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Abstract. We prove the convergence of the spectrum of the generator of the kinetic

Brownian motion to the spectrum of the base Laplacian for closed Riemannian manifolds.

This generalizes recent work of Kolb–Weich–Wolf [KWW22] on constant curvature sur-

faces and of Ren–Tao [RT22] on locally symmetric spaces. As an application, we prove a

conjecture of Baudoin–Tardif [BT18] on the optimal convergence rate to the equilibrium.

1. Introduction

Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2 and SM = {(x, v) ∈
TM : |v|g = 1} be the unit tangent bundle. For any p ∈ M , the fiber SpM is a standard

sphere, and we denote by ∆SpM the (positive) spherical Laplacian on SpM . We then define

the vertical Laplacian ∆V on SM by (∆V f)|SpM := ∆SpM(f |SpM) for every p ∈ M . Let X

be the generator of the geodesic flow on SM . From these two operators we construct the

generator of the kinetic Brownian motion on SM (see below for motivation) as

Pγ := −γX + cnγ
2∆V , cn =

1

n(n− 1)
, γ > 0. (1.1)

We are interested in the spectrum of the operator Pγ : D(Pγ) = {u ∈ L2(SM) : Pγu ∈
L2} → L2(SM), which we denote by σ(Pγ). The operator Pγ is hypoelliptic, hence it has

discrete spectrum with finite multiplicities (see e.g. [KWW22, Proposition 2.1]). The main

result of this paper is

Theorem 1. Let ∆M be the (positive) Laplace–Beltrami operator on M . Then,

σ(Pγ) ∩ U → σ(∆M) ∩ U, γ → ∞ (1.2)

uniformly on any bounded open set U ⋐ C, with the agreement of multiplicities. Moreover,

for any s ∈ R,

∥(Pγ − λ)−1 − (∆M − λ)−1∥Hs→Hs+1/4 → 0, γ → ∞ (1.3)

uniformly for λ ∈ U ⋐ C \ σ(∆M).
1
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Figure 1. Simulation of kinetic Brownian motion for γ = 10−2, 10, 104

(click for movies) on S(R2/2πZ2) projected to the base R2/2πZ2.

The convergence in (1.3) is in fact quantitative, and we show in (2.18) that the left hand

side of (1.3) is O(γ−1/10). We have not, at this stage, attempted to find the optimal rate of

convergence or optimal regularity improvement. This allows us to keep the proof relatively

short.

As an application, we prove a conjecture of Baudoin–Tardif [BT18] who proposed an

optimal convergence rate to the equilibrium:

Theorem 2. Suppose in addition to Theorem 1 that M is connected and the spectrum of

∆M is given by 0 = λ0 < λ1 ≤ λ2 ≤ · · · , then for any 0 < β < λ1, there is γ0 > 0 such that

for any γ > γ0, there exists Cγ > 0 such that∥∥∥∥e−tPγu− 1

Volg(SM)

∫
SM

u dVolg

∥∥∥∥
L2

≤ Cγe
−βt∥u∥L2 , t > 0.

A more precise asymptotic expansion is given in Theorem 3.

The operator Pγ is the generator of a stochastic process called kinetic Brownian mo-

tion. It is a form of a Langevin equation where Brownian motion occurs only in the fiber

variables. It was studied by several authors, including Franchi–Le Jan [FL07], Grothaus–

Stilgenbauer [GS13], Angst–Bailleul–Tardif [ABT15] and Li [Li16]. In particular, [ABT15]

and [Li16] proved that the kinetic Brownian motion interpolates between the geodesic flow

and Brownian motion on the base manifold. Figure 1 is a simulation of the kinetic Brow-

nian motion on the flat torus projected to the base. One can see that when γ is small, the

flow behaves like the geodesic flow; but as γ grows, it gets closer to the Brownian motion

on the base manifold.

Bismut [Bis05] introduced another, more functorial, family of hypoelliptic operators in-

terpolating between the generator of the geodesic flow and the Laplacian on the base. His

https://math.berkeley.edu/~ztao/kbm1.mp4
https://math.berkeley.edu/~ztao/kbm2.mp4
https://math.berkeley.edu/~ztao/kbm3.mp4
https://math.berkeley.edu/~ztao/kbm_movie.mp4
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hypoelliptic Laplacian, Lγ, is defined for forms on the cotangent bundle T ∗M . Bismut–

Lebeau [BL08] proved that Lγ converges to ∆M in a certain strong sense for arbitrary closed

manifolds. Bismut [Bis11] also studied the limit γ → 0 for a related hypoelliptic Laplacian

on locally symmetric spaces and obtained formulas for orbit integrals. One motivation

came from Fried’s conjecture [Fri86; Fri95], which relates special values of dynamical zeta

functions to the Reidemeister torsion – see Shen [She21] for a recent survey. The proof of

Fried’s conjecture in the locally symmetric case by Shen [She17] used methods of [Bis11].

Our Theorem 1 should consequently be compared with [BL08, Theorem 17.21.5]. We use

a Grushin problem similar to that in [BL08, §17.2] but we do not need more sophisticated

aspects of semiclassical analysis used there. This is despite the fact that Pγ is less functorial

and hence does not enjoy special properties as in [BL08, Chapter 16] related to the harmonic

oscillator structure in the fibers which are crucial in [BL08, Chapter 17].

One possible reason for the difficulties in proving Fried’s conjecture using hypoelliptic

Laplacian is that its properties as γ → 0 for general negatively curved manifolds are not

clear. On the other hand, if we think of Pγ as an analogue of hypoelliptic Laplacian on

SM , Drouot [Dro17] proved that, uniformly on compact sets,

σ(X + γ∆V ) → Res(X), γ → 0

for negatively curved manifolds, where Res(X) is the set of Pollicott–Ruelle resonances.

