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Abstract. We give new proofs of general relativistic initial data gluing results on unit-scale annuli based on
explicit solution operators for the linearized constraint equation around the flat case with prescribed support
properties. These results retrieve and optimize – in terms of positivity, regularity, size and/or spatial decay
requirements – a number of known theorems concerning asymptotically flat initial data, including Kerr
exterior gluing by Corvino–Schoen and Chruściel–Delay, interior gluing (or “fill-in”) by Bieri–Chruściel, and
obstruction-free gluing by Czimek–Rodnianski. In particular, our proof of the strengthened obstruction-free
gluing theorem relies on purely spacelike techniques, rather than null gluing as in the original approach.

1. Introduction and main results

Let (M3, g) be a Riemannian manifold and k be a symmetric (contravariant) 2-tensor on M3. The
Einstein vacuum constraint equation reads{

R[g] + (trg k)
2 − |k|2g = 0,

divg k − d trg k = 0,
(1.1)

where R[g] is the scalar curvature of g, divg kj = Diki′j(g
−1)ii

′
with Di the Levi-Civita connection associated

with g, trg k = (g−1)ijkij and |k|2g = kijki′j′(g
−1)ii

′
(g−1)jj

′
. By the fundamental theorem of Choquet-

Bruhat [20], to any (sufficiently regular) triple (M3, g, k) solving (1.1) corresponds a (geometrically) unique
spacetime (M1+3,g) solving the Einstein vacuum equation

Ric[g]− 1

2
g trg Ric[g] = 0, (1.2)

into which (M3, g) isometrically embeds with k as the second fundamental form. In this sense, a pair (g, k)
solving (1.1) constitutes an initial data set for the Einstein vacuum equation.

While underdetermined, the nonlinear nature of (1.1) imposes nontrivial constraints on the class of initial
data sets for the Einstein vacuum equation, as exemplified by the celebrated positive mass theorem [31,32].
Understanding the flexibility of initial data solving (1.1) is often an indispensable part of the study of
solutions to the Einstein vacuum equation.

The subject of this paper is initial data gluing, which asks: given two initial data sets, find – if possible
– another initial data set which contains the two. We focus on initial data sets (M3, g, k) such that either
(1) (M3, g) is bounded and (g, k) is almost flat (i.e., close to the flat data (δ, 0)) or (2) M3 is unbounded
but (g, k) is asymptotically flat (i.e., M3 is diffeomorphic to the exterior of a ball in R3 and (g, k) → (δ, 0) as
|x| → ∞). These two cases are closely related as the latter is typically reduced to the former via rescaling.
Since the pioneering work of Corvino [17], many results have appeared on initial data gluing in this setting,
such as (1) gluing a general asymptotically flat initial data set to the exterior of initial data for one of the
Kerr spacetimes [15, 16, 18], and (2) gluing an interior region to a general asymptotically flat initial data
defined in the exterior of a ball to produce a globally defined initial data [8, 13], and so on. See also the
recent works [21, 22, 23] adopting a geometric microlocal approach. For further discussion and additional
references, we refer the reader to the excellent review article [10].

The first contribution of this paper is a new short proof of a basic gluing result on an almost flat annulus
at unit scale (Theorem 1.3), which leads to the above gluing results (1) and (2) for asymptotically flat initial
data after suitable rescaling arguments; see also Theorem 1.6 and Remark 1.11. The main simplification
comes from the use of explicit Bogovskii-type solution operators to solve the linearization of (1.1) around
the flat case (gij , kij) = (δij , 0) on an annular domain with zero boundary condition. As a byproduct of its
simple and explicit nature, our proof readily handles the optimal (modulo the endpoint) Sobolev regularity.
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Another contribution of this paper is a new approach to (a strengthening of) obstruction-free gluing à
la Czimek–Rodnianski [19]; see Theorems 1.7 and 1.10 for the precise formulation. This novel type of
gluing theorem, which relies on remarkable properties of the nonlinearity of (1.1), was originally proved
in [19] using the theory of null (or characteristic) data gluing, pioneered by Aretakis [1, 2] and Aretakis–
Czimek–Rodnianski [3, 4, 5] (see also [14, 26, 27]). Our direct proof, independent of null gluing, optimizes
the positivity, regularity, size and spatial decay requirements in obstruction-free gluing for asymptotically
flat initial data; see Remarks 1.8 and 1.11. It is based on the first main theorem (Theorem 1.3), as well as
the construction of multi-bump initial data sets with prescribed charges and support properties that relies
on several ingredients: (1) conic-type solution operators for the linearized constraint equations around the
flat case as in [28], which can be used to construct initial data sets localized in conic regions (cf. Carlotto–
Schoen [11] as well as [3, 4, 5]); (2) a nonlinear computation similar to that of Bartnik in [7] concerning the
positivity of mass in the time-symmetric, almost flat case; and (3) a localized boost argument based on the
fundamental theorem of Choquet-Bruhat [20] and the computation of Chruściel [12] (see also [16]). A more
detailed sketch of the proof is in Section 5.1 below, which can be read after Sections 1 and 2.

Remark 1.1 (Solution operators to divergence-type equations with prescribed support). As indicated above,
the approach in this paper is based on the use of solution operators for the linearized constraint equations
around the flat case whose support properties are prescribed (in a bounded set or in a cone); see Lemmas 2.3
and 2.5 below. In [28], a similar approach was employed to construct of localized initial data sets à la
Carlotto–Schoen [11]. In fact, construction of such solution operators may be extended to other divergence-
type equations with variable coefficients and/or on different manifolds; this will be addressed in an upcoming
work [24].

1.1. Notation and conventions. Before stating the main results, we introduce some notation.
• As usual, A ≲ B is the shorthand for |A| ≤ CB for some C > 0 (implicit constant), which may differ

from line to line. We write A ≃ B if A ≲ B and B ≲ A.
• N is the set of (positive) natural integers, N0 = N ∪ {0}.
• We denote by (x1, x2, x3) the rectangular coordinates on R3. We equip R3 with the Euclidean metric,

given by the identity matrix δij with respect to (x1, x2, x3). We use latin indices i, j, . . . for tensors
on R3; all latin indices are raised and lowered using δ. Also, trδ T =

∑
i Tii.

• We denote by (x0, x1, x2, x3) the rectangular coordinates on R1+3. We equip R1+3 with the Minkowski
metric, given by the diagonal matrix ηµν with entries −1,+1,+1,+1 with respect to (x0, x1, x2, x3).
We use greek indices µ, ν, λ, . . . for tensors on R1+3; all greek indices are raised and lowered using η.
Also, trη T = ηµνTµν .

• We define Br(ξ) to be the ball of radius r centered at ξ, Ar(ξ) = B2r(ξ) \ Br(ξ) for an annulus
of radii ≃ r and Ãr(ξ) = B4r(ξ) \ B r

2
(ξ) for an enlargement of Ar. When ξ = 0, we shall omit

(ξ) and write Br = Br(0), Ar = Ar(0) etc. We introduce two pieces of notation for cones in
R3: first, given ω ⊆ S2, we define Cω = {x ∈ R3 : x

r ∈ ω}, and second, given θ ∈ (0, π) and
ω ∈ S2, we define Cθ(ω) = {x ∈ R3 : ∠(x,ω) < θ}. We write Ωc for the complement of Ω in R3,
−Ω = {x ∈ R3 : −x ∈ Ω}, and Ω+ ξ = {x+ ξ ∈ R3 : x ∈ Ω}.

