bo,
p(c) = 2™NCE2NNA, pla;) = p(bi) =1d, i >2.

This gives a unitary representation in V;.
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(4) We will assume r > 2 since the case r = 1 is obvious. Let p € Homy, (71 (M), GL,.(C)).
By Schur’s lemma and irreducibility of p, we have p(c) € CId. The equation (2.3)

implies p(c) = e2m/(r2G-2))Id for some j. Suppose Z is an irreducible component
of

{p € Homy, (71 (M), GL,.(C)) : p(c) = 2/ (r2G-2))}

that does not intersect V; (we are done if such Z does not exist), then we can define
the Zariski open subsets

Zy={peZ:p(ar),p(br) are regular},
Zy={peZ:Z(p(ar))n Z(p(b1)) = Cld}.

We claim Z; is not empty. Suppose py € Z does not belong to any other irreducible
component. Let W, be an irreducible component of

{(A,B) € GL.(C) : [4, B] = ™" [py(ac), po(b6)] "+ [po(az), po(b2)] '}

By [RBCY6, §1], Wy contains (A;, By) that are regular. Thus Z; contains an element
with

plar) = A1, p(bi) = By, p(a;) = pola;), p(b;) = po(bs), j =2

and is nonempty. Since Z is irreducible, it is connected and thus Z, must be empty,
ie., dimc(Z(p(ar))nZ(p(by))) > 1 for any p e Z. Now we consider the map

p:Z - (GL(C))**2, p(p) = (p(ar), p(b1), paz), p(bs), -+ plac), p(ba))-
Let

Wo = {(A, B) € GL,(C) x GL,(C) : dim¢(Z(A) n Z(B)) > 1}.
By [RBC96, Lemma 8 (iii)], dimge(Wp) < 272 - 2(r — 1) and thus

dime(p(Z2)) < dime(Wp x (GL,(C))?9™) < (2G - 2)r* - 2(r - 1).

Each fiber of p is a subvariety of

W, ={(4,B) e GL,(C) x GL,(C) : [4, B] = 2},

2= [p(ar), p(b1)] ' [p(ac), p(ba)] ™"+ [p(as), p(bs)] ™"

By [RBC96, Lemma 8 (ii)], dime(W,) <72 +r. Therefore,

dime(Z) <dime(p(2)) + 72 +r < (2G - 1)r? =r+2< (2G - 1)r?

since we assumed 7 > 2. O
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2.2. Twisted Pollicott—Ruelle resonances. By hypothesis, the geodesic flow (¢Y)ir
on the unit tangent bundle M is an Anosov flow, which means that if we denote by X =

%|t:0g0f the geodesic vector field, then there exists a flow-invariant, continuous splitting
TM=FE,®RX & E, of the tangent bundle and C, 6 > 0 such that for any pe M,

lde? (p)vs] < Ce s, vs € Es(p), 20,

ldgf (p)vall < CeMva ], v, € Eu(p), t <0.
The bundle FEy (resp. E,) is the stable (resp. wunstable) bundle of (¢f),r. The Anosov
splitting comes with a dual splitting on the cotangent bundle of M:

T"M=FE:oRae £}, E(E,oRX)=0, E;(E;eRX) =0,
and where o € C~(M;T*M) is the contact 1-form on M which satisfies a(X) = 1 and
da(X,-) =0.
For a closed geodesic v, we will write [] for the class in 7y (M) representing it. Recall

that there is a C' > 0 such that for any 7" > 0, the number of closed geodesics of length less
than 7" is bounded by Ce®T. This justifies that (1.1) converges for s € C with Re(s) > 1.

Let p € Hom(m (M), GL,(C)) and let £, denote the associated flat vector bundle with
differential dVr. Define the graded vector bundle

3
&, = g@@j, EF=NT*M&E, & =&Y nker(iy). (2.4)

For k = 0,1,2, the generator X acts naturally on the smooth vector bundle C*(M; éap’fo).
The action is given by Lxs := txdVe +dVrix.

One can associate to the action of Lx», on C*°(M, gp’fo) a discrete spectrum Res"(X, p) c

C, the Pollicott-Ruelle resonances by making it act on anisotropic spaces, see for instance
[BKL02, BL0O7, BT07, GL08, FRS08, FS11, DZ16, DG16].

More precisely, from [F'S11] (see also [DG16] for the extension to smooth vector bundles),
the resolvent R (X) : L2(M; &) - L*(M; &F,), defined for A € C with Re()) > 1 admits
a meromorphic extension R} (A) to C
The poles of the extension are intrinsic and are called the resonances of X acting on 5p’fo.

The set of resonances is denoted by Res”(X, p) or Res"(p) if there is no possible confusion
on the metric. A complex number g € C is in Res"(p), if and only if

Resg (p, Ao) = {u € 2'(M; &)y  Lxou = Aou, WF(u) € Ej} # {0}, (2:5)

where WF(u) denotes the wavefront set of a distributional current u, see [Hor03, Chapter
3]. The non-zero elements of Reslg’1 (p, \o) are called resonant states at Ag. The spectral
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projector at A\ is given by
1
1T :_f p 2.
S0 = 5= [ Rz 26)

where 7 is a small loop around A\g. The (algebraic) multiplicity of Ay is given by the rank
of the spectral projector. The generalized resonant states are the elements in the range of
Hk()\Q)Z

p

Rest ™ (p, \o) = {u € 9'(M; EX) A eN, (Lxo—Xo)u=0, WF(u) c E}. (2.7)

We will say that the resonance o has no Jordan block if Resy™(p,Ao) = Resf (p, Mo).
We conclude this section by recalling the link between the zeta function (,,(s) and the
generalized resonant states. Define the dynamical determinant of order k to be

tr(AkP j) )
Con(s) = exp( La(p(y)y) i B) i), 2.5)
, ;}; (L )|det(Id—73~,j)|
where P, = dy_y, ()| z.er,(p), for a point p on v, is the Poincaré map along the geodesic 7.
Recall that one has, see [DZ16, p. 20] and [DG16] for the extension to vector bundles,
VseC, (1, (s)=0 <= seRes'(p), (2.9)

and the multiplicity of the zero coincides with the algebraic multiplicity of s as a resonance.

