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FLAT TRACE ESTIMATES FOR ANOSOV FLOWS

LONG JIN AND ZHONGKAI TAO

Abstract. We prove a high energy flat trace estimate for the modified resolvent of the

generator of an Anosov flow. This fills a gap in the proof of the local trace formula in

[JiZw17] and is a by-product of the authors’ ongoing project of its generalization to Axiom

A flows.

1. Introduction

This note is a by-product of the authors’ ongoing project on the local trace formula

for Axiom A flows, which leads to the discovery of some issues in [JiZw17]. Since the

situation for Anosov flows is simpler than the one for Axiom A flows, we give here a

separate presentation to fix the issues in [JiZw17].

Let X be a smooth compact manifold, ϕt : X → X be an Anosov flow generated by a

smooth vector field V , and P = −iV , Jin–Zworski [JiZw17] proved the following local trace

formula relating the Pollicott–Ruelle resonances Res(P ) to the lengths of closed geodesics.

Theorem 1. For any A > 0 there exists a distribution FA ∈ S ′(R) supported in [0,∞)

such that

∑

µ∈Res(P ),Im(µ)>−A

e−iµt + FA(t) =
∑

γ

T#
γ δ(t− Tγ)

| det(I − Pγ)|
, t > 0

in D′((0,∞)), where the sum on the right hand side is taken over all closed geodesics, Pγ

is the Poincaré map, and

|F̂A(λ)| = OA,ε(〈λ〉
2n+1+ε), Imλ < A− ε (1.1)

for any ε > 0.

The last estimate (1.1) has been modified comparing to [JiZw17, (1.5)]. The additional

loss of ε in the exponent in (1.1) comes from the following mistake in [JiZw17]: rescaling

from [JiZw17, (4.20)] back to [JiZw17, (4.1)], we should gain an additional h from the

derivative changing from d
dz

to d
dλ
, but also have |z| = h|λ| ∼ h1/2 and thus the result

should be h−2n ∼ λ4n. However, we can go back to the setting of [DyZw16, Proposition

3.4] and replace h1/2 by any hε with ε ∈ (0, 1) arbitrarily small. This way we also replace
1
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the bound in [JiZw17, (4.19)] and [JiZw17, (4.20)] by h−(2−ε)n−2 and thus we obtain the

bound in (1.1). In section 3, we will give a simpler proof for a weaker high energy flat trace

estimate, comparing to [JiZw17, Proposition 3.1], see Theorem 2. From this, the bound in

[JiZw17, (4.20)] becomes h−2n−2, but still gives the same bound in (1.1). The advantage

is that we can avoid the complicated construction for complex absorbing potential Q as in

[JiZw17, §2.5].

In [JiZw17], the proof for the high energy flat trace estimate [JiZw17, Proposition 3.1]

was incomplete as it relied on the following flawed statement ([JiZw17, (2.14)]) about the

semiclassical wavefront set for the resolvent Rh(z) = (hP − z)−1:

WF′
h(Rh(z)) ∩ S

∗(X ×X) ⊂ κ(∆(T ∗X) ∪ Ω+ ∪ (E∗
u ×E∗

s ) \ {0}),

which was used to deduce the same statement [JiZw17, (2.19)] for the modified resolvent

R̃h(z) = (hP − iQ− z)−1. However, Rh(z) has poles which are exactly the Pollicott–Ruelle

resonances. Even in the set where it is well-defined, it is not clear that the kernel is h-

tempered uniformly in z, and thus WF′
h(Rh(z)) may not be defined. To remedy this issue,

we analyze the modified resolvent R̃h(z) directly to give the statement [JiZw17, (2.19)],

which is the correct statement eventually used in the proof of Theorem 1 in [JiZw17]. This

will be done in Proposition 2.1 in Section 2.

For more details on the notations we refer to [JiZw17]. For preliminaries on semiclassical

analysis we refer to Zworski [Zw12] and Dyatlov–Zworski [DyZw19, Appendix E]. For other

recent developments concerning trace formulas for Pollicott-Ruelle resonances, see [Je20],

[Je21].

2. Wavefront set estimates

In this section, we fix the issue in [JiZw17] by proving the following semiclassical wave-

front set estimate for the modified resolvent R̃h(z). We briefly recall the notations from

[JiZw17]: Let Q be the absorbing potential as in [JiZw17], to be more precise, we require

• WFh(Q) ⊂ {|ξ| < 1};

• σh(Q) > 0 on {|ξ| ≤ 1/2};

• and σh(Q) ≥ 0 everywhere.