• For Fij defined on a symmetric subset Ω of R3 (i.e., Ω = −Ω), we denote its decomposition into the
even and odd parts by Fij = F+

ij + F−
ij , where F±(x) = 1

2 (F (x)± F (−x)).
• We introduce ei = ∂i, ν = xj

|x|ej (the outward unit normal to ∂Br) and Yi = ϵ k
ij xjek (the infinites-

imal generator of rotation about the xi-axis), where ϵijk is the Levi-Civita symbol.
• Given a Banach space X = X(R3) of (possibly vector-valued) functions on R3 and an open subset
Ω ⊆ R3, we define the space of extendible functions on Ω as X(Ω) = X(R3)/{u ∈ X(R3) : u|Ω = 0},
equipped with the ∥u∥X(Ω) = inf ũ∈X(R3): ũ|Ω=u ∥ũ∥X . We also define the space of functions supported
in Ω, denoted by X0(Ω), to be the completion of C∞

c (Ω) with respect to ∥·∥X(Ω).

1.2. Scaling invariance and charges in the almost flat regime. In this paper, we shall consider
solutions (g, k) to (1.1) equipped with global coordinates x1, x2, x3 – or more concretely, defined on a subset
Ω of R3. For any such initial data (g, k) and any r > 0, define (g(r), k(r)) by

(g, k) 7→ (g(r)(x), k(r)(x)) := (g(rx), rk(rx)). (1.3)

Observe that (1.1) is invariant under (1.3), which we shall call the invariant scaling transformation.
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We also introduce the following charges of (g, k) measured on the sphere ∂Br, which are conserved (i.e.,
independent of r) if (g, k) solves the linearization of (1.1) around (δ, 0) (see Lemma 2.7 below):

E[(g, k); ∂Br] =
1

2

∫
∂Br

∑
i

(∂igij − ∂jgii)ν
j dS, (1.4)

Pi[(g, k); ∂Br] =

∫
∂Br

(kij − δij trδ k)ν
j dS, (1.5)

Ck[(g, k); ∂Br] =
1

2

∫
∂Br

∑
i

(xk∂igij − xk∂jgii − δik(gij − δij) + δjk(gii − δii))ν
j dS, (1.6)

Jk[(g, k); ∂Br] =

∫
∂Br

(kij − δij trδ k)Y
i
kν

j dS. (1.7)

We put these together to form a 10-vector,

Q[(g, k); ∂Br] = (E,P1,P2,P3,C1,C2,C3,J1,J2,J3)
†[(g, k); ∂Br].

Taking (formally) the limit as r → ∞ leads to the usual ADM energy, linear momenta, center of mass and
angular momenta under a suitable asymptotic flatness assumption (see Definition 1.5 and Lemma 4.1 below).
For these quantities, we introduce the notation

QADM [(g, k)] = (EADM , . . . ,JADM
3 )†[(g, k)] := ( lim

r→∞
E[(g, k); ∂Br], . . . , lim

r→∞
J3[(g, k); ∂Br])

†.

Since we will be working with annuli, it is also convenient to introduce the following (smoothly) averaged
charges. Fix η ∈ C∞

c (0,∞) such that supp η ⊆ (1, 2),
∫
η(r′) dr′ = 1 and ηr(r

′) := r−1η(r−1r′). We define

Q[(g, k);Ar] = (E, . . . ,J3)[(g, k);Ar] =

∫
ηr(r

′)(E, . . . ,J3)[(g, k); ∂Br′ ] dr
′. (1.8)

In accordance with this notation, we shall denote the components of Q ∈ R10 by

Q = (E(Q),P1(Q),P2(Q),P3(Q),C1(Q),C2(Q),C3(Q),J1(Q),J2(Q),J3(Q))†.

These quantities are conserved for solutions to the linearization of (1.1) around (δ, 0); see Lemma 2.7. They
are not invariant under (1.3), but transform as follows:

(E,P)[(g(r), k(r));AR0
] = r−1(E,P)[(g, k);ArR0

], (C,J)[(g(r), k(r));AR0
] = r−2(C,J)[(g, k);ArR0

],

and similarly for Q[(g, k); ∂Br].

1.3. Gluing up to linear obstructions. Suppose that we are given two disjoint dyadic annuli ARin
and

ARout
(i.e., 2Rin < Rout) and initial data sets (gin, kin) and (gout, kout) on the annuli ARin

and ARout
,

respectively, that are almost flat (i.e., close to (δ, 0) in some suitable sense). Consider the following gluing
problem: find an almost flat initial data set (g, k) on B2Rout \BRin that agrees with (gin, kin) and (gout, kout)
on ARin and ARout , respectively.

If all the initial data sets solve not (1.1) but rather its linearization around (δ, 0), then an obvious necessary
condition for the solvability of this problem is Q[(gin, kin);ARin

] = Q[(gout, kout);ARout
], in view of the

conservation laws (see Lemma 2.7 below). In fact, this condition turns out to be sufficient as well1; in this
sense, (the failure of) the condition Q[(gin, kin);ARin

] = Q[(gout, kout);ARout
] is precisely the obstruction

for linearized initial data gluing.
Our first main result generalizes the above linear considerations to the nonlinear setting. To state it, we

first need to formulate the notion of admissible initial data sets (cf. [18]) on an annulus.

Definition 1.2 (Q-admissible initial data sets). Let a bounded open subset Q ⊆ R10 and s ∈ R be given.
We say that a 10-parameter family {(gQ, kQ)}Q is a Q-admissible family of annular initial data sets on Ãr

with Sobolev regularity s if:
(1) for each Q ∈ Q, (gQ, kQ) ∈ (H1 ∩ C0)× L2(Ãr) and solves (1.1) in Ãr;
(2) for each Q ∈ Q, (gQ, kQ) ∈ Hs ×Hs−1(Ãr);
(3) the map Q → Hs ×Hs−1(Ãr) defined by Q 7→ (gQ, kQ) is Lipschitz;

1Sufficiency of Q[(gin, kin);ARin
] = Q[(gout, kout);ARout ] for linearized gluing can be established using Lemma 2.2 along

with simple extension procedures; we leave the details to the interested reader.
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(4) for each Q ∈ Q ⊆ R10, we have Q = Q[(gQ, kQ);Ar].

Theorem 1.3 (Gluing up to linear obstructions at unit scale). For each s > 3
2 , there exist ϵc = ϵc(s) > 0

and Mc = Mc(s) > 0 such that the following holds. Let (̊g, k̊) be a solution to (1.1) in Hs ×Hs−1(Ã1) such
that

∥(̊g − δ, k̊)∥Hs×Hs−1(Ã1)
≤ ϵ. (1.9)

Define Q̊ ∈ R10 by Q̊ = Q[(̊g, k̊);A1]. Let Q ⊆ R10 be a bounded open set such that

Q̊ ∈ Q, BMcϵ2(Q̊) ⊆ Q. (1.10)

and consider an Q-admissible family of annular initial data sets {(gQ, kQ)}Q∈Q on Ã1 with Sobolev regularity
s such that, for all Q,Q′ ∈ Q,

∥(gQ − δ, kQ)∥Hs×Hs−1(Ã1)
≤ ϵ, (1.11)

∥(gQ − gQ′ , kQ − kQ′)∥Hs×Hs−1(Ã1)
≤ K|Q−Q′|. (1.12)

Then the following holds:
(1) Exterior gluing. If ϵ < ϵc and Kϵ < ϵc, then there exists (g, k) ∈ Hs ×Hs−1(Ã1) and Q ∈ Q such

that ∥(g − δ, k)∥Hs×Hs−1(Ã1)
≲ ϵ, |Q− Q̊| ≤ Mcϵ

2, and

(g, k) =

{
(̊g, k̊) in A 1

2
,

(gQ, kQ) in A2.