We can rewrite the twisted zeta function, for any s € C such that Re(s) > 1,

<g,p<s>=Hdet(ld—m[me-s%m):exp( > 3% <t(o([] )-sﬂg<v>)

yeP veP j= 1J

. 2 rAPj £+1
o (- 2 3 () B e e o0 < [T

YeP j= 1J =0

where we used the relation
2
det(Id - P,s)| = Z(—l)“ltr(AKP,yj).
=0
The previous relation extends to s € C. In particular, using (2.9) at s =0 yields (1.4).

2.3. Co-resonant states and pairing. Let p* be the adjoint representation of p. We
have a notion of (generalized) co-resonant state dual to the (generalized) resonant states. A
distribution is a (generalized) co-resonant state of (X, p) if and only if it is a (generalized)
resonant state of (-=X,p*), in the sense explained above. Their set will be denoted by
Res:™*(p,\) for e e NU {+00}.
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There is a natural pairing (-,-)¢,xe,. between £, and €+ given by the duality pairing on
Cr x (Cr)*. Note that this indeed descends to a pairing to &, x ,+ since for any z € M and
any 7 € w1 (M), one has

V(v,w) € C" x (C")*, (p(7)v, p* (V)w) = (p(7) " p(7)v,w) = (v, w).

The pairing is non degenerate and extends to the bundle £, — M and to differential
forms with values in the flat bundle. More precisely, we will work with the following
non-degenerate pairing

(u,0) € Egx Exf, halu,v) = f UAVA Q. (2.10)
’ ’ M

Remark that the stable and unstable bundles of —X and X are flipped. In particular,
the pairing h,, extends to Res;™>(p, A) x Resc > (p, \') for any A\, M € C, by the wavefront
conditions defining generalized resonant states, see (2.7). By [CDDP22, Equation (2.51)],
the pairing

he : Resp™(p,0) x Res:® % (p,0) - C (2.11)
is non-degenerate. For later use, we record that for k=1, 2,

V(u,v) € Resk % (p,0) x Resg ™ (p,0),  ha(d¥u,v) = (-1)*ho(u,d%v).  (2.12)
Indeed, we compute directly using Stoke’s theorem
ho(dVeu,v) = f dVPunvAa= / dlunvaa)+ (—1)’“] u/\dvp*v/\a+f uAvAda
M M M M
= (D" [ und®evna = (=) ha(u,d o),
M

where we used (2.2), txu =0 and txv = 0.

3. PERTURBATION THEORY

In order to prove Theorems 1 and 2, we will use some perturbation results. Let (X, g)
be a closed Anosov surface and let r € N. We will apply perturbation theory to the twisted
Pollicott-Ruelle resonances. Before that, we will need to identify the flat bundles &, for
different representations p € Hom(m (M), GL,(C)). Actually, we show in the next lemma
that the identification can be chosen (locally) to depend analytically in p, which will be
important in the arguments of §5. To state the result, we consider a compactly supported
function y € C(M,R,) such that

VoeM, Z x(v-x)=1. (3.1)

yemy (M)
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Lemma 3.1. Let py € Hom(mi (M), GL,(C)). There is a neighborhood U of po such that
the map F, : M x C" - M x C", where

V(z,0) e MxC, Fy(z,0) = (z, fo(x)v), fo(z)= > x(v-2)p(v)'po(7)  (3:2)
yem (M)
descends to an isomorphism of smooth bundles between &,, and £,. Moreover, the isomor-
phism F, depends analytically on pelU.

Proof. Let (z,v) € M x C" and let 7, € 7r1(M ). We first check that the map F}, descends
to the flat bundles, i.e., we show F,(z,v) ~, F,(7 -, po(70)v). In other words, we want to
verify that (z, fy(z)v) ~p (Y0 @, fy(70 - %) po(10)v). This is true since

p(0) fo(x)v=p(r0) D, x(v-z)p() pe(V)v=" > x(v-z)p(r5") po(v)v

~yemy (M) yemy (M)

= 2 X(v 0 2)p(v) " (v v0)v = fo(v0 - ) po(Y0) .
y'em (M)
This shows that the map F), descends to map F), : &,, - &£, which preserves the fibers. It
is clearly a smooth map. Since f,, =Id and since p — f, (and thus F},) is an analytic map
in p, there is a small neighborhood U such that for any p € ¢ and for any = € M, one has
det(f,(z)) # 0. This shows that F}, is an isomorphism for p e . O

Let po € Hom(m (M), GL,(C)) and let U be the neighborhood of py obtained in Lemma
3.1. For any p e U, the Lie derivative Lx, pullbacks to an operator on &,, we will denote by
Lxe. Its resolvent on k-forms will be denoted by R? ()\) and for a Pollicott—Ruelle resonance
Ao € Res®(pg), we can define a spectral projector Hk()\o) by integrating on a small enough
loop around Mg, as in (2.6). The small loop includes all the resonances of R? 7(X) close to Ag.