They are defined as the spectrum of X on certain anisotropic Sobolev spaces and (at least

in principle) appear in expansions of correlations.

Concerning the limiting properties of Pγ as γ → ∞, the first breakthrough was achieved

by Kolb–Weich–Wolf [KWW19; KWW22], who proved a weaker version of convergence for

constant curvature surfaces. This approach was generalized in Ren–Tao [RT22] to the case

of locally symmetric spaces. We should stress that [RT22] provides a strong convergence

as stated in (1.2), while [KWW22] only proved convergence in each Casimir eigenspace.

The new ingredient in [RT22] is a careful study of the localization of eigenfunctions in the

Fourier space. In this paper, we implement the strategy to general Riemannian manifolds

and prove similar localization results. This leads to the proof of Theorem 1. We also remark

that our method has been generalized to the setting of Bismut’s hypoelliptic Laplacian by

Nier–Sang–White [NSW24b; NSW24a] very recently.

The connection between kinetic Brownian motion and Fried’s conjecture is still mysteri-

ous. We propose it as an open question.

Question. How is Pγ related to the Reidemeister torsion?

A positive answer to this question would give us a new way to understand Fried’s con-

jecture.
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The paper is organized as follows. We prove Theorem 1 in §2. This is done by intro-

ducing a finite rank semi-positive operator QA such that Pγ − λ+QA is invertible. In this

way, the problem is transformed to the study of the spectrum of the finite rank operator

(Pγ − λ+QA)
−1QA, and can be solved using a Grushin problem as in [RT22, Section 3.4].

The invertibility of Pγ−λ+QA is proved in Lemma 2.4 in a quantitative form, and is the key

technical result of the paper. Roughly speaking, we study the decomposition into spherical

harmonics in the fiber variables and prove that eigenfunctions of Pγ are localized to 0-th

spherical harmonics. Then we use projection to first order spherical harmonics to conclude

eigenfunctions of Pγ are also localized in the horizontal direction, hence compleltely local-

ized in the Fourier space. Thus the potential QA gives the invertibility of Pγ−λ+QA. The

improvement of regularity is a corollary of a uniform hypoelliptic estimate (see Proposition

2.5) following [Rad69; Koh73; Hör07]. As an application, we prove Theorem 2 in §3. This is
done by writing e−tPγ as the inverse Mellin transform of the resolvent, and then deforming

the contour. Our method only provides information on compact sets (or on vertical strips).

In the faraway region, we use a result in Eckmann–Hairer [EH03], which is based on earlier

work of Hérau–Nier [HN04], to obtain a spectral free region near infinity.

Acknowledgement. We would like to thank Alexis Drouot for sharing with us his notes

on kinetic Brownian motion which suggested the Grushin problem used here and in [RT22],

and for helpful discussions. ZT would also like to thank Maciej Zworski for many helpful

discussions and for his encouragement. ZT was partially supported by National Science

Foundation under the grant DMS-1901462 and by Simons Targeted Grant Award No.

896630.

2. Convergence of spectrum

In this section, we prove Theorem 1. We will first recall some important properties of ∆V

and X studied in Ren–Tao [RT22]. Then we prove the key invertibility lemmas: Lemma

2.4 and Lemma 2.7, and use them to conclude Theorem 1.

2.1. Decomposition of Hs(SM). The result in this section is basically the same as [RT22,

Section 3.2], except we use more general Hs spaces defined as Hs(SM) = {u ∈ D′(SM) :

(1 + ∆)s/2u ∈ L2}. Here we have three different (positive) Laplacians: the total Laplacian

∆, the horizonal Laplacian ∆H and the vertical Laplacian ∆V .

• The total Laplacian ∆ is the Laplace–Beltrami operator associated to the Sasaki

metric on SM .

• The vertical Laplacian ∆V is defined as (∆V f)|SpM := ∆SpM(f |SpM) for every p ∈
M .
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• The horizontal Laplacian ∆H is defined as ∆H = ∆−∆V .

We recall from [BB82, Theorem 1.5] that ∆|L2(M) = ∆H |L2(M) = ∆M and ∆,∆H ,∆V

commute with each other.

Let s ∈ R. The total Laplacian ∆ is a self-adjoint operator on Hs(SM) with discrete

spectrum. Since ∆V commutes with the total Laplacian ∆ on SM , we can do spectral de-

composition on each eigenspace of ∆. Thus we get the following orthogonal decomposition:

Hs(SM) =
⊕
k

V s
k (2.1)

where V s
k = {u ∈ Hs(SM) : ∆V u = k(k + n− 2)u} is the k-th eigenspace of ∆V .

Let Πs
k : H

s(SM) → V s
k denote the orthogonal projection with the abbreviated notation

Π = Πs
0 : Hs(SM) → V s

0 and Π⊥ = id − Π : Hs(SM) → V s
>0. The difficulty is that the

geodesic vector field X does not commute with ∆V , but it satisfies the following properties

from [RT22, Lemma 3.2]. We include the proofs for completeness.

Lemma 2.1. • X is anti-self-adjoint with respect to the natural L2(SM) norm de-

fined via the metric;

• X sends Vk into Vk+1 ⊕ Vk−1 with the convention that V−1 = 0;

• nΠX2Π = −∆M .

Proof. • The fact X is anti-self-adjoint on L2 follows from the fact that exp(tX) is

volume-preserving. This is essentially Liouville’s theorem that geodesic flow pre-

serves the volume.