(2) Interior gluing. If ϵ < ϵc and Kϵ < ϵc, then there exists (g, k) ∈ Hs ×Hs−1(Ã1) and Q ∈ Q such
that ∥(g − δ, k)∥Hs×Hs−1(Ã1)

≲ ϵ, |Q− Q̊| ≤ Mcϵ
2, and

(g, k) =

{
(gQ, kQ) in A 1

2
,

(̊g, k̊) in A2.

In both cases, the following additional statements hold as well:
• (Lipschitz continuity) The map (̊g, k̊) 7→ (g, k,Q) is Lipschitz as a map from the subset of Hs×Hs−1

restricted by (1.9)–(1.10) into Hs ×Hs−1 × R10.
• (Persistence of regularity) If (̊g, k̊) ∈ Hs+m × Hs+m−1(Ã1) and the family {(gQ, kQ)}Q∈Q is of

Sobolev regularity s+m for m ∈ N, then (g, k) ∈ Hs+m ×Hs+m−1(Ã1) and

∥(g − δ, k)∥Hs+m×Hs+m−1(Ã1)
≤ C∥(̊g − δ, k̊)∥Hs+m×Hs+m−1(Ã1)

+C∥(gQ − δ, kQ)∥Hs+m×Hs+m−1(Ã1)
,

where C = C(s,m, ∥(̊g − δ, k̊)∥Hs+1×Hs(Ã1)
, ∥(gQ − δ, kQ)∥Hs+1×Hs(Ã1)

).

Theorem 1.3 is proved in Section 3.

Remark 1.4. (1) In view of the fact that Ḣ
3
2 ×Ḣ

1
2 is invariant under (1.3), the regularity requirement s > 3

2

is optimal modulo the endpoint. Moreover, using different Moser and product estimates on R3 in lieu
Lemma 3.1 below, it is not difficult to extend the result to the case when Hs is replaced by B

3
2 ,2
1 (scaling

invariant Besov space) or W s,p with s > 3
p and 1 < p < 3.

(2) We formulated Theorem 1.3 for initial data sets on Ã1 for technical convenience. Nonetheless, by the
extension lemmas proved below (Lemmas 5.8 and 5.9), the theorem may be immediately reformulated in
terms of initial data in two annuli A 1

2
and A2 with averaged charges measured in the respective annuli.

As alluded to before, this formulation provides a sufficient condition for solving the gluing problem with
Rin = 1

2 and Rout = 2 analogous to the linear problem. The result may also be easily extended to any
other pair of concentric annuli whose closures are disjoint.

Using Theorem 1.3, we may retrieve the celebrated gluing result of Corvino–Schoen [18] (see also Chruściel–
Delay [16] and Chruściel–Corvino–Isenberg [15]) for asymptotically flat initial data sets, under (essentially)
optimal assumptions on the regularity and the spatial decay. We adopt the following definition of asymptotic
flatness:
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Definition 1.5. Let (g, k) ∈ Hs
loc×Hs−1

loc (Bc
R0

) for s > 3
2 and R0 ∈ 2N. We say that (g, k) is α-asymptotically

flat if, for some α ∈ R and D0 > 0, we have

∥(g − δ, k)∥Ḣs×Ḣs−1(Ãr)
≤ D0r

−s+ 3
2−α for all r ∈ 2N ∩Bc

R0
, (1.13)

where2 ∥u∥Ḣs(ÃR) := R−s+ 3
2 ∥u(Rx)∥Hs(Ã1)

.

By the Sobolev embedding, α corresponds to the pointwise decay rate of g − δ in |x|−1.

Theorem 1.6 (Corvino–Schoen [18] and Chruściel–Delay [16]; see also [15]). Let s > 3
2 and α > 1

2 .
Given any α-asymptotically flat initial data (gin, kin) ∈ Hs

loc × Hs−1
loc (Bc

R0
) solving (1.1) and satisfying

|EADM [(g, k)]| > |PADM [(g, k)]|, there exist (g, k) ∈ Hs
loc ×Hs−1

loc (Bc
R0

) solving (1.1) and r ≥ R0 such that
(g, k) = (gin, kin) on Br and (g, k) equals an initial data set for one of the Kerr spacetimes on Bc

2r.

Theorem 1.6 is proved in Section 4. We remark that α > 1
2 is the sharp (up to endpoint) threshold for

the ADM energy-momentum to be well-defined [7]; see also Lemma 4.1 for sufficiency.

1.4. Obstruction-free gluing. We return to the problem of gluing two initial data sets (ARin
, gin, kin)

and (ARout
, gout, kout) that are almost flat. Recall from the discussion in Section 1.3 that the linearized

gluing problem is solvable (if and) only if the 10 charges Q are identical. Remarkably, the original nonlinear
problem turns out to be solvable if these identities among charges (obstructions) are replaced by mere
positivity conditions! This novel type of gluing – obstruction-free gluing – has been recently introduced and
established by Czimek–Rodnianski3 [19].

We provide a new purely spacelike proof of obstruction-free gluing (the original approach of [19] involves
null gluing), and furthermore sharpen the positivity, regularity and size requirements – see Remark 1.8 below.
Our main result for almost flat data on two annuli reads as follows.

Theorem 1.7 (Obstruction-free gluing for almost flat data on annuli). Given s > 3
2 and Γ > 1, there exist

ϵo = ϵo(s,Γ) > 0, µo = µo(s,Γ) > 0 and Co = Co(s,Γ) > 0 such that the following holds. Let (gin, kin) ∈
Hs ×Hs−1(A1), (gout, kout) ∈ Hs ×Hs−1(A32) be pairs solving (1.1). Define ∆Q = (∆E, . . . ,∆J3) ∈ R10

by
∆Q = Q[(gout, kout);A32]−Q[(gin, kin;A1)], (1.14)

and assume that

∆E > |∆P|, (1.15)
∆E√

(∆E)2−|∆P|2
< Γ, (1.16)

∆E < ϵ2o, (1.17)
|∆C|+ |∆J| < µo∆E, (1.18)

∥(gin − δ, kin)∥2Hs×Hs−1(A1)
+ ∥(gout − δ, kout)∥2Hs×Hs−1(A32)

< µo∆E. (1.19)

Then there exists (g, k) ∈ Hs ×Hs−1(B64 \B1) solving (1.1) such that

(g, k) = (gin, kin) in A1, (g, k) = (gout, kout) in A32, (1.20)

∥(g − δ, k)∥2
Hs×Hs−1(B64\B1)

< Co∆E. (1.21)

Remark 1.8 (Sharpness of positivity, regularity and size assumptions). As observed in [19], the positivity
requirement ∆E > |∆P| is a key necessary condition for the validity of obstruction-free gluing in general
(see also Remark 1.11 below). In Theorem 1.7, |∆P| is allowed to be arbitrarily close to ∆E (i.e., Γ is
arbitrarily large in view of (1.16)) provided that the bounds (1.17)–(1.19) hold with sufficiently small ϵo and
µ0 (depending on Γ).