Proposition 3.2. Let py € Hom(m(M),CGL.(C)). Let k = 0,1,2 and Ao € Res*(po) be
a Pollicott-Ruelle resonance of pg. Then there exists a neighborhood U of py such that
(ﬁg()\o))peu is a family of operators of rank equal to dim(Rest™ (po, \o)) which depends
analytically on pel.

Proof. Using the identification of Lemma 3.1, we can use the theory of perturbation of
Pollicott—Ruelle resonances due to Bonthonneau [Bon18], see also the related work of Dang,
Guillarmou, Riviére and Shen [DGRS20]. Indeed, from the construction of the flat connec-
tion recalled in §2.1.1 and Lemma 3.1, we see that U 5> p Lo depends analytically on p.
Using uniform anisotropic spaces, the resolvent ﬁg(k) (and thus the spectral projector by
(2.6)) is seen to depend analytically on p. This also shows that (12[7;()\0)) peu 18 a family of
operators of rank equal to rk(II% (o)) = dim(Res{"™ (po, Xo))- O
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4. ORDER OF VANISHING WHEN THERE IS NO JORDAN BLOCK

In this section, we compute m(g,p) for representations with no Jordan block at zero.
Most of the arguments are adapted from [DZ17].

Proposition 4.1. Let (X,9) be a closed Anosov surface of genus G > 2 and let p €
Hom(m (M), GL,.(C)) be such that there is no Jordan block at zero for k =0,1,2. Then

(1) m(g,p) = dim(p)(2G - 2) if © factors through m (%),
(2) m(g,p) =0 if © does not factor through m (%) and is furthermore irreducible.

Proof. In contrast to [DZ17, Proposition 3.1], we will not compute each dimension sepa-
rately. The strategy consists in considering a linear operator 1" and computing the alternate
difference (1.4) from the dimension of the kernel of T. The operator we will consider is

T :Resy' (p,0) = Res> ' (p,0),  u v dV7u. (4.1)

Note that the map T is well-defined. Indeed, let u € Resé’l(p, 0). Since [dVr,Lx,] =0, one
has Lx,T(u) = 0. Next, we have WF(dVru) ¢ WF(u) c E? by general properties of the
wavefront set. Finally, using Lx» = dVeix + txdVe, one computes

txT(u) =txdV?u=Lxpu—d " ixu=0.

Note that in this last computation, we use the fact that u is a resonant state (and not a
generalized one). We show the following result.

Lemma 4.2. One has

dim Resy " (p,0) = dimker T + dim Res;"' (p, 0) — dim(p™*D). (4.2)

In particular, if p does not have any trivial factor, that is if pm() = {0}, then T is a
surjective map.

Proof. Since there is no Jordan block for k£ = 0,1,2, (2.11) implies the non-degeneracy of
the pairing
ho : Rest (p,0) x Res? ™' (p,0) - C.

We will denote by Ran(T)* := {u € Res;”' (p,0) | Vv € Resy' (p,0), ha(T(v),u) = 0}. Using
(2.12), we obtain

ueRan(T)* < VveResy' (p,0), ha(dV?v,u) =0
— VYveResy (p,0), ha(v,d" u)=0 (4.3)

— dVrru=0.
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We study the kernel of dVe : Res; ™" (p,0) - Res;’"' (p,0). Let u € Res;*"(p,0) such that
dVe*u = 0. Since dV»* is elliptic (it is clear in local coordinates), one has u € C°(M;E,).
This means that, by Lemma 2.1, u € HO(M, p*) = (p*)™ (M) and this space is of dimension
dim((p*)™ () = dim(p™(M)). The statement of the lemma follows from the rank-nullity
theorem and the fact that dim(Ran(7")*) = codim(Ran(7)). O

Note that for any (v,w) € pm ) x (p*)m (M) one has vde € Resy' (p,0) and
ho(vda, w) = f]\4<1),w)gpxgp*d06 A= (0, W)g,xe,.-
Since the pairing p™ ) x (p* )™ 5 (v,w) = (v, W), xg,. is non-degenerate, we deduce
from (4.3) that vda ¢ Ran(T'). Since codim(Ran(7')) = dim(p™ (), this implies that
Res; ™ (p,0) = Ran(T) @ pm M da. (4.4)
We will need this decomposition of the resonant states in the next lemma.
Lemma 4.3. One has

dimker T = dim H'(M, p) + dim Resg" (p, 0) — dim(p™ D). (4.5)

Proof. Let u e kerT. Then applying [DZ17, Lemma 2.1], there is v € D/E;(M? &,)" such that
u—-d"rveC®(M,&)), dvr(u—-dvv)=0.
In particular, one can define the mapping
S:kerT — H'(M,p), uwr [u=d"»v]marp- (4.6)

The kernel of S is given by dV(Resy (p,0)). Indeed, the inclusion d¥(Resy” (p,0)) c
ker(S) is clear. Conversely, suppose that S(u) = 0, i.e., u — dVrv is exact. By changing
v if necessary, we can suppose that u — dVev = 0. Applying vy gives Lx,v = 0. Since
v €Dy (M,E,), this shows that u e dVe(Resy (p,0)).

We now show that S is surjective. Let w e C*(M;&)) and dVew = 0. We need to find
v e Dy (M;E,) such that w—-d"»v € Resy" (p,0). This is equivalent to ¢x(w—dV»v) = 0 and
thus tg Lx»v =1xw. This equation is solvable if one has

Vy € Resy ™' (p,0), ha(LXw,y)zf txw-yAa=0.
M

We use (4.4) and first consider y € Ran(7)”. That is, we consider y = dV»*z for some
z e Resy (p,0). Moreover, we have dVeixw = Lxpw. In particular, using (2.12) gives
ho(txw,y) = ho(txw,dVe 2) = —ho(Lxow, z) = 0.