• This is done by a computation in local coordinates. We choose normal coordinates

{xi} at p ∈ M , so that gij(p) = δij and ∂kgij(p) = 0. Then at p, X =
∑

vj∂xj

where vj’s are the induced coordinates on TM . The claim follows from the fact that

multiplying spherical harmonics of degree k by linear functionals gives a combination

of spherical harmonics in degree k − 1 and k + 1.

• Again we compute in normal coordinates {xi} and the induced coordinates {vi}
near the fiber over p ∈ M . The geodesic flow is given by

X =
∑

vi∂xi −
∑

vivjΓk
ij∂vk =

∑
(vi∂xi +O(x)∂vi),

and X2 =
∑

vivj∂xi∂xj +
∑

O(1)∂vk +O(x). Since ∂vkΠ = 0, it follows that at p,

ΠX2Π =
∑

Π(vivj)∂xi∂xj . Here Π(vivj) is the L2 orthogonal projection of vivj to

constants. If i ̸= j, then the projection is zero. If i = j, then the projection is given

by

1

Vol(Sn−1)

∫
Sn−1

(vj)2dσ(v) =
1

nVol(Sn−1)

∫
Sn−1

n∑
i=1

(vj)2dσ(v) =
1

n
.
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Thus ΠX2Π =
1

n

n∑
i=1

∂2
xi = − 1

n
∆M . □

2.2. Invertibility lemmas. In this section, we prove the crucial invertibility lemmas:

Lemma 2.4 and Lemma 2.7. In order to keep track of the dependence on the parameters,

we use A ≲s B to mean A ≤ C(s)B with the implicit constant C(s) depending on s.

Similarly, A ≪s B means we choose A ≤ c(s)B for some sufficiently small c(s) > 0

depending on s. Since everything will depend on the dimension n and regularity s, we will

often omit s, n in the dependence to keep the notations simple.

We start by recalling the hypoelliptic estimate essentially from [Smi20, Theorem 6.3].

Lemma 2.2. For any γ > 0, s ∈ R, N ∈ N, u ∈ C∞(SM) we have

∥Xu∥Hs + ∥∆V u∥Hs + ∥u∥Hs+2/3 ≤ Cγ,s,N(∥Pγu∥Hs + ∥u∥H−N ). (2.2)

Since ∆ commutes with ∆V , it is easy to see C∞(SM) is dense in Ds(Pγ) = {u ∈
Hs(SM) : Pγu ∈ Hs(SM)}. Thus (2.2) works for any u ∈ Ds(Pγ). In particular, (Pγ −
λ)u ∈ C∞(SM) implies u ∈ C∞(SM). A basic accretive estimate shows Pγ : Ds(Pγ) →
Hs(SM) is a Fredholm operator with index 0.

Lemma 2.3. For Reλ < 0, Pγ − λ is invertible on L2. For Reλ < 0 sufficiently negative

(depending on s and γ), Pγ − λ is invertible on Hs.

Proof. We will only prove the claim for L2. The proof for Hs is similar. First we recall

Re(Xu, u)L2 = 0 since X is anti-self-adjoint. Thus

Re((Pγ − λ)u, u) = cnγ
2(∆V u, u)− Reλ∥u∥2 ≥ −Reλ∥u∥2.

For Reλ < 0, this shows Pγ − λ : D(Pγ) → L2 is injective and the image is closed. We

claim it is also surjective. If there is v ∈ L2(SM) such that ((Pγ − λ)u, v) = 0, then

distributionally

(P ∗
γ − λ̄)v = 0.

By hypoellipticity, v ∈ C∞(SM). However,

0 = Re((P ∗
γ − λ̄)v, v) = γ2(∆V v, v)− Reλ∥v∥2 ≥ −Reλ∥v∥2

implies v = 0. So Pγ must be surjective and thus invertible. □

When Reλ ≥ 0, it is possible that Pγ−λ is not invertible. The following lemma essentially

says that any such eigenfunction must be localized to finite frequency. In order to implement

the heuristics, for A > 0 we introduce QA = A2Π1(∆M≤A2)Π : Hs(SM) → Hs(SM). This

is a finite rank smoothing operator localized to finite frequencies. Here 1(λ≤A2) is the
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characteristic function of the set {λ ≤ A2} and 1(∆M≤A2) is the spectral projection to

eigenspaces of ∆M with eigenvalue ≤ A2, defined using functional calculus of self-adjoint

operators.

Lemma 2.4. For any C0 > 0, s ∈ R, there exists C1 = C1(C0, n) > 0 such that for any

γ > C1, A > C1 and |λ| ≤ C0, the operator

Pγ − λ+QA : Ds(Pγ) = {u ∈ Hs(SM) : Pγu ∈ Hs} → Hs(SM)

is invertible. For γ > A ≫C0,n,s 1, the inverse has the bound

∥(Pγ − λ+QA)
−1∥Hs→Hs ≲C0,n,s A

−1. (2.3)

Proof. Since Pγ − λ + QA is hypoelliptic and Fredholm of index 0, we only need to prove

it has no kernel. Suppose by contradiction that for some u ∈ Hs(SM) \ {0},

(Pγ − λ+QA)u = 0. (2.4)

Then u ∈ C∞ by hypoellipticity. Suppose ∥u∥L2 = 1 and denote uk = Πku. Pairing with u

gives

cnγ
2(∆V u, u)− γ Re(Xu, u)− Reλ∥u∥2L2 + (QAu0, u0) = 0. (2.5)

Since Re(Xu, u)L2 = 0, we get

∥Π⊥u∥L2 ≲C0 γ
−1.