As before, the regularity requirement s > 3
2 is sharp (up to endpoint) in relation to the scaling critical

exponent. In view of the conservation law for E (see Lemma 2.7 below), for a solution (g, k) ∈ Hs ×
Hs−1(B64Γ \B1) (s > 3

2 ) satisfying (1.1), (1.14) and (1.20), it is necessary that

∆E ≲s,Γ ∥(g − δ, k)∥2
Hs×Hs−1(B64Γ\B1)

.

2When s ∈ N, observe that ∥u∥Ḣs(ÃR)
≃ ∥∂(s)

x u∥
L2(ÃR)

+R−s∥u∥
L2(ÃR)

.
3We note that, instead of annular data, [19] work with data on two spheres.



6 YUCHEN MAO, SUNG-JIN OH, AND ZHONGKAI TAO

Thus (1.21) is sharp up to a constant, and hence so are the assumptions (1.18) and (1.19). Finally, we remark
that the choice of the radii Rin = 1 and Rout = 32 is arbitrary, and the result may be easily extended to any
other pair of concentric annuli whose closures are disjoint.

Remark 1.9. By a minor modification of the proof of Theorem 1.7, the following statements may also be
established (where the domains are omitted for simplicity):

• (Persistence of regularity) If (gin, kin, gout, kout) ∈ (Hs+m×Hs+m−1)×(Hs+m×Hs+m−1) for m ∈ N,
then (g, k) ∈ Hs+m ×Hs+m−1,

• (Lipschitz continuity) The correspondence (gin, kin, gout, kout) 7→ (g, k) in Theorem 1.7 may be put
together to define a locally Lipschitz map from the subset of (Hs ×Hs−1)× (Hs ×Hs−1) restricted
by (1.15)–(1.19) into Hs ×Hs−1.

The corresponding result for asymptotically flat initial data sets has a more elegant hypothesis, at the
expense of performing the gluing procedure in an annulus sufficiently afar (as in Theorem 1.6).

Theorem 1.10 (Obstruction-free gluing for asymptotically flat data). Let s > 3
2 and α > 1

2 . Let (gin, kin),
(gout, kout) ∈ Hs

loc × Hs−1
loc (Bc

R0
) be α-asymptotically flat pairs solving (1.1). Define, for those components

that are well-defined,
∆Q := QADM [(gout, kout)]−QADM [(gin, kin)],

and assume that
∆E > |∆P|.

Then there exists an asymptotically flat pair (g, k) ∈ Hs
loc ×Hs−1

loc (Bc
R0

) solving (1.1) and r ≥ R0 such that
(g, k) = (gin, kin) on B2r and (g, k) = (gout, kout) on Bc

32r.

Theorems 1.7 and 1.10 are proved in Section 5.

Remark 1.11. Taking (gin, kin) = (δ, 0) shows that the condition ∆E > |∆P| is sharp in view of the positive
mass theorem [31,32]. Note that this case recovers the interior gluing of Bieri–Chruściel [8].

The requirements on the regularity and spatial decay exponents s > 3
2 and α > 1

2 are sharp (up to
endpoints) as discussed in Section 1.3; in particular, ∆E and ∆P are well-defined. On the contrary,
CADM ,JADM need not be well-defined for either (gin, kin) or (gout, kout) to apply Theorem 1.10.

1.5. Structure of the paper. The remainder of the paper is structured as follows. Section 2 collects some
preliminary facts concerning the linearization of (1.1) and (1.2) around the flat case. More specifically, after
rewriting (1.1) as a quasilinear perturbation of divergence-type equations on (R3, δ) (i.e., the linearization
of (1.1) around the flat case) in Section 2.1, we write down Bogovskii- and conic-type operators for these
equations (see also [24]) in Sections 2.2 and 2.3, respectively. We discuss the conservation laws for the
linearization of (1.1) (which involve Q) in Section 2.4, and for the linearization of (1.2) (which will be
used in the proof of obstruction free gluing) in Section 2.5. Then in Section 3, we prove Theorem 1.3.
In Section 4, we collect some basic facts about asymptotic flatness and establish Theorem 1.6, with some
technical details concerning Kerr initial data sets deferred to Appendix A. Finally, in Section 5, we prove
Theorems 1.7 and 1.10; an outline of the proof is provided in Section 5.1.
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2. Linearization around the flat case

2.1. Schematic notation and reformulation of (1.1). We begin by reformulating (1.1) in a sufficiently
flat region. We introduce new variables (h, π), defined as follows:

(hij , πij) = (gij − δij − δij trδ(g − δ), kij − δij trδ k). (2.1)

Observe that the transformation is obviously invertible with the formulae

(gij , kij) = (δij + hij −
1

2
δij trδ h, πij −

1

2
δij trδ π). (2.2)
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With respect to the new variables, we write the left-hand sides of (1.1) schematically as

R[g] = ∂i∂jh
ij −M

(2)
h (h, ∂2h)−M

(1)
h (∂h, ∂h), (2.3)

(trg k)
2 − |k|2g = −M

(0)
h (π, π), (2.4)

gjj
′
(gii

′
Dg;iki′j′ − ∂j′ trg k) = ∂iπ

ij −N
(1)j
h (h, ∂π)−N

(0)j
h (∂h, π). (2.5)

The schematic notation we use is defined as follows:

Definition 2.1 (Schematic notation). Each of M (∗)
h (u1, . . . , uk) and N

(∗)
h (u1, . . . , uk) is a linear combination

of contraction of u1, . . . , uk with a smooth tensor field A (of the appropriate rank) on R3 that depends only
on h. Moreover, we assume that |∂(n)

h A(h)| ≲M,n 1 as long as |h| ≤ M for all n ∈ N ∪ {0}.

In conclusion, (1.1) takes the form

∂i∂jh
ij = M

(2)
h (h, ∂2h) +M

(1)
h (∂h, ∂h) +M

(0)
h (π, π), (2.6)

∂iπ
ij = N

(1)j
h (h, ∂π) +N

(0)j
h (∂h, π), (2.7)

where the indices are raised and lowered using the Euclidean metric δ. Introducing

P⃗ (h, π) = (∂i∂jh
ij , ∂iπ

ij), N⃗(h, π) = (M(h, π), N(h, π)) := (RHS of (2.6),RHS of (2.7)), (2.8)

we may abbreviate (2.6), (2.7) as P⃗ (h, π) = N⃗(h, π).

2.2. Bogovskii-type operators. We now state our main tool for inverting the LHS of (2.6)–(2.7) while
preserving the annular support property.