4D (M;E,) denotes the set of u e D'(M;E,) such that WF(u) c E.
SMore precisely, we apply the previous results to the adjoint representation p*.
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Next, we consider y € (p*)™ M da. Write y = vda with v € (p*)™ (). We compute
ha(ixw,vd) = [ (w(X),0)gyue, dana= [ dan(w() e,
M P M P7%p

= /&a A (vaw(~, ‘),U)pré'p* =0.

This shows that S is surjective. To conclude the proof of the Lemma, we apply the rank-
nullity theorem to the map S and to d% : Resy" (p,0) = Resy ' (p,0) to obtain

dimker T = dim H'(M, p) + dim(d¥ (Res)" (p,0)))
= dim H'(M, p) + dim(Res)' (p,0)) - dim(ker(d"*))
= dim H*(M, p) + dim(Resy" (p,0)) — dim(p™ D). O
Combining (4.2) and (4.5), we deduce
dim Resy" (p,0) — dim Resy' (p,0) — dim Resy' (p, 0) = dim H' (M, p) - 2dim(p™ D).
From Lemma 2.1, we deduce that m(g,p) = dim(p)(2G - 2) in Case 1 and m(g,p) =0 in
Case 2. This concludes the proof of the proposition. O

Remark 4.4. Below is a slightly different argument for Proposition 4.1, following an (un-
published) note of Dyatlov and Zworski (see also Dang—Riviere [DR20]). Suppose, as before,
that there are no Jordan blocks, i.e., Reslg’“(p, 0) = Resg’l(p, 0) fork=0,1,2. We can define
a complex by
d¥ :Ck - Ck*', CE=Resi” (p,0).
We can also consider the following complex
dVe:CF > CF = {u e Dy (M, 6)) : Lxou=0}, k=0,1,2,3. (4.7)

We claim this complex is homotopic equivalent to the de Rham complex D), ;(M, é”pk). The
chain maps between them are the inclusion Jy, : CF - DE;(M> é"p’“) and the spectral projection
I, at 0. Recall that one has the following Laurent expansion near z =0 (we are using the
semisimplicity here):

Iy
—

(Lxr—2)"" = Hy(2) - D,E;;(M7éapk) _’D,;(Magpk),

where Hy(z) is holomorphic in z. Moreover, it is direct to check that
Idk - Jka = £XPHk(0) = Lka(O)dV” + dvﬂbek(O).

This gives an explicit homotopy equivalence between C* and the de Rham complex D', (M, <§’p’“ .
For k=0,1,2,3, we have the short exact sequence:

0->Ch-Ch-Chl -0
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where the second map is m, = (=1)Fux. Let H* be the k-th cohomology group of C and HE
be the k-th cohomology group of Cy. We get the following long exact sequence:

HE2 o HE S HF s HEL S I L gk ke,
For k =0, this becomes
0->H)—>H > 0->H) > H - H)— H]
where the last map is [u] — [uda]. The first part of the exact sequence implies
HY=2H,  H) 2 ker(r): HY - HY). (4.8)

From the rank-nullity theorem and the fact that the complex from (4.7) is homotopic equiv-
alent to the de Rham complex, we obtain

dim H} = dimker(7f : H' - H)) = dim H*(M, p) — dim Ran (7} : H' - HY).
From (1.4), we obtain
m(g, p) =dimCi — dimC) - dim C? = dim Hj — dim H{ — dim H2,
where we use that the Euler characteristic of the complex C* is the same as its cohomology.

If we can show the map [u] — [uda] : HY - HE is bijective, then the exact sequence (4.8)
gives Ran(7y : H' - HJ) =0, and hence

m(g,p) = H - 2dimHY = dim H' (M, p) - 2dim H°(M, p).
But the bijectivity follows from (4.4).

We record for later use the following consequence of the proof of Lemma 4.3.

Lemma 4.5. Let (X, g) be a closed Anosov surface of genus G > 2 with a representation
p € Hom(m (M), GL,.(C)). Assume that Resy' (p,0) =0 and Res)' (p,0) = 0. Then

m(g.p) > dim(H' (M, p)).

Moreover, one has m(g, p) = dim(H*(M, p)) if and only if there is no Jordan block at zero
for k =1. Finally, the set of peV for which

dim(Res;™ (p,0)) =0, k=0,2, dim(Resy™(p,0)) = dim(Resy™ (p,0)) = dim(H" (M, p))
(4.9)

1s an open subset of the set V defined in Proposition 2.2.

Proof. Since Resg’w(p, 0) =0, the mapping

T :Resy'(p,0) = Reso ' (p,0),  uw d7u
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from (4.1) is equal to 0. In particular, one can define the mapping S from (4.6) for any
u € Res(l]’l(p,O). The first part of the proof of Lemma 4.3 shows that S is injective since
Resg’1 (p,0) = 0. The second part of the proof still shows that S is surjective since there are
no obstructions to solving Lx,(v) = txw. In particular, using (1.9) and Lemma 2.1 gives

m(g,p) = dim(Resy™ (p,0)) > dim(Resy" (p,0)) = dim(H" (M, p)), (4.10)
with equality if and only if Res)"(p,0) = Resy®(p,0). For the last claim, notice that
by Proposition 3.2 the mapping p — dim(Reslg’“(p,O)) = dim(ker(EXpH’p“()\o))) for any
k =0,1,2 is upper semi-continuous. In particular, the conditions dim(Reslg’w(p, 0)) =0 for

k =0,2 are open. Let py €V be a representation satisfying (4.9). For a close representation
p eV, we have

dim(H'(M, po)) = dim(Resy ™ (po,0)) > dim(Resy (p,0))
> dim(Resy " (p,0)) = dim(H(M, p)).