The additional requirement in [JiZw17, §2.5] is used to improve the power in the flat trace

estimate (3.1) and we will give a simpler argument in Secion 3 to avoid the complications.

In [DyZw16, Proposition 3.4], it is shown that for fixed C1, C2, ε > 0, P̃h(z) = hP−iQ−z is

invertible for z ∈ [−C1h
ε, C1h

ε] + i[−C2h, 1] and its inverse satisfied the following estimate

‖R̃h(z)‖Hs
h
→Hs

h
≤ Ch−1.
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Here Hs
h = HsG(h) is the semiclassical anisotropic Sobolev space defined in [DyZw16, §3.3]

and s > 0 is a parameter chosen large enough depending on C1 and C2. The weight

function G(h) is constructed in a way that P̃h(z) : D
s
h := {u ∈ Hs

h : P̃h(z)u ∈ Hs
h} → Hs

h

is invertible. In the following we will only use the fact that

Hs
h ⊂ Hs

h ⊂ H−s
h ,

where Hs
h is the usual semiclassical Sobolev spaces on X .

Proposition 2.1. We have

WF′
h(R̃h(z)) ∩ S

∗(X ×X) ⊂ κ(∆(T ∗X) ∪ Ω+ ∪ (E∗
u × E∗

s ) \ {0}) (2.1)

where Ω+ is the flowout

Ω+ = {(etHp(y, η), y, η) : p(y, η) = 0} ⊂ T ∗(X ×X) ≃ T ∗X × T ∗X,

and κ : T ∗(X ×X) \ {0} → S∗(X ×X) is the natural projection map.

Remark 2.2. Note that S∗(X × X) 6= S∗X × S∗X, hence there are difficulties to deal

with the fiber infinity directly. In fact, unlike the finite part of the wavefront set T ∗(X ×

X) ≃ T ∗X × T ∗X, there is no natural way to identify the element in S∗X × S∗X where

S∗X = κ(T ∗X \ {0}) with the element in S∗(X ×X) = κ(T ∗(X ×X) \ {0}). However, we

do have the natural identification of the diagonal elements ∆(S∗X) = κ(∆(T ∗X) \ {0}).

The rest of this section will be devoted to the proof of Proposition 2.1. We will follow

the strategy of [DyZw16, Proposition 3.4], where the authors prove the estimate for the

finite part of WF′
h(R̃h(z)). To deal with the wavefront set at fiber infinity we introduce

another small parameter h̃ > 0 (which will play the role of |(ξ, η)|−1).

Step 1: Let p−1(0) = {(x, ξ) ∈ T ∗X : p(x, ξ) = 0} ⊃ E∗
u ∪ E∗

s , we first show a weaker

statement:

WF′
h(R̃h(z)) ∩ S

∗(X ×X) ⊂ κ(∆(T ∗X) ∪ Ω+ ∪ (E∗
u × p−1(0)) \ {0}). (2.2)

Suppose (x0, ξ0, y0, η0) ∈ {|(ξ, η)| = 1}\(∆(T ∗X)∪Ω+∪(E
∗
u×p

−1(0))), then as in [DyZw16,

Proposition 3.4] there exist ρ > 0 and neighbourhoods U of (x0, ρξ0) and W of (y0, ρη0),

and A,B ∈ Ψ0
h(X) such that

‖Au‖Hs
h
≤ Ch−1‖BP̃h(z)u‖Hs

h
+O(h∞)‖u‖H−N

h
,

U ⊂ ellh(A), ({|ξ| ≤ 1} ∪W ) ∩WFh(B) = ∅.
(2.3)

Moreover, A is microlocally supported near (x0, ρξ0) and B microlocally supported in a

neighbourhood of {e−tHp(x0, ρξ0) : t ≥ 0}. The condition that (x0, ξ0, y0, η0) /∈ E∗
u × p−1(0)
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guarantees that WFh(B)∩{|ξ| ≤ 1} = ∅ for some large number ρ > 0. We can also assume

that

A = Oph(a), B = Oph(b), Q = Oph(q)

with symbols b ∈ S0 and a, q ∈ C∞
0 independent of h, and supp q ⊂ {|ξ| ≤ 1} so that

supp q∩supp b = ∅. Here Oph denotes a semiclassical quantization on a compact manifold,

see [DyZw19, Appendix E].