Lemma 2.2. Let Ω = A1. There exists a linear operator S defined for f ∈ C∞
c (Ω) and taking values in

symmetric 2-tensor fields (i.e., symmetric 3× 3 matrix-valued functions) such that
(S1) suppSf ⊆ Ω (recall f ∈ C∞

c (Ω));
(S2) ∂i∂j(Sf)

ij = f if
∫
Ω
f · (1, x1, x2, x3)

† dx = 0;
(S3) ∥Sf∥Hs′ ≲s′ ∥f∥Hs′−2 for any s′ ∈ R;
(S4) ∥[S, ∂j ]f∥Hs′ ≲s′ ∥f∥Hs′−2 for any s′ ∈ R and j = 1, . . . , d.

Moreover, there exists a linear operator T defined for f ∈ C∞
c (Ω;R3) and taking values in symmetric 2-tensor

fields such that
(T1) suppT f ⊆ Ω (recall f ∈ C∞

c (Ω;R3));
(T2) ∂i(T f)

ij = f j if
∫
Ω
f · (e1, e2, e3,Y1,Y2,Y3)

† dx = 0;
(T3) ∥T f∥Hs′ ≲s′ ∥f∥Hs′−1 for any s′ ∈ R;
(T4) ∥[T, ∂j ]f∥Hs′ ≲s′ ∥f∥Hs′−1 for any s′ ∈ R and j = 1, . . . , d.

Concerning the integral conditions in (S2) (resp. (T2)), observe that 1, x1, x2, x3 span the kernel of the
formal L2-adjoint of the double divergence operator h 7→ ∂i∂jh

ij (resp. e1, . . ., Y3 span the kernel of the
formal L2-adjoint of the symmetric divergence operator π 7→ ∂iπ

ij).
The basic ingredient for the proof of Lemma 2.2 is the following explicit operators in the case Ω is star-

shaped with respect to a ball (see Lemma 2.3 for the definition), which is analogous to the classical Bogovskii
operator [9] for the divergence operator u 7→ ∂ju

j .

Lemma 2.3 (Bogovskii-type operators). Let Ω be an open set in R3 that is star-shaped with respect to a
ball B ⊂ Ω, i.e., for every x ∈ U and y ∈ B, the line segment [x, y] is contained in Ω. Fix C∞

c (B) such that∫
η dx = 1, and χΩ ∈ C∞

c (R3) such that χΩ = 1 on Ω.
Then the operator defined for all f ∈ C∞

c (R3) by

(Sf)ij(x) =

∫
Ψij

η (x, y)f(y) dy, (2.9)

Ψij
η (z + y, y) =

(∫ ∞

|z|
η

(
r
z

|z|
+ y

)
r2 dr

)
zizj

|z|3
. (2.10)

satisfies (S1) (when supp f ⊆ Ω) and (S2). Moreover, f 7→ S(χΩf) is a classical pseudodifferential operator
of order −2, which also implies (S3) and (S4) when supp f ⊆ Ω.



8 YUCHEN MAO, SUNG-JIN OH, AND ZHONGKAI TAO

Moreover, the operator defined by

(T f)ij(x) =

∫
(Ψη)

ij
k (x, y)f

k(y) dy, (2.11)

(Ψη)
ij
k (z + y, y) = −1

2

(∫ ∞

|z|
η

(
r
z

|z|
+ y

)
r2 dr

)
|z|−3

(
ziδjk + δikz

j
)

+
1

2
∂zm

((∫ ∞

|z|
η

(
r
z

|z|
+ y

)
r2 dr

)
|z|−3

(
ziδjkz

m + δikz
jzm

))

−∂zk

((∫ ∞

|z|
η

(
r
z

|z|
+ y

)
r2 dr

)
|z|−3zizj

)
.

(2.12)

satisfies (T1) (when supp f ⊆ Ω) and (T2). Moreover, f 7→ T (χΩf) is a classical pseudodifferential operator
of order −1, which also implies (T3) and (T4) when supp f ⊆ Ω.

Proof. That (S1) and (T1) hold may be verified by computation using the explicit formulae. To prove (S1),
we first recall the computation ∂zi

[
zi

|z|3
∫∞
|z| η(r

z
|z| + y)r2 dr

]
= δ0(z)− η(z + y), where the expression inside

the parentheses is the classical Bogovskii operator for the divergence operator [9]. We may then compute

∂zi∂zjΨη(z + y, y) = ∂zi

[
∂zj

(
zizj

|z|3

)∫ ∞

|z|
η

(
r
z

|z|
+ y

)
r2 dr +

zizj

|z|3
∂zj

∫ ∞

|z|
η

(
r
z

|z|
+ y

)
r2 dr

]

= ∂zi

[
zi

|z|3

∫ ∞

|z|
η

(
r
z

|z|
+ y

)
r2 dr

]
− ∂zi

[
ziη (z + y)

]
= δ0(z)− 4η(z + y)− zi(∂iη)(z + y),

where we used the preceding identity on the last line. From this computation, (S2) follows. On the other
hand, a proof of (T2) can be found in [25], where the same operator was introduced and used (alternatively,
(T2) can also be verified by computation as above). Next, following an argument similar to [29], it may be
verified that f 7→ S(χΩf) and f 7→ T (χΩf) are pseudodifferential operators of order −2 and −1, respectively.
Then (S3), (S4), (T3) and (T4) follow. □

Proof of Lemma 2.2. We shall call S (resp. T ) satisfying (S1)–(S4) (resp. (T1)–(T4)) a Bogovskii-type op-
erator on Ω. Lemma 2.3 says that such operators exist for any open set star-shaped with respect to a ball.
We claim that a Bogovskii-type operator can be defined on the union of any two open sets on each of which
such an operator is defined. By a simple recursion argument, this observation would allow us to define a
Bogovskii-type operator on any finite union of such sets. Since A1 is clearly a finite union of open star-shaped
sets with respect to balls, Lemma 2.2 would then follow.

It remains to verify the claim. We focus on the case of S, the case of T being similar. Let U1 and U2 be
open sets on which Bogovskii-type operators S1 and S2, respectively, exist. When U1 ∩ U2 ̸= ∅, let {χ1, χ2}
be a smooth partition of unity on U subordinate to {U1, U2} and fix η ∈ C∞

c (U1 ∩ U2). Write g0 = 1,
gj = xj (j = 1, 2, 3) and define Gµν =

∫
gµgνη

2 dx. If η ̸= 0, note that Gµν is positive-definite and in
particular invertible. Now, we define θµ = (G−1)µνgνη

2, so that
∫
θµgµ′ dx = δµµ′ and θµ ∈ C∞

c (U1 ∩ U2).
We decompose f into

f = f1 + f2 +

(∫
f dx

)
θ0 −

3∑
j=1

(∫
fxj dx

)
θj ,

where fk = fχk−
(∫

fχk dx
)
θ0−

∑3
j=1

(∫
fχkxj dx

)
θj . Then f = f1+f2 if and only if

∫
f(1, x1, x2, x3)

† dx =

0. Moreover, supp fk ⊆ Uk with
∫
fk(1, x1, x2, x3)

† dx = 0. We claim that the following defines a desired
Bogovskii-type operator on U :

Sf := S1f1 + S2f2.