Similaly pairing (2.4) with (∆H + 1)u gives

cnγ
2(∆V (∆H + 1)u, u)− γ Re(Xu, (∆H + 1)u)− Reλ∥u∥2H1 + (QAu0, (∆H + 1)u0) = 0.

Moreover,

2Re(Xu, (∆H + 1)u) = ([∆H , X](Π⊥u+ u0),Π
⊥u+ u0) ≲ ∥Π⊥u∥2H1 + ∥Π⊥u∥H1∥u0∥H1 .

Note ∥Π⊥u∥H1∥u0∥H1 ≤ ϵnγ∥Π⊥u∥2H1 + γ−1ϵ−1
n ∥u0∥2H1 , we conclude

∥Π⊥u∥H1 ≲C0 γ
−1∥u0∥H1 .

We come back to (2.4). Projecting it to V1 gives

1

n
γ2u1 − γΠ1X(u0 + u2) = λu1.

Recall ∥u1∥L2 ≲C0 γ
−1, and

∥Xu0∥2L2 = −(ΠX2Πu0, u0) =
1

n
(∆Mu0, u0) ≳ ∥u0∥2H1 − ∥u0∥2L2 ,

∥Xu2∥2L2 ≲ ∥u2∥2H1 ≲C0 γ
−1∥u0∥2H1 .
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We conclude ∥u0∥H1 ≲C0 1. The key observation is that the constant in this estimate is

independent of A. On the other hand, (2.5) also implies ∥A1(∆≤A2)u0∥L2 ≲C0 1. Taking

A ≫C0 1 gives a contradiction. This shows the invertibility of Pγ − λ+QA.

In order to get the bound for the inverse, let f ∈ C∞ and u ∈ C∞ such that

(Pγ − λ+QA)u = f. (2.6)

Pairing with u in Hs gives

cnγ
2(∆V u, u)Hs − γ Re(Xu, u)Hs − Reλ∥u∥2Hs + (QAu, u)Hs = (f, u)Hs . (2.7)

Since

Re(Xu, u)Hs = Re(Xu, (1 + ∆)su)L2 =
1

2
([(1 + ∆)s, X]u, u)L2

≲ ∥Π⊥u∥2Hs + ∥Π⊥u∥Hs∥u0∥Hs ,

we conclude as before

∥Π⊥u∥Hs ≲C0 γ
−1(∥u0∥Hs + ∥f∥Hs), ∥A1(∆≤A2)u0∥Hs ≲C0 ∥u0∥Hs + ∥f∥Hs .

Now we look at the Π1 component of (2.6), i.e.

1

n
γ2u1 − γΠ1X(u0 + u2) = λu1 + f1.

We conclude

∥u0∥Hs ≲ ∥Xu0∥Hs−1 + ∥u0∥Hs−1

≲C0 γ∥u1∥Hs−1 + γ−1∥f∥Hs−1 + ∥u2∥Hs + ∥u0∥Hs−1

≲C0 ∥u0∥Hs−1 + ∥f∥Hs−1 + γ−1∥f∥Hs .

(2.8)

Now we divide into two cases.

• If f = 1(∆>γ2)f is in high frequency, then (2.8) implies that

∥u0∥Hs ≲C0 ∥1(∆≤A2)u0∥Hs−1 + ∥1(∆>A2)u0∥Hs−1 + γ−1∥f∥Hs

≲C0 A
−1(∥u0∥Hs−1 + ∥f∥Hs−1) + A−1∥u0∥Hs + γ−1∥f∥Hs

≲ A−1∥u0∥Hs + A−1∥f∥Hs .

• If f = 1(∆≤γ2)f is in low frequency, then (2.8) with s replaced by s+ 1 gives

∥u0∥Hs+1 ≲C0 ∥u0∥Hs + ∥f∥Hs + γ−1∥f∥Hs+1

≲ ∥u0∥Hs + ∥f∥Hs .

On the other hand, we have

∥u0∥Hs+1 ≥ ∥1(∆>A2)u0∥Hs+1 ≥ A∥1(∆>A2)u0∥Hs ,
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thus

∥u0∥Hs ≤ ∥1(∆≤A2)u0∥Hs + ∥1(∆>A2)u0∥Hs

≲C0 A
−1(∥u0∥Hs + ∥f∥Hs).

In both cases we have ∥u0∥Hs ≲C0 A
−1∥f∥Hs and we conclude

∥u∥Hs ≲C0 ∥u0∥Hs + γ−1∥f∥Hs ≲C0 A
−1∥f∥Hs . □

In order to get the improvement of regularity in (1.3), we prove a uniform hypoelliptic

estimate following [Rad69; Koh73] and [Hör07, Theorem 22.2.1].

Proposition 2.5. For A,B > 1, γ > A+B2, y ∈ R, there exists C = C(n, s) independent

of A,B, γ, y such that

∥u∥Hs+1/4 ≤ CB−1∥(Pγ +QA)u∥Hs + CB∥u∥Hs . (2.9)

∥u∥Hs+1/8 ≤ CB−1∥(Pγ − iy)u∥Hs + CB∥u∥Hs . (2.10)

Proof. It suffices to compute locally. We will only give the proof of (2.9), but (2.10) is

proved in the same way using the fact that for a local basis Xi of vertical vector fields, the

vector fields

Xi, [Xi, X], [Xi, [Xi, X]], i = 1, 2, · · · , n− 1

generate all directions.

In order to get (2.9), since X,Xi, [Xi, X], i = 1, 2, · · · , n − 1 generate all directions, it

suffices to bound ∥Xiu∥Hs , ∥Xu∥Hs−1/2 and ∥[Xi, X]u∥Hs−3/4 by the right hand side of (2.9).

