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Abstract. We apply a new method with explicit solution operators to construct

asymptotically flat initial data sets of the vacuum Einstein equation with new lo-

calization properties. Applications include an improvement of the decay rate in

Carlotto–Schoen [CS16] to O(|x|−(d−2)) and a construction of nontrivial asymptoti-

cally flat initial data supported in a degenerate sector {(x′, xd) ∈ Rd : |x′| ≤ xαd } for
3
d+1 < α < 1.

1. Introduction

In this note we provide a simple way to construct asymptotically flat initial data of

the Einstein equation with new localization properties. The vacuum Einstein equation

reads

Ricg = 0

where g is a Lorentzian metric and Ricg is the Ricci curvature. When we restrict to a

spacelike hypersurface, we get the Einstein constraint equation{
Rg + (trgk)2 − |k|2g = 0

divg(k − (trgk)g) = 0
(1.1)

It is a system of nonlinear underdetermined PDEs for initial data (g, k) on a spacelike

hypersurface. When k = 0, it specializes to a problem in Riemannian geometry, namely

vanishing of scalar curvature. In particular, we are interested in the following question.

Question 1. What localization of asymptotically flat solutions to the Einstein con-

straint equation (1.1) is possible?

This question has surprisingly nontrivial answers. The famous positive mass theorem

[SY79; SY81; Wit81] says localization to a compact set is impossible. On the positive

direction, Carlotto–Schoen [CS16] gives a gluing construction which gives a localized

solution inside a cone. Aretakis–Czimek–Rodnianski [ACR23; ACR21a; ACR21b] gives

an alternative proof of the gluing construction based on their characteristic gluing.

The construction in [CS16] loses the decay rate a little, so they cannot get the

ideal O(|x|2−d) decay. Carlotto [Car21, Open Problem 3.18] conjectured that we can

get this optimal decay. Aretakis–Czimek–Rodnianski [ACR21a] gives an affirmative
1
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answer. Here we give an alternative proof. Moreover, we can construct solutions with

better localization properties, namely in a degenerate sector {(x′, xd) ∈ Rd : |x′| ≤ xαd}
for 3

d+1
< α < 1. When α is close to 1, this is still in the range of positive mass

theorem (see Carlotto [Car21, Appendix B]). We state our main results below.

Main results. As the first application of our method, we give a simple proof of [Car21,

Open Problem 3.18].

Theorem 1. Let d ≥ 3, s > d
2
,−d

2
< δ < d

2
− 2. For ω ∈ Sd−1 and 0 < θ < π/2, let

Ω = Ωω,θ := {x ∈ Rd : ∠(x, ω) ≤ θ}

be the cone in Rd with center vector ω and angle θ. Then there exists a nontrivial

asymptotically flat solution (g, k) of equation (1.1) on Rd supported in the cone Ω, in

the sense that

(gij − δij, kij) ∈ Hs,δ
b (Rd)×Hs−1,δ+1

b (Rd), supp(gij − δij, kij) ⊂ Ω.

Moreover, the set of such solutions forms a smooth Hilbert submanifold in a neighbour-

hood of 0 ∈ Hs,δ
b (Ω)×Hs−1,δ+1

b (Ω).

Moreover, we can make (g, k) ∈ C∞(Rd) and the decay rate of the solution can be

made

∂l(gij(x)− δij) = O(〈x〉2−d−l), ∂lkij(x) = O(〈x〉1−d−l), l ≤ s− d− 2. (1.2)

We recall definitions and standard estimates for the b-Sobolev space Hs,δ
b in §3.

We can also prove a similar gluing result as in [CS16] following the same strategy.

Theorem 2. Let d ≥ 3, s ∈ N, s > d
2
,−d

2
< δ < d

2
− 2. For y ∈ Rd, ω ∈ Sd−1 and

0 < θ < π/2, let

Ω = Ωy,ω,θ := {x ∈ Rd : ∠(x− y, ω) ≤ θ}

be the cone in Rd with center at y, center vector ω and angle θ. Let 0 < θ0 < θ. For

any asymptotically flat (g0, k0) satisfying (1.2) for l ≤ s which solves (1.1) inside Ω,

and for |y| � 1, there exists an asymptotically flat solution (g, k) of equation (1.1) on

Rd such that

(gij − δij, kij) ∈ Hs,δ
b (Rd)×Hs−1,δ+1

b (Rd), (g, k) =

{
(g0, k0), Ωy,ω,θ0 \B1(y),

(δ, 0), Rd \ (Ωy,ω,θ ∪B1(y)),

and (g, k) also has decay rate in (1.2). If (g0, k0) ∈ C∞, then we also have (g, k) ∈ C∞.

Another natural conjecture that Carlotto made in [Car21, Open Problem 3.14] is

that whether we can construct solutions localized in a smaller region as long as we do

not violate the constraint of the positive mass theorem. We give a partial answer for

the case of a degenerate sector.
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Theorem 3. Let d ≥ 3, 3
d+1

< α < 1, consider the degenerate sector

Ω = {(x′, xd) ∈ Rd : |x′| ≤ xαd}.

If s ∈ N, , s > d
2

+ 2, 3−(d+3)α
2

< δ < α(d−1)−3
2

, then there exists a smooth nontrivial

asymptotically flat solution (g, k) of (1.1) supported in Ω, in the sense that

(gij − δij, kij) ∈ Hs,δ
α (Rd)×Hs−1,δ+α

α (Rd) ∩ C∞(Rd), supp(gij − δij, kij) ⊂ Ω.

The decay rate of the solution is given by

∂β
′

x′ ∂
βd
xd

(gij − δij) = O(〈x〉1−α(d−1)−|β′|α−βd), |β| ≤ s− d− 2 (1.3)

and

∂β
′

x′ ∂
βd
xd

(kij) = O(〈x〉1−αd−|β′|α−βd), |β| ≤ s− d− 2. (1.4)

The anisotropic Sobolev space Hs,δ
α captures the anisotropic behavior (1.3)(1.4) and

is defined in section 5. Note there is a natural constraint of the range of α we can

get. When α = 0, the localization is impossible due to positive mass theorem. When

α = 1, this reduces to Theorem 1. We restricted to the k = 0 case in an earlier version

of this paper but Philip Isett pointed to us the paper [Res70] by Reshetnyak which can

be used to construct nice solution operators for the symmetric divergence equation.

We will give a finer description of this method in a joint paper with Sung-Jin Oh and

Philip Isett [Ise+23].