That (S1)–(S3) hold is straightforward. To check (S4), note that

[S, ∂j ]f = [S1, ∂j ]f1 + [S2, ∂j ]f2 + S1((∂jf)1 − ∂jf1) + S2((∂jf)2 − ∂jf2). (2.13)
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That the Hs′ norm of the first two terms on the RHS is bounded by ∥f∥Hs′−2 is clear by (S4) for Sk and
the definition of fk. To estimate the Hs′ norm of the third term, in view of (S3) for S1, we write

∥S1((∂jf)1 − ∂jf1)∥Hs′ ≲ ∥(∂jf)1 − ∂jf1∥Hs′−2 ≲ ∥∂jfχ1 − ∂j(fχ1)∥Hs′−2 + ∥f∥Hs′−2 ,

where, for the last inequality, we used the observation that all terms involving θµ may be bounded by
∥f∥Hs′−2 . But ∥∂jfχ1 − ∂j(fχ1)∥Hs′−2 = ∥f∂jχ1∥Hs′−2 ≲ ∥f∥Hs′−2 , which is acceptable. The fourth term
in (2.13) is handled similarly. □

2.3. Conic operators. Here we state the main tool for inverting the LHS of (2.6)–(2.7) while preserving
the conic support property. We first define the relevant weighted Sobolev space.

Definition 2.4. For s ∈ N0, the b-Sobolev space Hs
b(R3) is defined by the norm

∥u∥2Hs
b
:=
∑
k≤s

∥⟨x⟩k∇ku∥2L2(R3).

We extend the definition to s ∈ R by duality and (complex) interpolation. We further define for δ ∈ R,
Hs,δ

b := ⟨x⟩−δHs
b.

In [28] (see also [29]), the following was proved.

Lemma 2.5. Let ω ⊆ S2 be a convex open subset, and consider κ ∈ C∞(S2) with
∫
κ = 1 and suppκ ⊆ ω.

Consider the linear translation-invariant operator Sc defined for f ∈ C∞
c (Cω) and taking values in symmetric

2-tensor fields (i.e., symmetric 3× 3 matrix-valued functions) given by

(Scf)
ij =

∫
Kij

κ (x− y)f(y) dy, Kij
κ (z) = κ( z

|z| )
zizj

|z|3
.

Then Sc satisfies
(Sc1) suppScf ⊆ Cω;
(Sc2) ∂i∂j(Scf)

ij = f ;
(Sc3) ∥Sf∥

Hs′,δ
b

≲s′,δ ∥f∥
Hs′−2,δ+2

b

for any s′ ∈ R and δ < − 1
2 .

Moreover, consider the linear translation-invariant operator Tc defined for f ∈ C∞
c (Cω;R3) and taking values

in symmetric 2-tensor fields given by

Tcf =

∫
(Kκ)

ij
k (x− y)fk(y) dy, (Kκ)

ij
k (z) = ∂m

(
κ( z

|z| )
ziδjkz

m + δikz
jzm − zizjδmk

|z|3

)
.

Then Tc satisfies
(Tc1) suppTcf ⊆ Cω;
(Tc2) ∂i(Tcf)

ij = f j;
(Tc3) ∥Tcf∥Hs′,δ

b

≲s′ ∥f∥Hs′−1,δ+1
b

for any s′ ∈ R and δ < 1
2 .

Remark 2.6. The definition of Kκ is not exactly the same as [28], but the boundedness assertion (Sc3) for
the solution operator was proved for any homogeneous distribution with outgoing property, which clearly
applies here. The fact (Sc1) is obvious from the defintion and convexity of the cone and (Sc2) can be checked
by direct computation:

∂i∂j

(
κ

(
z

|z|

)
zizj

|z|3

)
= ∂i

(
∂jκ

(
z

|z|

)
zizj

|z|3
+ κ

(
z

|z|

)
∂j

(
zizj

|z|3

))
= ∂i

(
κ

(
z

|z|

)
zi

|z|3

)
= δ0.

2.4. Conservation laws for the linearized constraint equation. We now state a tool for controlling
the variation of charges Q (both averaged or unaveraged). For 0 < r0 < r1, and ηr is as in (1.8), we introduce

χr0,r1(r) =

∫ r

−∞
(ηr0(r

′)− ηr1(r
′)) dr′. (2.14)

Lemma 2.7. Let (g, k) and (h, π) be related by (2.1). For any 0 < r0 < r1, we have

∫
Br1

\Br0

1
2∂i∂jh

ij


1
x1

x2

x3

 dx =


E
C1

C2

C3

 [(g, k); ∂Br1 ]−


E
C1

C2

C3

 [(g, k); ∂Br0 ],
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∫
Br1

\Br0

∑
j

∂iπ
ij



ej1
ej2
ej3
Yj

1

Yj
2

Yj
3


dx =


P1

P2

P3

J1

J2

J3

 [(g, k); ∂Br1 ]−


P1

P2

P3

J1

J2

J3

 [(g, k); ∂Br0 ],

and in terms of averaged charges, we have

∫
χr0,r1(r)

1
2∂i∂jh

ij


1
x1

x2

x3

 dx =


E
C1

C2

C3

 [(g, k);Ar1 ]−


E
C1

C2

C3

 [(g, k);Ar0 ],

∫ ∑
j

χr0,r1(r)∂iπ
ij



ej1
ej2
ej3
Yj

1

Yj
2

Yj
3


dx =


P1

P2

P3

J1

J2

J3

 [(g, k);Ar1 ]−


P1

P2

P3

J1

J2

J3

 [(g, k);Ar0 ].

This lemma follows immediately by integration by parts, (2.1) and the fact that 1, x1, . . . , x3 (resp. e1, . . . ,Y3)
belong to the kernel of the L2-adjoint of h 7→ ∂i∂jh

ij (resp. π 7→ ∂iπ
ij).

2.5. Conservation laws for the linearized Einstein vacuum equations. In this subsection, we work
in an oriented spacetime domain Ω equipped with a flat (i.e., Minkowski) metric η. We use greek indices
α, β, . . . to refer to spacetime tensorial indices. We always raise and lower indices using the flat metric η,
and denote by ∇ the (trivial) covariant derivative with respect to η.

Consider the Einstein tensor G[g] = Ric[g] − 1
2g trg Ric[g]. Its linearization around the flat metric η,

which trivially satisfies G[η] = 0, takes the form

DηG[ġ]αβ =
1

2

(
−∇γ∇γHαβ +∇α∇γHγβ +∇β∇γHγα − ηαβ∇γ∇δHγδ

)
, (2.15)

where H = ġ − 1
2η trη ġ. Note that, by linearizing the second Bianchi identity DβG[g]αβ = 0, we have

∇βDηG[ġ]αβ = 0.
Let X be a Killing vector field with respect to η, i.e., (LXη)αβ = ∇αXβ +∇βXα = 0. By the linearized

second Bianchi identity, observe that ∇β(DηG[ġ]αβX
α) = 0; hence, the 1-form DηG[ġ]αβX

α is co-closed.
In fact, there exists 2-form whose co-differential is this 1-form; following [16, Appendix E] (see also [12]), we
introduce

(X)Uαβ [ġ] =
1

2

[(
−∇αHγβ +∇βHγα + ηγα∇δHβδ − ηγβ∇δHαδ

)
Xγ +Hγα∇γXβ −Hγβ∇γXα

]
. (2.16)

By a straightforward computation, it may be verified that

∇α((X)Uαβ [ġ]) = DηG[ġ]αβX
α. (2.17)