By Lemma 2.1, one has dim(H' (M, py)) = dim(H'(M, p)) for any close p in V. This means
that the inequalities are in fact equalities and concludes the proof. 0]

To conclude this section, we compute the dimensions of the spaces of the generalized
resonant states at zero for a unitary representation using Proposition 4.1 and [DZ17, Lemma
2.3]. We note that in the case where p factors through (%), this was obtained by Cekié¢
and Paternain in [CP20, Corollary 1.9]. We provide a proof for a general representation p
of m (M) for completeness.

Proposition 4.6. Let (X, g) be an Anosov surface and let p be a unitary representation of
w1 (M) such that

(1) either w factors through m(X) with no trivial factors, i.e., pmM) =0;
(2) or m does not factor through m (X)) and is irreducible.

Then
dim(Resg™* (p,0)) =0, k=0,2, dim(Resy*(p,0)) = dim(Res" (p,0)) = dim(H"' (M, p)).
Proof. Suppose that k = 0 to start. Since p is unitary, Lx» acting on L?(M, 52}0) is skew-

adjoint. In particular, we can use [DZ17, Lemma 2.3] to deduce that any u € Resy” (p,0) is
smooth. For any z € M and v e T, M ® £,, since e'*Xu = u, we have

(dVeu(z),v) = (dVru(eXx),e“xry).

In particular, if v € E,(2)®E,, since dVeu(e!Xz) is bounded, this gives (dVeu(eXx), ettxrv) —
0 when t - +00. We have a similar argument for the unstable bundle and this implies that
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dVeu(x) = pa for some ¢ € C(M;E,). Since

0=anrd"»(pa) = panda,
————
dVedVru=0

this implies ¢ = 0 and thus dVeu = 0. Lemma 2.1 implies H(M, p) = 0 which gives u = 0.
This also implies that Res?' (p,0) = 0 since u ~ uda is an isomorphism from Resy” (p,0) to
Res?' (p, 0).

We now let k£ =1 and show that there are no Jordan block at zero, which will finish
the proof of the proposition using Lemma 4.5. Suppose that u € Res(l)’2(p,0), that is
u € Dy (M, &,,) satisfying txu = 0 and Lxou = 1xdVeu =: v € Resy ' (p,0). We first notice
that a A dVru = a(a A da) for some a € Dy, (M;E,). But since [Lxs,dV] =0, we obtain

Lxe(a)(anda)=Lxr(and?u)=Lxard  u+anLxpd  u=and v =0,
——
=0

where we used that dVev € Resg’l(p, 0) = 0. In particular, this gives a € Resg’l(p, 0) =0 and
thus o A dVew = 0. We deduce that dVeu = a Av and from [DZ17, Lemma 2.1], there is

@ €D (M,E,), we C*(M;&),), v=w+d"p, d"»w=0.

Since txv =0, we obtain Lx»(p) = —txw and thus

O:f dvf’u/\w:Re/ dvﬂu/\w:Re/ a/\v/\w:Ref and’ep AW
M M M M
zRe[ ow Ada =-Re(Lxe(¥), ).

M

We can now finish the proof as in [DZ17, Lemma 3.5] and use [DZ17, Lemma 2.3] to
conclude that ¢ € C*(M;E&,) and thus v e C>(M; éap{o). This readily implies v = 0 by the
same argument as for k£ = 0. In other words, we showed that Lx,u =0 for any generalized
resonant states at zero, i.e., that there is no Jordan block at zero for k£ = 1 and this concludes
the proof. [l

5. PROOF OR THEOREM 2

In this section, we prove Theorem 2.

Proof. We fix j =1,...,r(2G -2) and p,py € V; € Hom(m (M), GL,(C)) with py unitary
and nontrivial. From Proposition 2.2, we can consider an analytic path p:[0,1] - V; such
that p(0) = pp and p(1) = p. Fix t € [0,1] and apply Proposition 3.2 to p(t). There is a
neighborhood U; of p(t) such that the mapping

Us > 7o MP(r) = T(0) LTI (0).
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is an analytic family of finite rank operators. As a consequence, we deduce that the set
{T €U, | det(MP(7)) = 0} is either equal to U; or has complex codimension > 1. Remark
that det(MP(7)) = 0 if and only if 0 € Res’(7). Let

I:i={te[0,1]|{r el | det(MP (7)) =0} #+U,}.

From Proposition 4.6, we see that 0 € I. Moreover, it is clear from the definition of I
that it is open. Suppose now that sy ¢ I, i.e., det(Ms, (7)) = 0 for any 7 € Us,. Then
for any s € Us,, we have det(M, (7)) = 0 for any 7 € Us NUs,, since the vanishing of the
determinant is equivalent to the fact that 0 is a resonance and hence does not depend on
the representation p(s) we fixed to apply Proposition 3.2. Since the determinant vanishes
on an open subset of U, it cannot vanish on a subset of codimension > 1 and we deduce
that s € I. This in turns imply that [0,1]\ I is open. In particular, I =[0,1] since [0, 1] is
connected. In total, since resonant O-forms and 2-forms can be identified, we have obtained
the following.

Proposition 5.1. Let (X,g) be a closed Anosov surface and let p € V;. Then there is a
netghborhood U, of p in V; and a complex codimension > 1 Zariski closed Z, c U, such that

VrelU,~ 2, dim(Resg'(7,0)) =0, k=0,2.

We now study resonant states for & = 1. Similarly, we fix ¢ € [0, 1] and define an analytic
family of finite rank operators by

Us> 7o M} (r) = TE(0) L TIL(0).