The gluing technique in studying (1.1) appeared much earlier in Corvino [Cor00] and

Corvino–Schoen [CS06], and was generalized by Chruściel–Delay [CD03]. It has been

developed to give a version of our Theorem 1 in Carlotto–Schoen [CS16]. Aretakis–

Czimek–Rodnianski [ACR23; ACR21a; ACR21b] (see also [Are15; Are17]) introduced

and studied the characteristic gluing problem. We refer to Chruściel [Chr19] and

Carlotto [Car21] for reviews on the conic gluing method and some open problems. See

also [Hin22; Hin23] for a microlocal approach.

Main ideas. Our construction is different from that of [CS16]. The key to our con-

struction is a solution operator of the linearized equation with good support properties

following Oh–Tataru [OT19, Section 4]. The linearized equation at the trivial metric

δij (under a change of variables) is {
∂i∂jh

ij = 0

∂iπ
ij = 0

(1.5)

The basic idea behind the proofs of Theorems 1 and 2 is to construct a fundamental

solution of (1.5) generalizing the fundamental solution for ∂jv
j = 0 in [OT19]. Then

we use Picard iteration in appropriate Sobolev spaces to get the solution of the non-

linear equation (1.1). In the case of the degenerate sector (Theorem 3), we develop

a new fundamental solution and introduce anisotropic Sobolev spaces adapted to the
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degenerate sector. The sharp decay rate is obtained by representing the solution as

the solution operator applied to the nonlinearity.

Organization of the paper. In section 2 we give the construction of the solution

operator adapted to a cone. In section 3 we recall several estimates for the b-Sobolev

spaces. In section 4 we prove Theorem 1 and 2 using our solution operator. In section

5 we adapt our method to the degenerate sector to give a proof of Theorem 3.

Acknowledgement. We would like to thank Sung-Jin Oh for suggesting the idea of

this simple solution operator and for his numerous help throughout this program. We

would like to thank Philip Isett for pointing to us the paper [Res70]. We would also like

to thank Peter Hintz and Ethan Sussman for helpful discussions about the b-Sobolev

spaces. Y. Mao was partially supported by a National Science Foundation CAREER

Grant under NSF-DMS-1945615. Z. Tao was partially supported by the NSF grant

DMS-1952939 and by the Simons Targeted Grant Award No. 896630.

2. Construction of the solution operator for the linearized equation

The crux of our argument is an explicit solution operator. In this section we will

show how to construct a solution operator S : C∞0 (Rd)→ C∞(Rd) (d ≥ 3) such that

supp f ⊂ a cone =⇒ suppSf ⊂ a cone.

Unlike in Corvino [Cor00], S does not have cokernel (on appropriate weighted

Sobolev spaces) since the support is noncompact. The integration kernel of S will

have an appropriate decay property.

2.1. Linearized problem. We begin by reformulating (1.1) in a sufficiently flat re-

gion. We introduce new variables (h, π), defined as follows:

(hij, πij) = (gij − δij − δij trδ(g − δ), kij − δij trδ k) (2.1)

Observe that the transformation is obviously invertible with the formulae

(gij, kij) = (δij + hij −
1

d− 1
δij trδ h, πij −

1

d− 1
δij trδ π). (2.2)

With respect to the new variables, the left-hand sides of (1.1) may be written as

R[g] = ∂i∂jh
ij −M (2)

h (h, ∂2h)−M (1)
h (∂h, ∂h), (2.3)

(trg k)2 − |k|2g = −M (0)
h (π, π), (2.4)

gjj
′
(gii

′∇g;iki′j′ − ∂j′ trg k) = ∂iπ
ij −N (1)j

h (h, ∂π)−N (0)j
h (∂h, π), (2.5)

where each of M
(n)
h (u, v) or N

(n)j
h (u, v) is a linear combination of contraction of u and

v with a smooth tensor field (of the appropriate order) on Rd that depends only on h.
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In conclusion, (1.1) takes the form

∂i∂jh
ij = M

(2)
h (h, ∂2h) +M

(1)
h (∂h, ∂h) +M

(0)
h (π, π), (2.6)

∂iπ
ij = N

(1)j
h (h, ∂π) +N

(0)j
h (∂h, π). (2.7)

The right hand side is viewed as the nonlinearity and its precise form will not matter in

this paper. In the following, we study how to solve the linearized equations given by the

left hand side of (2.6)(2.7), which we call double divergence equation and symmetric

divergence equation, respectively.

2.2. Solution operator for the divergence equations. The construction of the

following solution operators is the key for our proof of Theorem 1 and 2.

Theorem 4. For any w ∈ Sd−1 and χ ∈ C∞(Sd−1) with
∫
Sd−1 χ = 1 and the cone

{x ∈ Rd : x
|x| ∈ suppχ} is convex, then there exists Kχ(x), Lχ,w ∈ D′(Rd) such that{

∂i∂jK
ij
χ = δ

∂iL
ij
χ,w = δwj.

Moreover, they satisfy the following properties

• Kχ and Lχ,ω are symmetric 2-tensors;

• The supports of Kχ, Lχ,ω lie inside the cone {x ∈ Rd : x
|x| ∈ suppχ};

• Kχ is homogeneous of degree 2− d, Lχ,ω is homogeneous of degree 1− d.

• Kχ, Lχ,ω are smooth in Rd \ {0}.

Proof. Step 1: We first consider a the case of the divergence equation

∂ih
i = f.

Let ω ∈ Sd−1, H be the Heaviside function, then

Tω = ωH(x · ω)δ(ω⊥)

is a fundamental solution for the divergence equation. From this we can construct

a smoother fundamental solution by averaging in ω. Indeed, let χ ∈ C∞(Sd−1) with∫
Sd−1 χ(ω)dω = 1, then

〈Tω, f〉 =

∫ ∞
0

ωf(tω)dt

and 〈∫
Sd−1

χ(ω)Tωdω, f

〉
=

∫ ∞
0

∫
Sd−1

ωf(tω)χ(ω)dωdt

=

∫
Rd
f(x)χ

(
x

|x|

)
x

|x|d
dx.
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Thus we have a fundamental solution

K̃χ(x) =

∫
Sd−1

χ(ω)Tωdω = χ

(
x

|x|

)
x

|x|d
(2.8)

which is homogeneous of degree 1− d and smooth outside the origin.

Step 2: We can now apply the same idea to construct solution operators of the

linearized constraint equations.