Equivalently, d(⋆(X)U[ġ]) = −⋆DηG[ġ](X, ·) using the Hodge star operator ⋆ associated to η. By the Stokes
theorem, ∫

∂U

⋆(X)U[ġ] =
∫
U

d(⋆(X)U[ġ]) = −
∫
U

⋆DηG[ġ](X, ·). (2.18)

Consider a system of coordinates {x0, . . . , x3} with respect to which η = −(dx0)2+(dx1)2+(dx2)2+(dx3)2

and dx0 ∧ dx1 ∧ dx2 ∧ dx3 has positive orientation – such coordinates shall be referred to as canonical. On
Σ0 = {x0 = 0}, define

ġij = ġij

∣∣∣
{x0=0}

, k̇ij =
1

2
(∂0ġij − ∂iġj0 − ∂j ġi0)

∣∣∣
{x0=0}

. (2.19)

It may be checked that (cf. (2.1) and (2.8))

DηG[ġ]00 = 1
2∂j∂k(ġ

jk − δjk trδ ġ), DηG[ġ]0j = ∂ℓ(k̇jℓ − δjℓ trδ k̇jℓ). (2.20)
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Indeed, these may be proved by linearizing the nonlinear relations G[g]00 = 1
2 (R[g]−(trg k)

2+|k|2g), G[g]0j =

D
ℓ
kjℓ − ∂j tr k on Σ0, where g is the induced metric, D is the induced connection and k is the second

fundamental form on Σ0 (see (5.10) below for the formulae for (g, k)).
The space of Killing vector fields with respect to η are spanned by ∂xµ and xµ∂xν −xν∂xµ (µ, ν = 0, 1, 2, 3).

For r > 0, we define the associated charges by

Pµ[ġ; {x0 = 0, |x| = r}] =
∫
{x0=0, |x|=r}

⋆(∂xµ )U[ġ],

Jµν [ġ; {x0 = 0, |x| = r}] =
∫
{x0=0, |x|=r}

⋆(xµ∂xν−xν∂xµ )U[ġ],
(2.21)

where {x0 = 0, |x| = r} is oriented with ⋆(dx0 ∧ d|x|). We have the following relationship between Pµ, Jµν
and the charges for (g, k).

Lemma 2.8. For any r > 0 and canonical coordinates xµ on Ω containing {x0 = 0, |x| < r},

(P0,Pi, Ji0, Jjk)[ġ; {x0 = 0, |x| = r}] = (E,Pi,Ci, ϵ
i
jkJi)[(δ + ġ, k̇); ∂Br],

where (ġ, k̇) is given in terms of ġ by (2.19) in the coordinates (x0, x1, x2, x3).

Indeed, these identities may be quickly verified by comparing (2.18) with U = {x0 = 0, |x| < r} and
(2.20) with Lemma 2.7.

We conclude this discussion with some formulae concerning Poincaré transformations. Let Λµ
ν ∈ SO+(1, 3),

i.e., ηµνΛ
µ
µ′Λν

ν′ = ηµ′ν′ (isometry), detΛ = 1 (proper) and Λ0
0 > 0 (orthochronous) and ξ ∈ R1+3. If {xµ}

is a system of canonical coordinates, then so is {yµ = Λµ
µ′xµ′

+ ξµ}. Observe the following transformation
laws for the Killing vector fields:

∂yµ = Λ µ′

µ ∂xµ′ ,

yµ∂yν − yν∂yµ = Λ µ′

µ Λ ν′

ν (xµ′∂xν′ − xν′∂xµ′ ) + ξµΛ
ν′

ν ∂xν′ − ξνΛ
µ′

µ ∂xµ′ ,
(2.22)

where Λ ν
µ (defined via index raising and lowering using η) is identical to (Λ−1)νµ in view of the isometry

property. Using (2.18), (2.21), (2.22) and Lemma (2.8), as well as the linearity of (X)U in X, transformation
properties of the charges (E,P,C,J) under isometries of η may be derived.

3. Gluing up to linear obstructions

Proof of Theorem 1.3. Step 1. We begin by forming the first trial for the desired initial data set. Let χ(x)
be a smooth radial function which equals 0 for |x| < 1 and 1 for |x| > 2. We introduce

(gin;Q, kin;Q, gout;Q, kout;Q) =

{
(̊g, k̊, gQ, kQ) for Statement (1),
(gQ, kQ, g̊, k̊) for Statement (2).

Let (hin;Q, πin;Q) and (hout;Q, πout;Q) be defined by (2.1) with (g, k) replaced by (gin;Q, kin;Q) and (gout;Q, kout;Q),
respectively. We introduce the first guess for the glued initial data, namely,

(hQ, πQ) = (1− χ)(hin;Q, πin;Q) + χ(hout;Q, πout;Q). (3.1)

Of course, (hQ, πQ) would not solve the constraint equations (2.6)–(2.7); our aim is to find a correction
(h̃Q, π̃Q) supported in A1 and a choice of Q ∈ Q such that (h, π) = (hQ + h̃Q, πQ + π̃Q) solves (2.6)–(2.7).

A quick algebraic computation shows that we want (h̃Q, π̃Q) to satisfy

∂i∂j h̃
ij
Q = FQ +M

(2)

hQ+h̃Q
(hQ + h̃Q, ∂

2(hQ + h̃Q))−M
(2)

hQ
(hQ, ∂

2hQ)

+M
(1)

hQ+h̃Q
(∂(hQ + h̃Q), ∂(hQ + h̃Q))−M

(1)

hQ
(∂hQ, ∂hQ)

+M
(0)

hQ+h̃Q
(πQ + π̃Q, πQ + π̃Q)−M

(0)

hQ
(πQ, πQ),

(3.2)

∂iπ̃
ij
Q = Gj

Q +N
(1)j

hQ+h̃Q
(hQ + h̃Q, ∂(πQ + π̃Q))−N

(1)j

hQ
(hQ, ∂πQ)

+N
(0)j

hQ+h̃Q
(∂(hQ + h̃Q), πQ + π̃Q)−N

(0)j

hQ
(∂hQ, ∂πQ),

(3.3)
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where FQ and GQ are the errors incurred by plugging (hQ, πQ) into (2.6)–(2.7), i.e.,

FQ = −∂i∂jh
ij

Q +M
(2)

hQ
(hQ, ∂

2hQ) +M
(1)

hQ
(∂hQ, ∂hQ) +M

(0)

hQ
(πQ, πQ),

Gj
Q = −∂iπ

ij
Q +N

(1)j

hQ
(hQ, ∂πQ) +N

(0)j
h (∂hQ, πQ).

There is, of course, considerable flexibility in specifying (h̃Q, π̃Q) due to the underdetermined nature of
the problem, which we now fix. Let (S, T ) be defined as in Lemma 2.2 with Ω = A1. For each Q ∈ Q, we
look for (h̃Q, π̃Q) solving the fixed point problems

(h̃Q, π̃Q) = S⃗(M̃Q, ÑQ), (3.4)

where M̃Q and Ñ j
Q are our shorthands for the RHS of (3.2) and (3.3), respectively, and S⃗(F,G) = (SF, TG).

Next, we look for Q ∈ Q such that ∫
1
2M̃Q(1, x1, x2, x3)

† dx = 0, (3.5)∫
ÑQ · (e1, e2, e3,Y1,Y2,Y3)

† dx = 0, (3.6)

which would ensure that h̃Q, π̃Q solve (3.2) and (3.3) by (S2), (T2).