For a matrix A € M,,.,(R), denote by Ay,...,\, € C its eigenvalues counted with algebraic
multiplicity. For some 0 < k < n, let

Pk(A) = Z /\i1)\i2 ... )\Zk

i1<i2<...<ik

Lemma 5.2. One has min{J | P(A) =0, Vk > J} = n—multy(A), where multy(A) denotes
the algebraic multiplicity of 0 as an eigenvalue of M.

Proof. Let J = n — multg(A) and up to reordering, let A\; = ... = A\; denote the non-zero
eigenvalues. Then

J
PJ(A) = H )\Z + 0.
i=1
Moreover, if k£ > J, then any product in Py(A) contains a zero and thus vanishes. O

Note that by Newton’s inversion formulas and since 7 tr(Mtl(T)Z) is analytic for any
¢, we obtain that 7 — Py(M}(7)) is analytic. This in turn implies that the set {7 € U; |
multo(M} (7)) > r(2G - 2) + 1} is Zariski closed and by the same argument as before, we
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deduce that {7 € U, | multo(M} (7)) > 7(2G - 2) + 1} has complex codimension > 1 for any
t €[0,1]. Recall that

multo(M} (7)) = dim(Resy ™ (7,0)).
Moreover, Proposition 5.1 and Lemma 4.5 imply dim(Resy ™ (7,0)) > 7(2G-2) with equality
if and only if there is no Jordan block for k£ = 1. In total, we have shown the following result.

Proposition 5.3. Let (X,g) be a closed Anosov surface and let p € V;. Then there is a
neighborhood Uy of p in V; and a codimension > 1 Zariski closed subset Z) c Uy such that

VreU,\ 2/, dim(Resy™(7,0)) = dim(Resy" (7,0)) = dim(H* (M, 7)).

We can now deduce Theorem 2 from Propositions 5.1 and 5.3. For j=1,...,r(2G - 2),
define U, ; c V; by
U= U UNZ,)n U (Z/l; N Z;))-
peV; peV;
The subset U, ; is open in V; since all U, \ Z, and U} \ Z| are open. Its complement has
complex codimension > 1. Moreover, if p € U, ;, then there exists p; and p, in V; such that
peUy ~Z, and peld), ~ Z, . By Propositions 5.1 and 5.3, this implies that

dim(Resy ™ (p,0)) =0, k=0,2,
dim(Resy™ (p, 0)) = dim(Resy" (p,0)) = dim(H"' (M, p)).

. .. r(2G-2)
Theorem 2 then follows from Lemma 2.1 by taking Uy := U, 21" “ U, ;. O

5.1. Proof of Corollary 1.1.

Proof. We first remark that the Reidemeister—Turaev torsion (see [BIF'S23, Theorem 2.3.1])
Tegeoao(P) = det(1d = p(c))*7

is a constant in V; since p(c) = e?/(r(2G=2)) " gee Proposition 2.2.

Let (X, g) be a closed negatively curved surface and let p € U, be a representation which
does not factor through m(X). Let j # 0 be the integer such that p € V;. Let go be the
hyperbolic metric of same volume which is conformal to g. Using the normalized Ricci flow,
it is easy to see that there exists a smooth family of negatively curved metrics g(¢) such that
9(0) = go and g(1) = g. Indeed, the normalized Ricci flow starting from a negatively curved
metric on a surface is known to exists in positive time, to preserve negative curvature, the
volume and the conformal class of the metric. Finally, it is known to converge exponentially
fast to the unique hyperbolic metric of same volume in the conformal class of ¢, see [Ham88,
Theorem 3.3]. In particular, we can flow along the Ricci flow for a long time until we are
very close to gg, and since the space of negatively curved metrics is open, this shows the
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existence of the desired path. By [CD24, Theorem 5], the dynamical torsions of (g, p) and
(g0, p) are equal. Since Uy;nV; and Uy, NV; both have complements of complex codimension
> 11in V;, we deduce that Uy, nU,NV; + @. Let py be a representation in the intersection. By
connectedness of V;, see Proposition 2.2, we can choose a smooth family of representations
p(t) € V; such that p(0) = pg and p(1) = p. Note that this is a path of acyclic representations
by Lemma 2.1. By [CD24, Theorem 6], we deduce that the dynamical torsions of (go, p)
and (go, po) are equal. Since p € U, and py € Uy,, Theorem 2 implies that 0 is not a resonance
for (g, p) or (go, po) and the dynamical torsion of (g, p) (resp. (go, o)) thus coincides with
C.p(0)71 (resp. Cgypo(0)71) up to a sign. By [BFS23, Theorem A], we conclude that

ng"(o)_l - ngmPo(O)_l = iTegeod,o(p) = idet(Id - P(C))QG_Q- ]

6. PROOFS OF THEOREM 3 AND 4

6.1. Proof of Theorem 3. In this subsection, we prove Theorem 3. The idea is to rewrite
the dynamical determinant (yaq (see (2.8)) in terms of the twisted Selberg zeta function.
The zeros of this zeta function were studied in [N522].

Proof. Let p € Hom(m (M), GL,(C)). For s € C such that Re(s) > 1, the twisted Selberg
zeta function is equal to

Z(s,p) = [ ] det(1d - p([y])e- %)) = eXp( SDIDIE tlf(p( )e‘(”’“)ﬂm)) :

k=0~eP k=0~€eP j= 1J
(6.1)

Since (%, ¢) is hyperbolic, one can compute explicitly the determinant of the Poincaré map:
1
(1-ets)?