∂i∂jh
ij = f (2.9)

∂iπ
ij = gj. (2.10)

For the first equation (2.9) we may just apply the previous solution operator twice.

The fundamental solution has the integration kernel

Kij
χ =

(
χ

(
x

|x|

)
xi
|x|d

)
∗
(
χ

(
x

|x|

)
xj
|x|d

)
.

For the second equation (2.10), we need to first find singular fundamental solutions

as before. For v, w ∈ Sd−1, let

πjk = ∂lφ(vjvlwk + vlvkwj − wlvkvj),

the equation (2.10) becomes

∂jπ
jk = ∂j∂lφv

jvlwk = gk.

Then

〈φ, f〉 =

∫ ∞
0

tf(tv)dt

gives a fundamental solution Lv,w such that ∂jπ
jk = δwk and πjk is a symmetric tensor.

Averaging along v as before, we get〈∫
Sd−1

χ(v)Lv,wdv, f

〉
= −

∫
Sd−1

χ(v)

∫ ∞
0

t(∂lf)(tv)(vjvlwk + vlvkwj − wlvkvj)dtdv

= −
∫
Rd
χ

(
x

|x|

)
(∂lf)(x)

xjxlwk + xlxkwj − wlxkxj

|x|d
dx

=

〈
∂l

(
χ

(
x

|x|

)
xjxlwk + xlxkwj − wlxkxj

|x|d

)
, f

〉
.

So the fundamental solution reads

Lχ,w = ∂l

(
χ

(
x

|x|

)
xjxlwk + xlxkwj − wlxkxj

|x|d

)
.

All the properties of the solution operators follow directly from the construction. �
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3. Estimates on the b-Sobolev spaces

In order to capture the decay property of functions and get optimal regularity,

we recall basic estimates for b-Sobolev spaces in this section, and prove our solution

operators are bounded on b-Sobolev spaces.

3.1. The b-Sobolev space.

Definition 1. For s ∈ N0, the b-Sobolev space Hs
b is defined by the norm

‖u‖2
Hs

b
:=
∑
k≤s

‖〈x〉k∇ku‖2
L2(Rd).

We extend the definition to s ∈ R by duality and (complex) interpolation. We further

define for δ ∈ R, Hs,δ
b := 〈x〉−δHs

b. Moreover, for Ω ⊂ Rd, we denote Hs,δ
b (Ω) := {u ∈

Hs,δ
b : suppu ⊂ Ω} the supported distributions.

The b-Sobolev space captures the property that the decay rate of a function improves

by 〈x〉−1 after taking derivative. We recall some properties of the b-Sobolev space.

Proposition 2. • Littlewood–Paley decomposition: let D0 = B(0, 1) and Dj =

{2j−2 < |x| < 2j+2} for j ≥ 1, and Φ0 = id,

Φj : (−2, 2)× Sd−1 → Dj, (w, z) 7→ 2w+jz, j ≥ 1.

Let
∑
χj = 1 be a partition of unity such that χ0 ∈ C∞0 (D0), χ ∈ C∞0 ((−2, 2)×

Sd−1) and χj = Φj∗(χ) for j ≥ 1. Then

‖u‖2

Hs,δ
b

≈
∑
j

22j(δ+d/2)‖Φ∗j(χju)‖2
Hs . (3.1)

• Sobolev embedding: for s > d/2,

‖〈x〉d/2+δu‖L∞ . ‖u‖Hs,δ
b
. (3.2)

• bilinear estimate: the multiplication is bounded on the following spaces

(u, v) 7→ uv : Hs1,δ1
b ×Hs2,δ2

b → Hs,δ
b (3.3)

for δ1 + δ2 = δ − d/2, s1 + s2 > 0,

s =

{
min(s1, s2), max(s1, s2) > d

2
,

s1 + s2 − d
2
, max(s1, s2) < d

2
.

Proof. • The Littlewood–Paley decomposition (3.1) is [Hin22, Lemma 2.3]. By

interpolation and duality, it suffices to check for s ∈ N0, and it is direct to

check (3.1) inductively for s. Note our convention on δ is shifted by d/2 due to

a different choice of density near the boundary.



8 YUCHEN MAO AND ZHONGKAI TAO

• The Sobolev embedding is essentially [Hin22, Corollary 2.4]. It is proved as a

corollary of (3.1):

‖〈x〉d/2+δu‖L∞ . sup
j

2j(d/2+δ)‖χju‖L∞ . sup
j

2j(d/2+δ)‖Φ∗j(χju)‖Hs . ‖u‖Hs,δ
b
.

• The bilinear estimate (3.3) is again a corollary of (3.1):

‖uv‖2

Hs,δ
b

.
∑
j

22j(δ+d/2)‖Φ∗j(χjuv)‖2
Hs

.
∑
j

22j(δ+d/2)‖Φ∗j(χju)‖2
Hs1‖Φ∗j(χ̃jv)‖2

Hs2

.
∑
j

22j(δ+d/2)‖Φ∗j(χju)‖2
Hs1‖Φ∗j(χ̃jv)‖2

Hs2

.

(∑
j

22j(δ1+d/2)‖Φ∗j(χju)‖2
Hs1

)(∑
j

22j(δ2+d/2)‖Φ∗j(χ̃ju)‖2
Hs2

)
. ‖u‖2

H
s1,δ1
b

‖v‖2

H
s2,δ2
b

. �

We now show our solution operator is bounded on Hs,δ
b .

Proposition 3. Let K ∈ C∞(Rd \ {0}) ∩ D′(Rd) be a homogeneous distribution of

order k − d, 0 < k < d, then for −d/2 < δ < d/2− k, we have

u 7→ K ∗ u : Hs−k,δ+k
b → Hs,δ

b . (3.4)

Proof. We decompose K(x− y) = Kdiag +Kin +Kout, where

Kdiag(x, y) = K(x− y)ϕ(x, y)

where ϕ ∈ C∞(Rd×Rd) is a cutoff function such that ϕ(x, y) = 1 near {|x| = |y|} and

ϕ(x, y) = ψ

(
|x| − |y|
|y|

)
, |x|+ |y| > 1

for some other cutoff ψ ∈ C∞0 (−1/2, 1/2) such that ψ = 1 near 0; Kin = (K −
Kdiag)1|x|<|y| is incoming part of K, and Kout = (K−Kdiag)1|x|>|y| is the outgoing part

of K.
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The diagonal part is bounded:

‖Kdiagu‖2

Hs,δ
b

≈
∑
j

22j(δ+d/2)

∥∥∥∥Φ∗jχj

∫
Kdiag(Φj(x), y)u(y)dy

∥∥∥∥2

Hs

≈
∑
j

22j(δ+d/2)

∥∥∥∥Φ∗jχj

∫
Kdiag(Φj(x),Φj(y))u(Φj(y))|Φ′j(y)|dy

∥∥∥∥2

Hs

.
∑
j

22j(δ+d/2)22jk‖Φ∗j(χ̃ju)‖2
Hs−k

≈ ‖u‖2

Hs−k,δ+k
b

.