Replacing h by hh̃ in the estimate (2.3), we get

Ah̃ = Ophh̃(a), Bh̃ = Ophh̃(b), Qh̃ = Ophh̃(q) ∈ Ψ0
hh̃
(X)

such that

‖Ah̃u‖Hs

hh̃
≤C(hh̃)−1‖Bh̃(hh̃P − h̃z − iQh̃)u‖Hs

hh̃
+O((hh̃)∞)‖u‖H−N

hh̃

,

U ⊂ ellhh̃(Ah̃), ({|ξ| ≤ 1} ∪W ) ∩WFhh̃(Bh̃) = ∅.
(2.4)

Note z ∈ [−C1h
ε, C1h

ε] + i[−C2h, 1] implies h̃z ∈ [−C1(h̃h)
ε, C1(h̃h)

ε] + i[−C2h̃h, 1]. How-

ever we wish to recover P̃h in estimate (2.4), and this require us to replace Qh̃ by h̃Q and

to deal with the Q term. We need the following lemma:

Lemma 2.3. For every N ∈ N,

‖Bh̃Qu‖HN

hh̃

= O(h∞h̃∞)‖u‖H−N

hh̃

.

Proof. Using a partition of unity argument we may assume that we are on R
n and all

the symbols are compactly supported in R
n. Recall (e.g. [Zw12, Theorem 4.23]) for a

sufficiently large constant M > 0,

‖Oph(a)‖L2→L2 . ‖a‖S0,M , ‖a‖Sk,M :=
∑

|α|+|β|≤M

∥∥〈ξ〉|α|−k∂βx∂
α
ξ a(x, ξ)

∥∥
L∞

.

Since {ξ = 0} ∩ supp b = ∅, for m≫ 1,

‖Bh̃Q‖H−N

hh̃
→HN

hh̃

= ‖〈hh̃D〉NBh̃Q〈hh̃D〉N‖L2→L2

. ‖〈h̃ξ〉N#b(x, h̃ξ)#q(x, ξ)#〈h̃ξ〉N‖S0,M

. hm‖〈h̃ξ〉N‖2
SN,M′‖b(x, h̃ξ)‖Sm,M′‖q(x, ξ)‖S−m−2N,M′

. O(hmh̃m).

Since m can be chosen arbitrarily large, this concludes the proof. �
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Now we go back to (2.4) and taking u(x) = R̃h(z)(ψ(x)e
ix·ρη0/hh̃) (here we choose a local

coordinates and identify a neighborhood of x0 to subset of Rn) where suppψ×{ρη0} ⊂W ,

the wavefront set condition (2.3) for B gives

‖Bh̃Qh̃‖H−N

hh̃
→HN

hh̃

= O(h∞h̃∞), ‖Bh̃(ψ(x)e
ix·ρη0/hh̃)‖HN

hh̃

= O(h∞h̃∞).

Therefore we have

‖Ah̃u‖Hr

hh̃
≤ Ch−1‖Bh̃P̃hu‖Hr

hh̃
+ C(hh̃)−1‖Bh̃Qh̃u‖Hr

hh̃

+ Ch−1‖Bh̃Qu‖Hr

hh̃
+O((hh̃)∞)‖u‖H−N

hh̃

= O(h−1)‖Bh̃(ψ(x)e
ix·rη0/hh̃)‖Hr

hh̃
+O(h∞h̃∞)‖u‖H−N

hh̃

= O(h∞h̃∞).

This means WFhh̃(u) ∩ U = ∅, and thus if χ ∈ C∞(X) and suppχ× {ρξ0} ⊂ U , then
∫
χ(x)e−ix·ρξ0/hh̃R̃h(z)(ψ(x)e

ix·ρη0/hh̃)dx = O(h∞h̃∞)

Moreover, by construction it is easy to see the estimate is locally uniform in (x0, ξ0, y0, η0).

Therefore by the equivalent definition of semiclassical wavefront sets using the semiclas-

sical Fourier transform (see [Al08, Definition 3.2]), κ(x0, ξ0, y0, η0) = κ(x0, ρξ0, y0, ρη0) 6∈

WF′
h(R̃h(z)) ∩ S

∗(X ×X) and we have (2.2).

Step 2: The previous method does not work for (x0, ξ0, y0, η0) ∈ E∗
u×p

−1(0) since WFh(B)

has to intersect the zero section {ξ = 0}. Here we argue by duality. Suppose (x0, ξ0, y0, η0) ∈

{|(ξ, η)| = 1} \ (∆ ∪ Ω+ ∪ (p−1(0)×E∗
s )), we consider the following operator

−P̃h(z)
∗ := −hP − iQ− (−z̄),

acting on H−s
h . We see that this corresponds to the reversed Anosov flow ϕ−t generated by

−V and z ∈ [−Chh
ε, C1h

ε]+i[−C2h, 1] also gives −z̄ in the same region. We can repeat the

same argument with the opposite propagation direction we get P̃h(z)
∗ is invertible, with

inverse R̃h(z)
∗ : H−s

h → H−s
h satisfying

‖R̃h(z)
∗‖H−s

h
→H−s

h
≤ Ch−1.