First, we have

(QAu, u)Hs + γ2(∆V u, u)Hs ≲ Re((Pγ +QA)u, u)Hs + C∥u∥2Hs

≲ B−2∥(Pγ +QA)u∥2Hs +B2∥u∥2Hs .
(2.11)

We will abbreviate pseudodifferential operators of order k by Ψk to simplify the notation.

For ∥Xu∥Hs−1/2 , we have

∥Xu∥2Hs−1/2 = (Xu,Ψ0u)Hs = γ−1((cnγ
2∆V +QA − (Pγ +QA))u,Ψ

0u)Hs .

The first term is estimated as

γ−1(γ2∆V u,Ψ
0u)Hs = γ−1(γ∇V u,Ψ0γ∇V u)Hs + (γ∇V u,Ψ0u)Hs

≲ B−2∥(Pγ +QA)u∥2Hs +B2∥u∥2Hs .

The second term is estimated as

γ−1(QAu,Ψ
0u)Hs ≲ γ−1∥QAu∥Hs∥u∥Hs ≲ B−2∥(Pγ +QA)u∥2Hs +B2∥u∥2Hs .
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The third term is estimated as

γ−1((Pγ +QA)u,Ψ
0u)Hs ≲ γ−1∥(Pγ +QA)u∥Hs∥u∥Hs ≤ γ−1∥(Pγ +QA)u∥2Hs + γ−1∥u∥2Hs .

Thus we conclude

∥Xu∥Hs−1/2 ≲ B−1∥(Pγ +QA)u∥Hs +B∥u∥Hs . (2.12)

For ∥[Xi, X]u∥Hs−3/4 , we have

∥[Xi, X]u∥2Hs−3/4

= ([Xi, X]u,Ψ−1/2u)Hs

= (XiXu,Ψ−1/2u)Hs − (XXiu,Ψ
−1/2u)Hs

= −(Xu,Ψ−1/2Xiu)Hs + (Xu,Ψ−1/2u)Hs + (Xiu,Ψ
−1/2Xu)Hs − (Xiu,Ψ

−1/2u)Hs

= Re(Xu,Ψ−1/2Xiu)Hs +Re(Xu,Ψ−1/2u)Hs +Re(Xiu,Ψ
−1/2u)Hs .

The last term is estimated as

Re(Xiu,Ψ
−1/2u)Hs ≲ γ−1∥(Pγ +QA)u∥2Hs + γ−1∥u∥2Hs ,

The second term is estimated as

Re(Xu,Ψ−1/2u)Hs

= γ−1Re((cnγ
2∆V +QA − (Pγ +QA))u,Ψ

−1/2u)Hs

≲ γ−1∥γ∇V u∥Hs∥γ∇VΨ−1/2u∥Hs + γ−1(QAu,Ψ
−1/2u)Hs + γ−1∥(Pγ +QA)u∥2Hs + γ−1∥u∥2Hs

≲ B−2∥(Pγ +QA)u∥2Hs +B2∥u∥2Hs .

The first term is estimated as

Re(Xu,Ψ−1/2Xiu)Hs = γ−1Re((cnγ
2∆V +QA − (Pγ +QA))u,Ψ

−1/2Xiu)Hs

≲ γ−1(γ2∆V u, u)
1/2
Hs (γ2∆VΨ

−1/2Xiu,Ψ
−1/2Xiu)

1/2
Hs

+ γ−1(QAu,Ψ
−1/2Xiu)Hs + γ−1∥(Pγ +QA)u∥Hs∥Xiu∥Hs

≲ B−2∥(Pγ +QA)u∥2Hs +B2∥u∥2Hs
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where we used (∆V u, v)Hs ≤ (∆V u, u)
1/2
Hs (∆V v, v)

1/2
Hs and

(γ2∆VΨ
−1/2Xiu,Ψ

−1/2Xiu)Hs

≲ Re(PγΨ
−1/2Xiu,Ψ

−1/2Xiu)Hs + C∥Ψ−1/2Xiu∥2Hs

≲ Re(Ψ−1/2XiPγu,Ψ
−1/2Xiu)Hs +Re((γ2Ψ1/2∇V + γΨ1/2)u,Ψ−1/2Xiu)Hs + C∥Ψ−1/2Xiu∥2Hs

≲ B−2∥Pγu∥2Hs +B2∥u∥2Hs

≲ B−2∥(Pγ +QA)u∥2Hs +B2∥u∥2Hs + ∥QAu∥2Hs .

Thus we conclude

∥[Xi, X]u∥Hs−3/4 ≲ B−1∥(Pγ +QA)u∥Hs +B∥u∥Hs . (2.13)

Combining (2.11), (2.12), (2.13), we conclude (2.9). □

As a corollary, we can improve the regularity in (2.3).

Corollary 2.6. In Lemma 2.4, we have

∥(Pγ − λ+QA)
−1∥Hs→Hs+1/4 ≲C0,n,s A

−1/2. (2.14)

Proof. We take B = A1/2 in (2.9), then

∥u∥Hs+1/4 ≲C0 A
−1/2∥(Pγ − λ+QA)u∥Hs + A1/2∥u∥Hs

≲C0 A
−1/2∥(Pγ − λ+QA)u∥Hs . □

We will also need the following invertibility lemma. We use the semiclassical notation

h = γ−1 and P̃h = cn∆V − hX. Note that Pγ = γ2P̃h.