In the second last step we use the fact that |Φ′j(y)| ≈ 2jd and K is homogeneous of

order k − d.

The outgoing part is bounded for δ < d/2− k:

‖Koutu‖2

Hs,δ
b

≈
∑
j

22j(δ+d/2)

∥∥∥∥Φ∗jχj

∫
Kout(Φj(x), y)u(y)dy

∥∥∥∥2

Hs

≈
∑
j

22j(δ+d/2)

∥∥∥∥∥∑
j′<j

Φ∗jχj

∫
Kout(Φj(x),Φj′(y))u(Φj′(y))χ̃(y)|Φ′j′(y)|dy

∥∥∥∥∥
2

Hs

.
∑
j

22j(δ+d/2)

(∑
j′<j

2j(k−d)2j
′d‖Φ∗j′(χ̃j′u)‖H−N

)2

.
∑
j

22j(δ+d/2)

(∑
j′<j

2j(k−d)2j
′d2β(j−j′)

)(∑
j′<j

2j(k−d)2j
′d2β(j′−j)‖Φ∗j′(χ̃j′u)‖2

H−N

)
.

Since δ < d/2− k, we may choose β ∈ R such that d− β > 0 and 2δ + 2k − β < 0, so∑
j′<j

2j(k−d)2j
′d2β(j−j′) . 2jk,

∑
j′<j

22j(δ+d/2)2jk2j(k−d)2j
′d2β(j′−j) . 22j′(δ+d/2+k).

Thus we conclude

‖Koutu‖2

Hs,δ
b

.
∑
j′

22j′(δ+d/2+k)‖Φ∗j′(χ̃j′u)‖2
H−N ≈ ‖u‖

2

H−N,δ+kb

.

We could similarly conclude the incoming part is bounded:

‖Kinu‖Hs,δ
b
. ‖u‖H−N,δ+kb

as long as δ > −d/2. �
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Corollary 4. Let Ω ⊂ Rd be a closed subset. In Proposition 3, if we assume supp(K ∗
u) ⊂ Ω for any u ∈ C∞c (Ω), and K is outgoing, i.e. Kin(x, y) = 0 for sufficiently large

(x, y) ∈ Ω× Ω, then for any δ < d/2− k,

u 7→ K ∗ u : Hs−k,δ+k
b (Ω)→ Hs,δ

b (Ω). (3.5)

Similarly, if K is incoming, i.e. Kout(x, y) = 0 for sufficiently large (x, y) ∈ Ω × Ω,

then (3.5) holds for any δ > −d/2.

Proof. It follows directly from the proof of Proposition 3. �

3.2. Smoothness of curvature. As a corollary, we know the maps we consider will

be smooth.

Corollary 5. Let s > d/2, δ > −d/2. In a small neighbourhood of δij, the inverse

matrix map

(gij) 7→ (gij) : Hs,δ
b → Hs,δ

b

is a smooth isomorphism.

Proof. Since multiplication is bounded by Proposition 2, it suffices to prove the map

T : h 7→ 1

1− h
= 1 + h+ h2 + h3 + · · ·

is smooth for ‖h‖Hs,δ
b
� 1. The boundedness is a corollary of the bilinear estimate.

To prove the boundedness of the derivatives, just observe

DTh0(h) = (1 + 2h0 + 3h2
0 + · · · )h, D2Th0(h1, h2) = (2 + 6h0 + 12h2

0 + · · · )h1h2, · · ·

are all continuous multilinear maps in Hs,δ
b . �

Proposition 6. For s > d/2, δ > −d/2, the functional

(h, π) 7→ (M
(2)
h (h, ∂2h),M

(1)
h (∂h, ∂h),M

(0)
h (π, π), N (1)j(h, ∂π), N (0)j(∂h, π))

is smooth Hs,δ
b ×H

s−1,δ+1
b → Hs−2,δ+2

b .

Proof. The map is the composition of the inverse matrix map and polynomial maps,

which are all smooth by Proposition 2 and Corollary 5. �

4. Solving the nonlinear equation

In this section we use our solution operators from Theorem 4 to prove Theorem 1

and 2.
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4.1. Construction of solutions to the linearized equation. We give a construc-

tion of compactly supported solutions to the homogeneous linearized equations (1.5).

A basic observation is to solve the double divergence equation we only need to solve

the symmetric divergence equation

∂jπ
jk = 0 (4.1)

since this would give ∂j∂kπ
jk = 0. For (4.1), we may take an arbitrary φ ∈ C∞0 (Rd)

and

π11 = ∂2∂2φ, π
12 = π21 = −∂1∂2φ, π

22 = ∂1∂1φ, π
jk = 0 for {j, k} 6⊂ {1, 2}.

Then we get a solution ∂jπ
jk = 0 (and it is easy to make sure the curvature does not

vanish).

4.2. Fixed point theorem. We prove Theorem 1 by Picard iteration (or Banach

fixed point theorem). Let

P (h, π) = (∂i∂jh
ij, ∂iπ

ij)

Φ(h, π) = (M
(2)
h (h, ∂2h) +M

(1)
h (∂h, ∂h) +M

(0)
h (π, π), N (1)j(h, ∂π) +N (0)j(∂h, π)).

Then the equations (1.1) become

P (h, π) = Φ(h, π).

Let Ω be a cone centered at 0 in Rd and (h0, π0) ∈ C∞0 (Ω) be a solution of the linearized

equation P (h0, π0) = 0. Let S : Hs−2,δ+2
b (Ω)→ Hs,δ

b (Ω)×Hs−1,δ+1
b (Ω) be the solution

operator given by Theorem 4 with suppχ ⊂ Ω ∩ Sd−1, we consider the following fixed

point problem

(h, π) = SΦ(h0 + h, π0 + π).