Moreover, there exist ρ > 0, U = nbd(x0, ρξ0) andW = nbd(y0, ρη0) such that for suppψ×

{ρη0} ⊂W and suppχ× {ρξ0} ⊂ U we have
∫
ψ(x)e−ix·ρη0/hh̃R̃h(z)

∗(χ(x)eix·ρξ0/hh̃)dx = O(h∞h̃∞),
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and the estimate is locally uniform in (x0, ξ0, y0, η0). Therefore κ(y0, η0, x0, ξ0) 6∈ WF′
h(R̃h(z)

∗)∩

S∗(X × X). Since the Schwartz kernel of R̃h(z)
∗ is K(y, x) if the K(x, y) is the Schwartz

kernel of R̃h(z), we have κ(x0, ξ0, y0, η0) 6∈ WF′
h(R̃h(z)) ∩ S

∗(X ×X) and thus

WF′
h(R̃h(z)) ∩ S

∗(X ×X) ⊂ κ(∆(T ∗X) ∪ Ω+ ∪ (p−1(0)× E∗
s )) \ {0}).

Combining this with (2.2) we get the desired estimate (2.1) and finish the proof of Propo-

sition 2.1.

3. Flat trace estimates

In this section, we present a simpler argument than the one in [JiZw17] to give the

following flat trace estimate (see [JiZw17, Proposition 3.1]). The result is slightly weaker

than the original one in [JiZw17], but avoid using [NoZw15, Proposition 10.3] and thus the

assumption [JiZw17, (2.7)] for the complex absorbing potential Q.

Theorem 2. The flat trace

T (z) = tr♭(e−it0h−1P̃h(z)R̃h(z))

is well-defined and holomorphic for z in [−C1h
ε, C1h

ε] + i[−C2h, 1]. Moreover, we have

T (z) = O(h−2n−2). (3.1)

To prove it we need a wavefront set estimate for the Schwartz kernel of e−it0h−1P̃h(z)R̃h(z):

Lemma 3.1.

WF′
h(e

−it0h−1P̃h(z)R̃h(z)) ∩ S
∗(X ×X) ⊂

κ({(x, ξ, y, η) : (e−t0Hp(x, ξ), y, η) ∈ ∆(T ∗X) ∪ Ω+ ∪ (E∗
u × E∗

s ) \ {0} or ξ = 0, η 6= 0}).

Proof. Proposition 2.1 gives

WF′
h(R̃h(z)) ∩ S

∗(X ×X) ⊂ κ(∆(T ∗X) ∪ Ω+ ∪ (E∗
u ×E∗

s ) \ {0}).

Thus

WF′
h(e

−t0V R̃h(z)) ∩ S
∗(X ×X) ⊂

κ({(x, ξ, y, η) : (e−t0Hp(x, ξ), y, η) ∈ ∆(T ∗X) ∪ Ω+ ∪ (E∗
u × E∗

s )} \ {0}).

We have

e−it0P − e−it0h−1(hP−iQ) = h−1

∫ t0

0

e−i(t0−t)PQe−ith−1(hP−iQ)dt,
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and using WF′
h(Q) ∩ S

∗(X ×X) = ∅ and [Al08, Lemma 3.7(iii)], we can compute

WF′
h(e

−i(t0−t)PQe−ith−1(hP−iQ)R̃h(z)) ∩ S
∗(X ×X) ⊂ (X × {0})× S∗X.

Therefore

WF′
h(e

−it0h−1P̃h(z)R̃h(z)) ∩ S
∗(X ×X)

⊂
(
WF′

h(e
−it0P R̃h(z))

⋃
∪t0
t=0 WF′

h(e
−i(t0−t)PQe−ith−1(hP−iQ)R̃h(z))

)⋂
S∗(X ×X)

⊂ κ({(x, ξ, y, η) : (e−t0Hp(x, ξ), y, η) ∈ ∆(T ∗X) ∪ Ω+ ∪ (E∗
u ×E∗

s ) \ {0} or ξ = 0, η 6= 0}).

�

Theorem 2 then follows from the following general lemma.

Lemma 3.2. Let X be an n-dimensional smooth manifold and m ∈ R. If P (h) : C∞(X) →
D′(X) is h-tempered and satisfies

• WF′
h(P (h)) ∩∆(S∗X) = ∅;

• ‖AP (h)B‖L2→L2 = O(h−m) for A,B ∈ Ψcomp
h (X);

then tr♭(P (h)) is well-defined with

tr♭(P (h)) = O(h−2n−m).