Lemma 2.7. Let s ∈ R, |λ| ≤ C0, there exists h0 = h0(C0, n, s) > 0 such that for

0 < h < h0, the operator

Π⊥(P̃h − h2λ)Π⊥ : {u ∈ V s
>0 : Π

⊥P̃hu ∈ Hs} → V s
>0

is invertible. The inverse has norm

∥(Π⊥(P̃h − h2λ)Π⊥)−1∥Hs→Hs ≲C0,n,s 1.

Proof. For u ∈ V s
>0, h ≪C0 1,

Re((P̃h − h2λ)u, u)Hs = cn(∆V u, u)Hs − hRe(Xu, u)Hs − h2Reλ∥u∥2Hs ≳C0 ∥u∥2Hs .

So Π⊥(P̃h − h2λ)Π⊥ is injective and has closed image. Suppose it is not surjective, then

there exists a nonzero v ∈ V s
>0 such that

(Π⊥(P̃h − h2λ)u, v)Hs = 0, ∀u ∈ C∞(SM) ∩ V>0.
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Thus Π⊥(P̃ ∗
h − h2λ̄)v = 0 where the adjoint is taken in Hs. Let χ ∈ C∞

0 (R; [0, 1]) be a

cutoff function such that χ = 1 near 0 and vϵ = χ(ϵ2∆)v, then

∥vϵ∥Hs ≲C0 ∥Π⊥(P̃ ∗
h − h2λ̄)vϵ∥Hs

≲C0 h∥[X∗, χ(ϵ2∆)]v∥Hs

≲C0 h∥v∥Hs .

Let h ≪C0 1 and ϵ ≪ 1, we conclude v = 0, a contradiction. Thus Π⊥(P̃h − h2λ)Π⊥ is also

surjective and thus invertible. □

2.3. Spectral convergence. In this section we prove the convergence of the spectrum in

Theorem 1 by a Grushin problem following [RT22].

Let i0 : V s
0 → Hs(SM) be the inclusion. Intuitively, we want to consider the following

Grushin problem for Pγ − λ+QA.(
Pγ − λ+QA γi0

γΠ 0

)
: Ds(Pγ)⊕ V s

0 → Hs(SM)⊕ V s
0 .

However, it is not clear what the correct space is to set up the Grushin problem. Instead

we will just directly write down a formula (2.17) that works distributionally. Using same

methods in [RT22], we can solve the equations{
(Pγ − λ+QA)u+ γu− = v, (u, u−) ∈ D′(SM)⊕D′(M),

γΠu = v+, (v, v+) ∈ D′(SM)⊕D′(M).
(2.15)

The solution we get is{
u = (Π⊥(Pγ − λ)Π⊥)−1Π⊥(v +Xv+) + γ−1v+,

u− = γ−1Πv + γ−2(λ−QA)v+ +ΠX(Π⊥(Pγ − λ)Π⊥)−1Π⊥(v +Xv+).
(2.16)

Now we write (at least formally)

(Pγ − λ+QA)
−1 = E − E+E

−1
−+E− (2.17)

where

E = (Π⊥(Pγ − λ)Π⊥)−1Π⊥, E+ = (Π⊥(Pγ − λ)Π⊥)−1Π⊥X + γ−1,

E− = γ−1Π+ΠX(Π⊥(Pγ − λ)Π⊥)−1Π⊥, E−+ = γ−2(λ+ΠX(Π⊥(P̃h − h2λ)Π⊥)−1XΠ−QA).

We need to justify that E−+ is invertible, and the inverse has a good control. So let us

look at the equation γ2E−+u = f . Let v = (Π⊥(P̃h − h2λ)Π⊥)−1XΠu, we have

λu+ΠXv −QAu = f, Π⊥(P̃h − h2λ)v = Xu.
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Thus γ2E−+u = f is equivalent to

(Pγ − λ+QA)(u+ hv) = −f.

By Lemma 2.4, Pγ−λ+QA is invertible, we conclude E−+ is also invertible. So the formula

(2.17) makes sense distributionally for γ > A ≫C0,n,s 1 depending on the Sobolev regularity

s.

In order to apply (2.17), we write

Pγ − λ = Pγ − λ+QA −QA = (Pγ − λ+QA)(I − (Pγ − λ+QA)
−1QA).

We claim

Proposition 2.8. For |λ| ≤ C0, γ > A ≫C0,n,s,N 1, we have

∥(Pγ − λ+QA)
−1QA − (∆M − λ+QA)

−1QA∥Hs→Hs+N ≲C0,n,s,N AN+2γ−1,

∥QA(Pγ − λ+QA)
−1 −QA(∆M − λ+QA)

−1∥Hs→Hs+N ≲C0,n,s,N AN+2γ−1,

for any s ∈ R, N ≥ 0.

Proof. We will only prove the first one, but the second one is proved exactly the same way.

Note by (2.17), (Pγ − λ + QA)
−1QA = −γ−1E+E

−1
−+QA. We first prove a bound for

γ−2E−1
−+QA in Hs → Hs+N for any N ≥ 0. Let γ2E−+u = QAf , then for v = (Π⊥(P̃h −

h2λ)Π⊥)−1XΠu we have

(Pγ − λ+QA)(u+ hv) = −QAf.

By Lemma 2.4, we conclude

∥u∥Hs+N ≲C0 A
−1∥QAf∥Hs+N ≲C0 A

N+1∥f∥Hs .

Now we can estimate the difference

(Pγ − λ+QA)
−1QA − (∆M − λ+QA)

−1QA = −γ−1E+E
−1
−+QA − (∆M − λ+QA)

−1QA

= (−γ−2E−1
−+ − (∆M − λ+QA)

−1)QA − γ−3(Π⊥(P̃h − h2λ)Π⊥)−1Π⊥XE−1
−+QA.