Since Φ : Hs,δ
b (Ω) × Hs−1,δ+1

b (Ω) → Hs−2,δ+2
b (Ω) is a smooth map with dΦ0 = 0, by

choosing ‖(h, π)‖Hs,δ
b ×H

s−1,δ+1
b

≤ ε/2, ε = ‖(h0, π0)‖Hs,δ
b ×H

s−1,δ+1
b

for some sufficiently

small ε > 0 we get

‖Φ(h0 + h, π0 + π)‖Hs−2,δ+2
b

. ε2,

‖Φ(h0 + h, π0 + π)− Φ(h0 + h̃, π0 + π̃)‖Hs−2,δ+2
b

. ε‖(h, π)− (h̃, π̃)‖Hs,δ
b ×H

s−1,δ+1
b

.

Since S is again bounded, by Banach fixed point theorem, there exists a unique fixed

point (h1, π1) ∈ Hs,δ
b (Ω)×Hs−1,δ+1

b (Ω) such that ‖(h1, π1)‖Hs,δ
b ×H

s−1,δ+1
b

. ε2 and

(h1, π1) = SΦ(h0 + h1, π0 + π1).

This implies (h0 + h1, π0 + π1) solves (2.6)(2.7):

P (h0 + h1, π0 + π1) = P (h1, π1) = Φ(h0 + h1, π0 + π1).
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An alternative way is to notice that

P − Φ : Hs,δ
b (Ω)×Hs−1,δ+1

b (Ω)→ Hs−2,δ+2
b (Ω)

is a smooth map with surjective differential at 0 (with a right inverse given by our

solution operator). Thus locally (P − Φ)−1(0) ∩ nbd(0) is diffeomorphic to kerP ∩
nbd(0), which is a Hilbert submanifold of Hs,δ

b (Ω)×Hs−1,δ+1
b (Ω).

Next we show the solution we get can be actually smooth, even though s is fixed.

The regularity comes from applying the solution operator to the nonlinearity.

Proposition 7. Let s > d
2
, d ≥ 3. In the above construction, if we choose (h0, π0) ∈

C∞0 small in Hs,δ
b , then (h, π) ∈ C∞.

Proof. We need to come back to the equation. Without loss of generality we may

assume d
2
< s < d

2
+ 1. Since our solution operator is outgoing,

∂(h, π) = S(Mh0,h(h+ h0, ∂
3h), Nh0,h(h+ h0, ∂

2π))

+ controlled terms in H
2s−1−d/2
loc ×H2s−2−d/2

loc .

Since ‖h+ h0‖Hs,δ
b

is small, we can upgrade the regularity to

(h, π) ∈ H2s− d
2

loc ×H2s−1− d
2

loc .

Keep doing this we will get (h, π) ∈ Hd/2+2−
loc ×Hd/2+1−

loc . Then the equation gives us

∂(h, π) = S(Mh0,h(h+ h0, ∂
3h), Nh0,h(h+ h0, ∂

2π))

+ controlled terms in H
d
2

+2−
loc ×H

d
2

+1−
loc .

Since ‖h + h0‖Hs,δ
b

is small, we get (h, π) ∈ H
d
2

+3−
loc × H

d
2

+2−
loc . Iterating this we have

(h, π) ∈ C∞. �

4.3. Tail estimate of the solution. Now we prove the last part of Theorem 1, namely

the decay rate estimate (1.2). Roughly speaking, if the nonlinearity is integrable, then

the decay rate comes from applying the solution operator to the nonlinearity, and

should be the same as the decay rate of the solution operator. A priori we do not

know whether the nonlinearity is integrable, but we can iterate a few times to get

improved estimates.

Proposition 8. Suppose d ≥ 3, s > d
2
,−d

2
< δ < d

2
− 2. Let (gij − δij, kij) ∈ Hs,δ

b (Ω)×
Hs−1,δ+1

b (Ω) be a solution of equation (1.1) obtained in the previous section, then for

l < s− d− 2, we have

|∂l(gij(x)− δij(x))| . 〈x〉2−d−l, |∂lkij(x)| . 〈x〉1−d−l. (4.2)
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Proof. We first consider the case l = 0. By Proposition 2, we have

|h(x)| . 〈x〉−(d/2+δ), |∂2h(x)| . 〈x〉−(d/2+δ+2).

Thus

|M (2)
h0,h

(h0 + h, ∂2(h0 + h))| . 〈x〉−(d+2+2δ).

The other terms are similar and we have Φ(h0 + h, π0 + π) = O(〈x〉−(d+2+2δ)). Now

h = Kχ ∗ Φ1(h0 + h, π0 + π)

where the kernel K = Kχ is homogeneous of degree 2− d, thus

|h(x)| =
∣∣∣∣∫ K(x− y)Φ1(h0 + h, π0 + π)(y)dy

∣∣∣∣
.
∫
|x− y|2−d〈y〉−(d+2+2δ)dy

=

∫
|x−y|<|x|/2

|x− y|2−d〈y〉−(d+2+2δ)dy +

∫
|x−y|≥|x|/2

|x− y|2−d〈y〉−(d+2+2δ)dy.

If 2 + 2δ > 0, then |h(x)| . 〈x〉2−d. Otherwise we can only conclude |h(x)| .
〈x〉−(d+2δ)+. But we can iterate this process and still conclude

|h(x)| . 〈x〉2−d, |π(x)| . 〈x〉1−d.

The case l = 1, 2 can be obtained similarly.

Now for general 3 ≤ l ≤ s − d − 2, let us suppose (4.2) is true for up to l − 1, and

prove for l. Recall |∂jh(x)| . 〈x〉−( d
2

+δ+j), the induction hypothesis gives

|∂lΦ1(h0 + h, π0 + π)| . 〈x〉−(3d/2+δ+l).

Recall ∂lh = S∂lΦ1(h0 + h, π0 + π), so

|∂lh(x)| .
∫
|x−y|< |x|

2

|x− y|2−d〈y〉−( 3d
2

+δ+l)dy +

∫
|x−y|> |x|

2

|x− y|2−d−l〈y〉2−2ddy

. 〈x〉2−d−l.

Similarly we have |∂lπ(x)| . 〈x〉1−d−l. �

4.4. Gluing construction of the solution. In this section we provide the proof of

the gluing result in Theorem 2.