Proof. Since WF′
h(P (h)) ∩∆(S∗X) = ∅, we have WF′(P (h)) ∩∆(T ∗X) = ∅, it is then a

classical theorem (see e.g. [Hö83, Theorem 8.2.4]) that the flat trace is well-defined as long

as the wavefront set does not intersect the diagonal.

Let u = Kh be the Schwartz kernel of P (h), ι : X → X ×X be the diagonal embedding,

then for χ ∈ C∞(X), ϕ(x, y) = ψ(x)ψ(y) ∈ C∞(X ×X) supported near the diagonal,

〈ι∗(ϕu), χ〉 = 〈ϕu, ι∗χ〉 =
1

(2πh)2n

∫
Fh(ϕu)Iχ,h(ξ, η)dξdη (3.2)

where

Iχ,h(ξ, η) =

∫
χ(x)eix·(ξ+η)/hdx.

If |ξ + η| > |ξ|/C, then

Iχ,h(ξ, η) = O(h∞(|ξ|+ |η|)−∞).

Thus we only need to consider the case when (ξ, η) lies in a small conical neighbourhood

of {ξ + η = 0} or in a neighbourhood of {ξ = η = 0}.
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(i) When |ξ|+ |η| ≤ C is bounded, we have for some A,B ∈ Ψcomp
h (X)

|Fh(ϕu)| = |〈P (h)B(ψ(y)e−iy·η/h), A(ψ(x)e−ix·ξ/h)〉|+O(h∞)

. ‖AP (h)B‖L2→L2 +O(h∞)

= O(h−m).

(ii) When (ξ, η) is near fiber infinity and in a small conic neighbourhood of {ξ+ η = 0}

which does not intersect WF′
h(P (h)), we have

Fh(ϕu) = O(h∞〈|ξ|+ |η|〉−∞)

thanks to the wavefront condition WF′
h(P (h)) ∩∆(S∗X) = ∅.

Now (3.2) gives us

|〈ι∗(ϕu), χ〉| = h−2nO(h−m) = O(h−2n−m)

and a partition of unity argument finishes the proof. �

Proof of Theorem 2. The operator R̃h(z) : Hs
h → Hs

h is bounded and thus h-tempered.

Lemma 3.1 gives

WF′
h(e

−it0h−1P̃h(z)R̃h(z)) ∩∆(S∗X) = ∅

if we choose t0 > 0 smaller than the least length of the closed orbits. For any A,B ∈

Ψcomp
h (X) recall

e−it0P − e−it0h−1(hP−iQ) = h−1

∫ t0

0

e−ith−1(hP−iQ)Qe−i(t0−t)P dt,

we have

‖Ae−it0h−1P̃h(z)R̃h(z)B‖L2→L2

. ‖Ae−it0P R̃h(z)B‖L2→L2 + h−1

∫ t0

0

‖Ae−ith−1(hP−iQ)Qe−i(t0−t)P R̃h(z)B‖L2→L2dt

. ‖Ae−it0P R̃h(z)B‖Hs
h
→Hs

h
+ h−1

∫ t0

0

‖Qe−i(t0−t)P R̃h(z)B‖L2→L2dt

= O(h−1) + h−1

∫ t0

0

‖Qe−i(t0−t)P R̃h(z)B‖Hs
h
→Hs

h
dt

= O(h−2).

Here we use the fact that on compact sets in the phase space L2 norm is equivalent to any

Hs norm. Now the claim follows from Lemma 3.2. �



FLAT TRACE ESTIMATES FOR ANOSOV FLOWS 9

Acknowledgement. We would like to thank Semyon Dyatlov for suggesting the argument

for estimating compositions of operators in different symbol classes, and Maciej Zworski

for numerous discussions and encouraging us to write this note. Long Jin is supported by

Recruitment Program of Young Overseas Talent Plan. Zhongkai Tao gratefully acknowl-

edges partial support under the NSF grant DMS-1901462 and the support of Morningside

Center of Mathematics during his visit.

References

[Al08] I. Alexandrova, Semiclassical wavefront set and Fourier integral operators, Can. J. Math. 60

(2008), 241-263.

[DyZw16] S. Dyatlov and M. Zworski, Dynamical zeta functions for Anosov flows via microlocal analysis,

Annales de l’ENS 49(2016), 543–577.

[DyZw19] S. Dyatlov and M. Zworski, Mathematical Theory of Scattering Resonances, Graduate Studies

in Mathematics 200, AMS, 2019.
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