For the second term,

∥γ−3(Π⊥(P̃h − h2λ)Π⊥)−1Π⊥XE−1
−+QA∥Hs→Hs+N ≲C0 ∥γ−3E−1

−+QA∥Hs→Hs+N+1

≲C0 A
N+2γ−1.
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For the first term,

(−γ−2E−1
−+ − (∆M − λ+QA)

−1)QA

=(∆M − λ+QA)
−1(−∆M − ΠX(Π⊥(P̃h − h2λ)Π⊥)−1XΠ)γ−2E−1

−+QA

=(∆M − λ+QA)
−1(ΠX((cnΠ

⊥∆VΠ
⊥)−1 − (Π⊥(P̃h − h2λ)Π⊥)−1)XΠ)γ−2E−1

−+QA

=(∆M − λ+QA)
−1(ΠX((cnΠ

⊥∆VΠ
⊥)−1Π⊥(−hX − h2λ)Π⊥

(Π⊥(P̃h − h2λ)Π⊥)−1)XΠ)γ−2E−1
−+QA.

Note

∥γ−2E−1
−+QA∥Hs→Hs+N+3 ≲C0 A

N+4, ∥X∥Hs+N+3→Hs+N+2 ≲ 1,

∥(Π⊥(P̃h − h2λ)Π⊥)−1∥Hs+N+2→Hs+N+2 ≲C0 1, ∥hX + h2λ∥Hs+N+2→Hs+N+1 ≲C0 h,

∥X(cnΠ
⊥∆VΠ

⊥)−1∥Hs+N+1→Hs+N ≲ 1, ∥(∆M − λ+QA)
−1∥Hs+N→Hs+N ≲C0 A

−2.

We conclude

∥(Pγ − λ+QA)
−1QA − (∆M − λ+QA)

−1QA∥Hs→Hs+N ≲C0 A
N+2γ−1. □

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We first show the spectrum convergence (1.2). It is direct to check

I − (Pγ − λ+QA)
−1QA is invertible on L2(SM) if and only if it is invertible on D(Pγ). So

for U ⋐ C,

σ(Pγ) ∩ U = {λ ∈ U : I − (Pγ − λ+QA)
−1QA is not invertible on L2(SM)}

= zeros of det(I − (Pγ − λ+QA)
−1QA) in U.

By Proposition 2.8, for fixed A, the determinant det(I − (Pγ −λ+QA)
−1QA) convergences

to det(I − (∆M − λ + QA)
−1QA) locally uniformly as γ → ∞. So the zeros also converge

to zeros of det(I − (∆M − λ+QA)
−1QA), which are exactly eigenvalues of ∆M .

Now we prove the resolvent convergence (1.3). We will choose A = γ1/5 → ∞ below.

Let u ∈ Hs with ulow = 1(∆M≤10A2)Πu and uhigh = u− ulow, we have

∥(∆M − λ)−1uhigh∥Hs+1/4 ≲C0 A
−7/4∥uhigh∥Hs .

We note

∥(I −QA(∆M − λ+QA)
−1)−1∥Hs→Hs = ∥I −QA(∆M − λ)−1∥Hs→Hs ≲CU

1 + A2

where C−1
U is the distance between σ(∆M) and U . For A2γ−1 ≪U A−2, we have

∥QA(Pγ − λ+QA)
−1 −QA(∆M − λ+QA)

−1∥Hs→Hs ≪ ∥(I −QA(∆M − λ+QA)
−1)−1∥−1

Hs→Hs
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so that

∥(I −QA(Pγ − λ+QA)
−1)−1∥Hs→Hs ≲U A2.

Moreover,

∥((I −QA(Pγ − λ+QA)
−1)−1 − (I −QA(∆M − λ+QA)

−1)−1)v∥Hs

≤ ∥(I −QA(Pγ − λ+QA)
−1)−1(QA(Pγ − λ+QA)

−1 −QA(∆M − λ+QA)
−1)

(I −QA(∆M − λ+QA)
−1)−1v∥Hs

≲U A4γ−1∥(I −QA(∆M − λ+QA)
−1)−1v∥Hs .

Using (2.14), we conclude

∥(Pγ − λ)−1uhigh∥Hs+1/4 = ∥(Pγ − λ+QA)
−1(I −QA(Pγ − λ+QA)

−1)−1uhigh∥Hs+1/4

≲C0 A
−1/2∥(I −QA(Pγ − λ+QA)

−1)−1uhigh∥Hs

≲U A−1/2∥(I −QA(∆M − λ+QA)
−1)−1uhigh∥Hs

= A−1/2∥uhigh∥Hs .

In the last step we use the fact QAuhigh = 0. Now we are left with the finite dimensional

part ulow and by Proposition 2.8 we have

∥((Pγ − λ)−1 − (∆M − λ)−1)ulow∥Hs+1/4

= ∥((I − (Pγ − λ+QA)
−1QA)

−1(Pγ − λ+QA)
−1

− (I − (∆M − λ+QA)
−1QA)

−1(∆M − λ+QA)
−1)1(∆M≤10A2)Πulow∥Hs+1/4

≤ ∥(I − (Pγ − λ+QA)
−1QA)

−1((Pγ − λ+QA)
−1 − (∆M − λ+QA)

−1)ulow∥Hs+1/4+

∥((I − (Pγ − λ+QA)
−1QA)

−1 − (I − (∆M − λ+QA)
−1QA)

−1)(∆M − λ+QA)
−1ulow∥Hs+1/4

≲U A2+1/4γ−1∥ulow∥Hs + A4+1/4γ−1∥ulow∥Hs .