Let Ω ⊂ Ω′ be two cones, after cutting off we only need to solve the constraint

equation

P (χh0 + h, χπ0 + π) = Φ(χh0 + h, χπ0 + π)
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inside the region (Ω′ ∪ B1(y)) \ (Ω ∪ B1/2(y)). By choosing |y| � 1, we may assume

‖(χh0, χπ0)‖Hs,δ
b ×H

s−1,δ+1
b

is sufficiently small, and then we can apply the following

solution operator to get a solution.

Proposition 9. Let Ωint := (Ω′ ∪ B1(y)) \ (Ω ∪ B1/2(y)), then there is a solution

operator

Sint : Hs−2,δ+2
b (Ωint)→ Hs,δ

b (Ωint)×Hs−1,δ+1
b (Ωint).

Proof. Let f ∈ Hs−2,δ+2
b (Ωint). First we can move the support outside B2(y) using the

explicit Bogovskii-type solution operator S0 constructed in [MOT23, Lemma 2.2]. Let

χ0 ∈ C∞0 (B2(y)), then

• PS0(χ0f) = χ0f inside B2(y);

• suppS0(χ0f) ⊂ B3(y);

• S0(χ0f) ∈ Hs,δ
b (Ωint)×Hs−1,δ+1

b (Ωint).

Now we make a partition of unity in angular variables and use the solution operator

on each piece. Suppose Ωint ∩ Sd−1
y = ∪Ui and each Ui is star-shaped with respect

to an open subset Vi ⊂ Ui. Now let χi ∈ C∞0 (Vi) be a cutoff function supported in

Vi, then as in Theorem 4 we have solution operators Sχi with respect to Ui so that

suppu ⊂ y+R>1(Ui− y) implies suppSχiu ⊂ y+R>1(Ui− y). We take a partition of

unity χ̃j with respect to the covering {Ui} and define

S1 =
∑
j

Sχj χ̃j.

The final solution operator Sint is defined to be

Sintf = S1(f − PS0(χ0f)) + S0(χ0f) ∈ Hs,δ
b (Ωint)×Hs−1,δ+1

b (Ωint).

One can check it is bounded Hs−2
δ+2(Ωint)→ Hs

δ (Ωint)×Hs−1
δ+1(Ωint) and

PSintf = PS1(f − PS0(χ0f)) + PS0(χ0f) = f − PS0(χ0f) + PS0(χ0f) = f. �

Remark 1. The norm of Hs,δ
b (Ωint) should be defined with respect to the center y, to

make uniform estimates in y.

Following the procedure of the previous section, we can get a gluing solution from

the solution operator Sint. The proof for the smoothness and decay rate is identical to

the previous argument.

5. Solving the problem in a degenerate sector

In this section we want to find solutions of the Einstein constraint equations in

the degenerate sector {(x′, xd) ∈ Rd : |x′| ≤ xαd} for some α < 1. For technical
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convenience, we define

Ω = {(x′, xd) ∈ Rd : |x′| ≤ xαd : xd ≥ 1}

and indeed construct the solution in Ω.

In order to analyze the regularity of the solution, we need an anisotropic weighted

Sobolev space defined as follows. For simplicity, we will only consider integer s ∈ N in

this section.

Definition 10. Let α ∈ (0, 1], s ∈ N and δ ∈ R, Hs,δ
α is defined as the completion of

C∞0 (Ω) with respect to the norm

‖u‖2

Hs,δ
α

:=
∑
|β|≤s

‖〈x〉|β′|α+βd+δ∂β
′

x′ ∂
βd
xd
u‖2

L2 .

We provide a few properties of this norm.

Proposition 11. Let u ∈ C∞0 (Ω), then

• For s > d/2, ‖〈x〉
(d−1)α+1

2
+δu‖L∞ . ‖u‖Hs,δ

α
. More generally, for s > d/2− d/p,

‖〈x〉((d−1)α+1)( 1
2
− 1
p

)+δu‖Lp . ‖u‖Hs,δ
α

.

• For s > d/2, (g, h) 7→ gh is is continuous Hs,δ1
α ×Hs,δ2

α → H
s,δ1+δ2+

(d−1)α+1
2

α

Proof. The first estimate follows from rescaling of the standard Sobolev inequality. The

bilinear estimate is also direct by choosing p1, p2 according to β for Hölder inequality

and use the first Sobolev embedding estimate:

‖gh‖2

H
s,δ1+δ2+

(d−1)α+1
2

α

=
∑
|β|≤s

‖〈x〉|β′|α+βd+δ1+δ2+
(d−1)α+1

2 ∂β
′

x′ ∂
βd
xd

(gh)‖2
L2

.
∑

|β|+|γ|≤s

‖〈x〉|β
′|α+βd+δ1+

(d−1)α+1
p2 ∂β

′

x′ ∂
βd
xd
g‖2

Lp1‖〈x〉
|γ′|α+γd+δ2+

(d−1)α+1
p1 ∂γ

′

x′∂
γd
xd
h‖2

Lp2

. ‖g‖2

H
s,δ1
α
‖h‖2

H
s,δ2
α
.

In the second last step we choose 1/p1 + 1/p2 = 1/2 such that s − |β| > d/2 − d/p1

and s − |γ| > d/2 − d/p2 (except for the end point case |γ| = s or |β| = s which is

clear from Sobolev embedding). �

Next, we turn to the construction of a solution operator for the double divergence

equation ∂i∂jh
ij = f . We start with the divergence equation ∂jv

j = f as before.

The key is finding fundamental solutions of the divergence equation supported on a

half-curve.
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Proposition 12. For any smooth curve γ : [0,∞)→ Rd with γ(0) = y and lim
t→∞

γ(t) =

∞, the distribution δγ defined as

(δγ, ϕ) =

∫ ∞
0

ϕ(γ(t))γ′(t)dt

is a fundamental solution for the divergence equation

∂ju
j = δy.

Proof. Let ϕ ∈ C∞0 (Rd), then

(∂jδ
j
γ, ϕ) = −

∫ ∞
0

∂jϕ(γ(t))γ′j(t)dt = −
∫ ∞

0

∂tϕ(γ(t))dt = ϕ(γ(0)) = ϕ(y). �

As before, we average a family of fundamental solutions to get a more regular solution

supported in Ω.

Lemma 13. Suppose δ < α(d−1)−1
2

. We have a solution operator S̃0 : Hs−1,δ+1
α (Ω) →

Hs,δ
α (Ω) for the divergence equation, i.e. ∂jS̃

j
0f = f.

Proof. We construct the solution operator in two steps.