= et Z(k +1)e () = Z(k +1)e (D (O),
k=0

VyeP, Vix1, [det(Id =P, = (/) = 1) (1= e™M) ™ = gt

In particular, we obtain from (2.8) that

Co(s) = eXp( D, Z tr(p( )7) Z(’f +1)e (k+1+s>/zg<w>)

veP j=1J k=0

Exchanging the order of summation and using (6.1) gives for s € C such that Re(s) > 1,

Cop(s) =[] Z(5 + k. p).
k=1
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The relation extends to s € C using the meromorphic extensions of (y(s,p) and Z(s, p).
The Selberg zeta function for p = Ad was studied in [NS22]. In particular, one has

Z(s,Ad)=Z(s-1)Z(s)Z(s+1),

where Z(s) is the (untwisted) Selberg zeta function of (3, g), see [NS22, §3.1]. In total, we
have obtained

C(s, Ad) = Z(s)Z(s + 1)21'12(3 Y h) (6.2)

Now, Z(s) does not vanish in {s € C| Re(s) > 1} and vanishes at s =0 to order 1+ (2G'-2)
and at s = 1 to order 1. Since the algebraic multiplicity of 0 as a Pollicott—Ruelle resonance
is equal to the multiplicity of 0 as a zero of (y(s,Ad), we conclude that

dim(Resg®(Ad)) =1+ (2G -2) +2=2G + 1.
We can use (1.9) and [F'S23, Corollary C] to obtain
dim(Res; (Ad,0)) = 3(2G - 2) +2(2G + 1) = 10G - 4.
This concludes the proof of Theorem 3. O

6.2. Proof of Theorem 4. In this subsection, we show Theorem 4.

Proof. Let (X, g) be a closed hyperbolic surface. Let 7 : SLy(R) - PSLy(R) be the projec-
tion. Let us consider

I'i=m (%) c PSLy(R), T'=a"'(I') c SLy(R).
Note that T’ acts by left multiplication on C2, so we can define
£ :=SLy(R) x C?/ ~, (x,0)~ (¥ -x,7v), Vi €T, Yz e SLy(R), Vv eC2

This is a rank-2 vector bundle over I'\SLy(R) 2 I'\PSLy(R) = M. The trivial connection on
SLy(R) xC2? descends to a flat connection on €. We can define the associated representation
7:m (M) - GLy(C) by setting, for any [v] € w1 (M), 7([v]) to be the parallel transport for
the flat connection along ~, a representative of [y]. Since the connection is flat, this does
not depend on the choice of 5. Since I is Zariski dense in SLy(R) and the left multiplication
of SLo(R) on C2 is irreducible, we know 7 is irreducible.

Lemma 6.1. The representation T does not factor through m(X%).

Proof. Let (z,v) € M and define s, , : [0,27] - S, X such that s,,(0) = (2, Ryv) where
Ry = cos(0) +sin(f)J is the rotation in the circle fiber defined by the complex structure .J.
The curve s, , is closed, generates 7 (S') = Z and 7.s,, = 0. Hence, 7 factors through 7 (X)
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if and only if 7([s..]) = Id, see §2.1.2. The rotation Ry in the identification SH? = PSLy(R)
is given by the multiplication by

_ [ cos(0/2) sin(6/2)
R(0) := (_sin(9/2) 608(9/2))'

Note that R(27) = -Id is trivial in PSLy(R) but not in SLy(R). In particular, the lift §, , of
Sz t0 SLo(R) connects Id to —Id. Since the I'-action defining & is the left multiplication,

we deduce that 7([s;.]) acts as —Id on C2?, which shows that 7 does not factor through
7T1(2). U

A section s € C*=(M;€) identifies with a function s € C*(SLy(R),C2) which is I-
equivariant, that is
VzeSLy(R), Vi el, f(5-z)=7-f(x).
We start by showing that & splits as the direct sum of two invariant trivial line bundles

£*. We define two sections s, € C*(M;€) by defining s, (z) (resp. s_(z)) to be the first
column (resp. second column) of = € SLy(R). We check the equivariance property:

Vi el, Vo eSLy(R), s.(¥-2)=7-s.(x),

by the basic rules of matrix multiplication. Recall that in the identification SH? = PSLy(R),
the action of the geodesic flow is given by

v eR, V[z] e PSLa(R) f([x]) =[] (0/ 63,2) ,

which lifts to SLy(R) to the right multiplication by diag(et/?, e7/2). Define £* := span(s, ).
Then £* are trivial bundles which are invariant by the geodesic flow:

VteR, Yz eSLy(R), s.(pl(x)) = s, (z). (6.3)
See f e C(M;E) as an equivariant function in C*(SLy(R),C2). Let f, € C>(SLy(R),C)
be two functions such that
Vo eSLy(R), Viel, [f(2) = fu(x)s.(2) + f-(2)s-(x), f.(3(2)) = fu(2).

Note that the invariance condition on f, shows that they actually define functions on M.
Then for any t € R, one has

F(ei(@)) = fo(ei ()5 (gi () + (i (2))s- (i (7))
= 2 ()8, (1) + L ()5 (@),
Differentiating (6. 4) at t =0, we find

Lx-(f)(x) = f(SD (@)le=0 = (X +1/2) fo ()5, (x) + (X = 1/2) f-(2)s-(x). (6.5)

(6.4)
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In other words, the action of Lx- on 0-forms is the same as the (non-twisted) action of
X on functions (on M) shifted by +35. Therefore, to show that there is a Jordan block
for the action of Lx- at zero on O-forms, it suffices to show that X has a Jordan block on
O-forms at —3. We will use [GHW18] which describes the Jordan block structure of the
Pollicott—Ruelle resonances on 0-forms. The main result of this section is the following

proposition.