We conclude

∥(Pγ − λ)−1 − (∆M − λ)−1∥Hs→Hs+1/4 ≲U A−1/2 + A4+1/4γ−1 ≲ γ−1/10. (2.18)

This finishes the proof of (1.3). □

3. Convergence to equilibrium

In this section we give the proof of Theorem 2. In fact, we will prove the following more

general Theorem 3. If we take β in Theorem 3 to be smaller than the first eigenvalue of ∆M ,

then there is only a single term coming from the zero eigenvalue of Pγ in the expansion,

and this gives Theorem 2.
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Theorem 3. For any β, ϵ > 0 there exists γ0 > 0 such that for γ > γ0, σ(Pγ) ∩ {Reλ ≤
β} = {λ0 = 0, λ1, · · · , λr} is finite, and there exists Cγ > 0 such that∥∥∥∥∥e−tPγu−

r∑
j=0

mj−1∑
l=0

(−t)l

l!
e−tλj(Pγ − λj)

lΠλj
u

∥∥∥∥∥
L2

≤ Cγe
−βt∥u∥L2 , t ≥ 1,

where Πλj
is the spectral projector to the generalized eigenspace of Pγ with eigenvalue λj.

Moreover, for each j there is λ0
j ∈ σ(∆M) such that |λj − λ0

j | < ϵ.

Proof. First we claim there are only finitely many eigenvalues of Pγ in the region {Reλ ≤
β}, and they all satisfy | Imλ| ≲ β. We prove by contradiction again. Suppose λ is an

eigenvalue of Pγ such that Reλ ≤ β, then there exists u ∈ C∞(SM) such that

Pγu = cnγ
2∆V u− γXu = λu. (3.1)

As in the proof of Lemma 2.4, we have

∥Π⊥u∥Hs ≲
√
βγ−1∥u0∥Hs , s = 0, 1.

Projecting the equation (3.1) to V0 gives

−γΠ0Xu1 = λu0.

Thus |λ|∥u0∥L2 ≲ γ∥u1∥H1 ≲
√
β∥u0∥H1 . Projecting the equation (3.1) to V1 gives

1

n
γ2u1 − γΠ1X(u0 + u2) = λu1

which gives as before ∥u0∥H1 ≲
√
β(1 + γ−2|λ|)∥u0∥L2 . We conclude

|λ| ≲ β(1 + γ−2|λ|).

Taking γ2 ≫ β, we conclude |λ| ≲ β. Along with Theorem 1, this shows |λj − λ0
j | < ϵ for

some λ0
j ∈ σ(∆M) once γ > γ0 is taken large enough.

Now we consider the Laplace transform of e−tPγ :∫ ∞

0

eλte−tPγdt = (Pγ − λ)−1, Reλ < 0.

We can then express e−tPγ as the inverse Laplace transform

e−tPγ =
1

2πi

∫ −1+i∞

−1−i∞
(Pγ − λ)−1e−λtdλ.

We deform the contour from Reλ = −1 to ρ and conclude

e−tPγ =
r∑

j=0

Resλ=λj
((λ− Pγ)

−1e−λt) +
1

2πi

∫
ρ

(Pγ − λ)−1e−λtdλ (3.2)
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Reλ = −1 ρ

β + ϵ0

Figure 2. Contour deformation

where ρ is given by {Reλ = β + ϵ0, | Imλ| ≤ Aγ} and {| Imλ| = Cγ(Reλ − β − ϵ0)
16 +

Aγ,Reλ > β + ϵ0}. See Figure 2 for a picture of the contours. In order to conclude the

proof we need the following Lemma 3.1 from Eckmann–Hairer [EH03, Theorem 4.1, 4.3].

Lemma 3.1. There exists C > 0 (independent of γ) such that Pγ does not have spectrum

in {| Imλ| ≥ C(Reλ+ γ1/4)16 + 1,Reλ > 0}. Moreover, we have for such λ

∥(Pγ − λ)−1∥L2→L2 ≲ 1.

Proof. The lemma follows from the uniform hypoelliptic estimate (2.10)

∥u∥H1/8 ≤ C(B−1∥(Pγ − iy)u∥L2 +B∥u∥L2), ∀y ∈ R

with constant C > 0 independent of y and γ. Taking B = γ1/8, we get (using [HN04,

[Proposition B.1])

1

4
|λ+ 1|1/8∥u∥2L2 ≤ (((Pγ + 1)∗(Pγ + 1))1/16u, u)L2 + ∥(Pγ − λ)u∥2L2

≲ γ1/4∥u∥2H1/8 + ∥(Pγ − λ)u∥2L2

≲ (γ1/4 +Reλ)2∥u∥2L2 + ∥(Pγ − λ)u∥2L2 .

Thus for |λ+ 1| ≥ C1(γ
1/4 +Reλ)16 + 1 we conclude

∥u∥L2 ≲ ∥(Pγ − λ)u∥L2 . □
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Theorem 3 then follows from (3.2) where the residues are given by

Resλ=λj
((λ− Pγ)

−1e−λt) = Resλ=λj

(
mj−1∑
l=0

(Pγ − λj)
lΠλj

(λ− λj)
−l−1e−λt

)

=

mj−1∑
l=0

(−t)l

l!
e−λjt(Pγ − λj)

lΠλj

and the remainder is estimated as∥∥∥∥∫
ρ

(Pγ − λ)−1e−λtdλ

∥∥∥∥
L2→L2

≲γ

∫
ρ

e−Reλtd|λ| ≲γ e−βt. □
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