Let γ
(1)
y,ω = y + (ωyαd , yd)t, χ1 ∈ C∞0 (Rd−1), and define

K1 =

∫
Rd−1

χ1(ω)δ
γ
(1)
y,ω
dω = χ1

(
(x′ − y′)/yαd
(xd − yd)/yd

)
(x− y)

y
α(d−1)+1
d |xd−yd

yd
|d
.

Then divK1 = δ(x− y). Let χ2 be a cutoff and

K̃1 = χ2

(
xd − yd
yd

)
K1.

Then div K̃1f = f +
1

yd
χ′2

(
xd − yd
yd

)
K1. Let γ

(2)
y,ω(t) = (y′ + ω((1 + t)α − 1), yd + t)

and

K2 =

∫
Sd−1

χ1(ω)δ
γ
(2)
y,ω
dω

= χ1

(
x′ − y′

(1 + xd − yd)α − 1

)
((1 + xd − yd)α − 1)−(d−1)

(
α(x′ − y′) (1 + xd − yd)α−1

(1 + xd − yd)α − 1
, 1

)
.

Then K(x, y) = K̃1(x, y)−
∫
K2(x, z)

1

yd
χ′2

(
zd − yd
yd

)
K1(z, y)dz is a solution operator

of the divergence equation. Let K̃2(x, y) = −
∫
K2(x, z)

1

yd
χ′2

(
zd − yd
yd

)
K1(z, y)dz,

it is straightforward to verify

• K is outgoing;

• ∂β
′

x′ ∂
βd
xd
K̃2(x, y) . |xd − yd|−α(d−1)−|β′|α−βd ;
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We need to estimate the solution operator in both regions.

• In the nearby region (i.e. x ∼ y), we would like to show∥∥∥∥∫ K̃1(x, y)u(y)dy

∥∥∥∥
Hs,δ
α

. ‖u‖Hs−1,δ+1
α

. (5.1)

It suffices to prove it in a fixed annulus AR := {R < yd < 2R}. By rescaling, we

may assumeR = 1 without loss of generality: let K̃1(x, y) = (Ks(x, y), Kb(x, y)),

we observe that

K̃1(Rαx′, Rxd, R
αy′, Ryd) = R−α(d−1)−1(RαKs(x, y), RKb(x, y)),

so given the estimate (5.1) for R = 1 we get∥∥∥∥∫ K̃1(x, y)u(y)dy

∥∥∥∥2

Hs,δ
α (AR)

. Rα(d−1)+1R2δ

∥∥∥∥Rα(d−1)+1

∫
K̃1(Rαx′, Rxd, R

αy′, Ryd)u(Rαy′, Ryd)dy

∥∥∥∥2

Hs(A1)

. Rα(d−1)+1R2+2δ

∥∥∥∥∫ K̃1(x, y)u(Rαy′, Ryd)dy

∥∥∥∥2

Hs(A1)

. Rα(d−1)+1R2+2δ ‖u(Rαy′, Ryd)‖2
Hs−1(A1)

. ‖u‖2

Hs−1,δ+1
α (AR)

.

On the unit annulus, we notice K̃1(x, y) gives a pseudodifferential operator of

order −1. If we let b(yd, z) = χ1

(
z′/yαd
zd/yd

)
(z′/yαd , zd/yd)

y
α(d−1)+1
d | zd

yd
|d

and a(ξ) = F(b(1, ·)),

then a is homogeneous of degree −1 and

(y−αd Ks(x, y), y−1
d Kb(x, y)) =

1

(2π)d
χ2

(
xd − yd
yd

)∫
ei(x−y)·ξa(yαd ξ

′, ydξd)dξ.

Let χ be a cutoff near ξ = 0, then (1 − χ(ξ))a(yαd ξ
′, ydξd) is a symbol in the

sense that

|∂βy ∂
γ
ξ (1− χ(ξ))a(yαd ξ

′, ydξd)| .β,γ 〈ξ〉−1−γ|ξ|.

Thus the pseudodifferential operator maps from Hs−1 to Hs. Moreover, the

rest part
∫
ei(x−y)·ξχ(ξ)a(yαd ξ

′, ydξd)dξ ∈ C∞ has smooth Schwartz kernel, thus

gives a smoothing operator. So we conclude (5.1) from the discussion above.
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• In the faraway region, we can estimate directly.

‖K̃2u‖2

Hs,δ
α (Ω)

=
∑
|β|≤s

‖〈x〉|β′|α+βd+δ∂β
′

x′ ∂
βd
xd

(K̃2u)‖2
L2

.
∑
|β|≤s

∑
j′

22j′(|β′|α+βd+δ−α(d−1)−|β′|α−βd)+((d−1)α+1)j′

(∑
j′>j

2((d−1)α+1)j/2‖ψju‖L2

)2

.
∑
j′

2j
′(2δ−(d−1)α+1)

∑
j<j′

2−2j(δ+1)2γ(j−j′)
∑
j<j′

2γ(j′−j)22j(δ+1)2((d−1)α+1)j‖ψju‖2
L2

.
∑
j

22j(δ+1)‖ψju‖2
L2

. ‖〈x〉δ+1u‖2
L2

where we take 2δ+2 < γ < (d−1)α+1 which is possible since δ < (d−1)α−1
2

. �

From the solution operator for the divergence equation, we also get the solution

operator for the double divergence equation.

Proposition 14. Suppose δ < α(d−1)−3
2

, then there is a solution operator S̃ : Hs−2,δ+2
α (Ω)→

Hs,δ
α (Ω) for the double divergence equation, i.e. ∂i∂jS̃

ijf = f and S̃ij is symmetric.

Moreover, the integration kernel K(x, y) of S̃ satisfies

|∂β
′

x′ ∂
βd
xd
K(x, y)| . 〈x〉1−α(d−1)−|β′|α−βd , xd > 2yd.

Proof. We just need to apply S̃0 twice and symmetrize it:

S̃ijf =
1

2
(S̃i0S̃

j
0f + S̃j0S̃

i
0f).

The bound of the tail follows from the construction in Lemma 13. �

For the symmetric divergence equation, the construction is trickier. We use methods

from [Res70] and refer to [Ise+23] for further discussions.

Proposition 15. Suppose δ < α(d+1)−3
2

, then there exists a solution operator L̃ :

Hs−1,δ+2−α
α (Ω)→ Hs,δ

α (Ω) for the symmetric divergence equation, i.e. ∂iL̃
ij
k fj = fk and

L̃ij is symmetric. Moreover, the integration kernel K(x, y) of L̃ satisfies

|∂β
′

x′ ∂
βd
xd
K(x, y)| . 〈x〉1−αd−|β′|α−βd , xd > 2yd.