Proposition 6.2. Let (X,g) be a closed hyperbolic surface and let T be the representation
of m (M) constructed above. For k =0,1,2, the Jordan block at zero is at most of order 2,
that is, Rest>™(7,0) = Res{?(7,0). Moreover, we have

dim(Resg" (7,0)) = dim(ker(A, - 1)), dim(Res}™(7,0)) = 2dim(ker(A, - 1)), k=0,2,

dim(Resy" (7,0)) = 2dim(ker(A, - 1)),  dim(Resy™(7,0)) = 4dim(ker(A, - 1)). o)
6.6

In particular, one has m(g,7) = 0 and there is a non triwial Jordan block at zero for
k=0,1,2 if and only if 1 € Spec(A,).

Proof. Let us start with k£ =0. From (6.5), it is clear that
Resg*(7,0) = Resp* (X, 3) @ Resg” (X, -1), eeNu{+oo}.

The Pollicott—Ruelle spectrum of X lies in the half plane {Re(\) < 0} so the first term is
equal to {0}. For the second term, we use [GHW18, Theorem 3.3, 2)] which gives that
the Jordan block at —1/2 is at most of order 2, that is, Resy™(X,-1) = Resp?(X,-2).
Moreover, if we denote by U_ € C*°(M;T M) the unstable horocycle operator, we have

dim(Resy" (X, -1) nker(U_)) = dim(ker(A, - 1)),

dim(Resg’w(X, —%) nker(U-)) = 2dim(ker(4A, - i))

Note that since |-1| < 1, [GITW18, Proposition 1.3] implies that Resy” (X, -1) = Resg* (X, -1)n
ker(U_) for e = 1,00. In other words, all (generalized) resonant states at —1/2 are in the
first band. This readily implies (6.6) for & = 0. Since u = u A da defines an isomorphism
Resy ™ (7,0) — Resy™(7,0) that preserves the Jordan block structure, we also deduce (6.6)
for k= 2.

Suppose now that k = 1. Since g is hyperbolic, ] is trivialized by two smooth sections
B, which satisfy Lxf, = +8.. These 1-forms are just the dual forms to the stable and
unstable horocyclic vector fields. As a consequence, we deduce from (6.5) that for any
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ecNuU{+o0},

Resy*(7,0) = Resy* (7, 1) ® Resy* (7, -1)
~ Resy* (X, 3) @ Resg* (X, 1) @ Resg " (X, -1) @ Resp ™ (X, -3)
= Resg”(X, —%) ® Resg"(X, —%),

where we used again that the Pollicott—Ruelle resonances have non-positive real part.
From the first part of the proof, we know that the term Resg’l(X ,—%) contributes to
a dim(ker(A, — 1))-dimensional space of resonant states and to a 2dim(ker(A, - 1))-
dimensional space of generalized resonant states. Moreover, the Jordan block is of order at
most 2. We now investigate the contribution of Resg’l(X ,—3). From [GHW18, Proposition
1.3], we have

Resy™(X,-2) = (Resy™ (X, -3) nker(U_)) ® U, (Resy™ (X, -1) nker(U_)),

where U, € C*°(M;TM) denotes the stable horocycle operator. Note that the map
U, : Resy™(X,-3) nker(U-) - Resy™(X,-32) is injective by [GHW18, Proposition 1.3]
since —% ¢ Z. Moreover, it preserves the Jordan block structure. The second term
hence contributes to a dim(ker(A, — 1))-dimensional space of resonant states and to a
2dim(ker(A, - 1))-dimensional space of generalized resonant states. To conclude the proof
of the proposition, we only need to show that Resy™(X,-3) nker(U.) = {0}. We use
[GHW18, Theorem 3.3, 1)] which implies that Resy™ (X, -32) nker(U.) is isomorphic to
ker(Ay+(-3)(1-32)) =ker(A, + 2) =0 since A, is a non-negative operator. O

We show that there exists examples of hyperbolic surfaces for which 1/4 is in the spectrum
of the Laplace operator of any genus G > 2.

Proposition 6.3. Let G > 2, then there exists a hyperbolic surface (3,g) of genus G for
which 1 € Spec(A,).

Proof. Let ¥ be a closed surface of genus G > 2. For a hyperbolic metric g on X, let A1 (g)
denote the first positive eigenvalue of A,. It is known that g = A(g) is continuous when
g varies in the Teichmiiller space, see for instance [BUS83]. The Bolza surface is a genus
two hyperbolic surface for which \; = 3.838887, see [SU17]. On the other hand, Buser’s
inequality implies that A;(g) < C(h(g) + h(g)?), where h(g) is the Cheeger constant of
g and C' > 0 is a universal constant. Since there exists hyperbolic metrics on ¥ with
arbitrarily small Cheeger constant, we deduce that A\;(g) can be made arbitrarily small in
the Teichmiiller space. Therefore, there exists a hyperbolic manifold (X, gg) of genus 2 for
which A (go) = 1 since the Teichmiiller space is connected.
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Now, let 7 : (N,h) - (M,go) be a connected cover of (M, gy) of degree d > 1. The
existence of such a cover is guaranteed since 71 (%) has F} (the free group with 2 generators)
as a quotient, which has a representation to S; which is transitive on {1,2,--+,d}. The Euler
characteristic of N is

X(N)=dx(M)=d(2-2x2)=-2d.

In particular, the genus Gy of N is equal to Gy =1 - %X(N) =d+ 1. Since % e Spec(Ay,),
we deduce that }l € Spec(Ap,) and this provides an example in any genus G > 2. O

O
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