Proof. Fix a smooth curve γ(t) : [0,∞) → Rd such that γ(0) = y and lim
t→∞

γ(t) = ∞.

We want to find L ∈ D′(Rd) such that

ϕk(y) = 〈∂iLijk , ϕj〉 = −1

2
〈Lijk , ∂iϕj + ∂jϕi〉, ϕj ∈ C∞0 (Rd).
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In order to recover ϕk(y) from ζij = −1
2
(∂iϕj + ∂jϕi), we let ηij = 1

2
(∂iϕj − ∂jϕi) so

that

∂iϕj = ηij − ζij. (5.2)

Since

∂jζik = −1

2
∂2
ijϕk −

1

2
∂2
jkϕi, ∂kζij = −1

2
∂2
ikϕj −

1

2
∂2
jkϕi,

we have

∂iηjk =
1

2
(∂2
ijϕk − ∂2

ikϕj) = ∂kζij − ∂jζik. (5.3)

Now we can integrate (5.3) along γ and get

ηjk(γ(t)) = −
∫ ∞
t

(γ′(s)i∂kζij(γ(s))− γ′(s)i∂jζik(γ(s)))ds.

Then we can integrate (5.2),

ϕj(y) = −
∫ ∞

0

(γ′(t)iηij(γ(t))− γ′(t)iζij(γ(t)))dt

=

∫ ∞
0

(γ′(s)l∂jζli(γ(s))− γ′(s)l∂iζlj(γ(s)))

(∫ s

0

γ′(t)idt

)
ds+

∫ ∞
0

γ′(t)iζij(γ(t))dt

=

∫ ∞
0

(γ′(t)l∂jζli(γ(t))− γ′(t)l∂iζlj(γ(t)))(γ(t)i − γ(0)i)dt+

∫ ∞
0

γ′(t)iζij(γ(t))dt.

So the fundamental solution Lijk supported on the curve γ is given by

〈Lijk , ζij〉 =

∫ ∞
0

(γ′(t)j∂kζij(γ(t))− γ′(t)j∂iζjk(γ(t)))(γ(t)i − γ(0)i)dt+

∫ ∞
0

γ′(t)iζik(γ(t))dt.

We then average along curves as in Lemma 13. For γ
(1)
y,ω = y + (ωyαd , yd)t, ω ∈ Rd−1,

χ1 ∈ C∞0 (Rd−1), we have

L1 : =

∫
Rd−1

χ1(ω)L(1)
y,ωdω = −∂k

(
χ1

(
(x′ − y′)/yαd
(xd − yd)/yd

)
(xj − yj)(xi − yi)

y
α(d−1)+1
d |xd − yd|d/ydd

)

+
1

2
∂l

(
χ1

(
(x′ − y′)/yαd
(xd − yd)/yd

)
(xl − yl)((xj − yj)δik + (xi − yi)δjk)

y
α(d−1)+1
d |xd − yd|d/ydd

)

+
1

2
χ1

(
(x′ − y′)/yαd
(xd − yd)/yd

)
(xi − yi)δjk + (xj − yj)δik
y
α(d−1)+1
d |xd − yd|d/ydd

.
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For γ
(2)
y,ω(t) = (y′ + ω((1 + t)α − 1), yd + t), we have

L2 : =

∫
Rd−1

χ1(ω)L(2)
y,ωdω

= −1

2
∂k

(
χ1

(
x′ − y′

(1 + xd − yd)α − 1

)
((1 + xd − yd)α − 1)−(d−1)

(
α(x′ − y′) (1 + xd − yd)α−1

(1 + xd − yd)α − 1
, 1

)j
(xi − yi) +

(
α(x′ − y′) (1 + xd − yd)α−1

(1 + xd − yd)α − 1
, 1

)i
(xj − yj)

)

+
1

2
∂l

(
χ1

(
x′ − y′

(1 + xd − yd)α − 1

)
(xl − yl)((1 + xd − yd)α − 1)−(d−1)

((
α(x′ − y′) (1 + xd − yd)α−1

(1 + xd − yd)α − 1
, 1

)j
δik +

(
α(x′ − y′) (1 + xd − yd)α−1

(1 + xd − yd)α − 1
, 1

)i
δjk

))

+
1

2
χ1

(
x′ − y′

(1 + xd − yd)α − 1

)
((1 + xd − yd)α − 1)−(d−1)((

α(x′ − y′) (1 + xd − yd)α−1

(1 + xd − yd)α − 1
, 1

)i
δjk +

(
α(x′ − y′) (1 + xd − yd)α−1

(1 + xd − yd)α − 1
, 1

)j
δik

)
.

We then define the solution operator L̃ from L1 and L2 as in Lemma 13 and it follows

from the same proof that L̃ : Hs−1,δ+2−α
α (Ω)→ Hs,δ

α (Ω) and

|∂β
′

x′ ∂
βd
xd
K(x, y)| . 〈x〉1−α−α(d−1)−|β′|α−βd , xd > 2yd. �

We can now give the proof of Theorem 3:

Proof of Theorem 3. Let d ≥ 3, s > d
2

+ 2 be an integer. Let 3
d+1

< α < 1 and
3−(d+3)α

2
< δ < α(d−1)−3

2
. We now choose small but nontrivial C∞0 solutions (h0, π0) of

the linearized equation P (h0, π0) = 0, and solve the fixed point problem

(h, π) = (S̃, L̃)Φ(h0 + h, π0 + π).

on the space Hs,δ
α (Ω)×Hs−1,δ+α

α (Ω). Note δ < α(d−1)−3
2

ensures the solution operators

S̃, L̃ map to the correct spaces, and the other condition δ > 3−(d+3)α
2

ensures the

bilinear estimate

‖Φ(h0 + h, π0 + π)‖Hs−2,δ+2
α

. C(‖h0 + h‖Hs,δ
α

)‖h0 + h‖Hs,δ
α
‖π0 + π‖Hs−1,δ+α

α
.

By Banach fixed point theorem, we get a solution to (1.1):

(gij − δij, kij) ∈ Hs,δ
α (Ω)×Hs−1,δ+α

α (Ω).

The smoothness and decay rate for (h, π) is proved similarly as before. �
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