Step 2: Finding (h̃Q, π̃Q). We shall use the following standard estimates:

Lemma 3.1. Let u, v be (possibly vector-valued) Schwartz functions on R3.
(1) Moser estimates. Let F be a C∞ function with bounded derivatives. Then for s > 0, we have

∥F (u)− F (0)∥Hs ≲s,F,∥u∥L∞ ∥u∥Hs . (3.7)

(2) Moser difference estimates. Let F be a C∞ function with bounded derivatives. Then for s > 0,
we have

∥F (u)− F (v)∥Hs ≲s,F,∥u∥L∞ ,∥v∥L∞ ∥u− v∥Hs + ∥u− v∥L∞ (∥u∥Hs + ∥v∥Hs) . (3.8)

(3) Product estimates. For s0, s1, s2 such that s0 + s1 + s2 ≥ 3
2 , s0 + s1 + s2 ≥ max{s0, s1, s2} with

at least one of the inequalities strict, we have

∥u · v∥H−s0 ≲s0,s1,s2 ∥u∥Hs1 ∥v∥Hs2 . (3.9)

See, for instance, [6, Sec. 2.8]; the results therein easily imply Lemma 3.1. In what follows, we shall apply
(3.7) and (3.8) with the given s, and (3.9) with (s0, s1, s2) = (2− s, s, s− 2) and (2− s, s− 1, s− 1), all of
which are valid thanks to s > 3

2 .
For each Q ∈ Q, we now find (h̃Q, π̃Q) satisfying (3.4). We first claim that,

supp(FQ, GQ) ⊆ A1, ∥FQ∥Hs−2 + ∥GQ∥Hs−2 ≲ ϵ. (3.10)

Indeed, from (3.1) it is clear that (hQ, πQ) solves (2.6)–(2.7) outside A1, from which the support property
follows. Using the definition of localized norms, the support property and Lemma 3.1, the Sobolev norm
bound follows4.

Next, we claim that if supp(h̃Q, π̃Q) ⊆ A1 and ∥(h̃Q, π̃Q)∥Hs×Hs−1 ≤ Mcϵ for Mc > 0, then

supp(M̃Q − FQ, ÑQ −GQ) ⊆ A1, ∥M̃Q − FQ∥Hs−2 + ∥ÑQ −Gj
Q∥Hs−2 ≲Mc

ϵ2. (3.11)

Indeed, the support property follows from that of (h̃Q, π̃Q) and the structure of the terms M̃Q − FQ and
ÑQ − GQ. The Sobolev norm bound follows from the assumptions on (h̃Q, π̃Q) and (hQ, πQ), as well
as Lemma 3.1. By the same lemma, if, in addition to the previous assumptions for (h̃Q, π̃Q), we have
supp(h̃′

Q, π̃
′
Q) ⊆ A1 and ∥(h̃′

Q, π̃
′
Q)∥Hs×Hs−1 ≤ Mcϵ, then

∥M̃q[(h̃Q, π̃Q)]− M̃Q[(h̃
′
Q, π̃

′
Q)]∥Hs−2 + ∥ÑQ[(h̃Q, π̃Q)]− ÑQ[(h̃

′
Q, π̃

′
Q)]∥Hs−2

≲ ϵ∥(h̃Q − h̃′
Q, π̃Q − π̃′

Q)∥Hs×Hs−1 .
(3.12)

4We note that, in fact, FQ and GQ enjoy better Sobolev regularities, but this gain is useless in view of (3.11), which is
sharp.
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Therefore, by a standard Picard iteration argument, if 0 < ϵ < ϵc and ϵc > 0 is sufficiently small, then for
every Q ∈ Q we may find a unique (h̃Q, π̃Q) ∈ Hs ×Hs−1. By the support-preserving property of S and T ,
it follows that (h̃Q, π̃Q) vanish outside of A1. Finally, by varying Q and using a similar argument as before,
one may verify that Q 7→ (h̃Q, π̃Q) ∈ Hs ×Hs−1 is locally Lipschitz, whose details we omit.
Step 3: Finding Q. To conclude the proof of existence, it only remains to find Q ∈ Q such that (3.5)–(3.6)
hold. Since (hQ, πQ) and (h̃Q, π̃Q) are ϵ-small on Ã1, it is sensible to isolate the linear terms −∂i∂jh

ij

Q and
−∂iπ

ij
Q on the RHS of (3.2) and (3.3), respectively. Introduce χ 1

2 ,2
as in (2.14). Observe that suppχ 1

2 ,2
(r) ⊆

Ã1, and χ 1
2 ,2

= 1 on A1, which contains the support of the RHS of (3.2). Hence, by Lemma 2.7, the LHS of
(3.5) equals

∫
−χ 1

2 ,2
(r) 12∂i∂jh

ij

Q


1
x1

x2

x3

 dx+

∫
Ã1

χ 1
2 ,2

(r) 12M̃
nonlin
Q


1
x1

x2

x3

 dx

=


E
C1

C2

C3

 [(gin;Q, kin;Q);A 1
2
]−


E
C1

C2

C3

 [(gout;Q, kout;Q);A2] +

∫
Ã1

χ 1
2 ,2

(r) 12M̃
nonlin
Q


1
x1

x2

x3

 dx,

where M̃nonlin
Q = (RHS of (3.2)) + ∂i∂jh

ij

Q. To compute further the first two terms on the last line, we
multiply (2.6) for (hin, πin) by χ 1

2 ,1
(r) and integrate by parts; by which we obtain E

...
C3

 [(gin;Q, kin;Q);A 1
2
] =

 E
...

C3

 [(gin;Q, kin;Q);A1] +

∫
Ã1

χ 1
2 ,1

(r) 12M
nonlin
in;Q

 1
...
x3

 dx,

where Mnonlin
in;Q = (RHS of (2.6)) with (h, π) = (hin;Q, πin;Q). Carrying out a similar computation for

(hout;Q, πout;Q) using χ1,2 and Mnonlin
out;Q = (RHS of (2.6)) with (h, π) = (hout;Q, πout;Q), then going back to

the previous computation, we arrive at

(LHS of (3.5)) =

 E
...

C3

 [(gin;Q, kin;Q);A1]−

 E
...

C3

 [(gout;Q, kout;Q);A1] +

 n[Q]E
...

n[Q]C3

 (3.13)

where  n[Q]E
...

n[Q]C3

 =

∫
Ã1

1
2

(
χ 1

2 ,2
(r)M̃nonlin

Q + χ 1
2 ,1

(r)Mnonlin
in;Q + χ1,2(r)M

nonlin
out;Q

) 1
...
x3

 dx. (3.14)

Similarly, working with (3.3), we may show that

(LHS of (3.6)) =

P1

...
J3

 [(gin;Q, kin;Q);A1]−

P1

...
J3

 [(gout;Q, kout;Q);A1] +

n[Q]P1

...
n[Q]J3

 (3.15)

with n[Q]P1

...
n[Q]J3

 =

∫
Ã1

(
χ 1

2 ,2
(r)Ñnonlin

Q + χ 1
2 ,1

(r)Nnonlin
in;Q + χ1,2(r)N

nonlin
out;Q

)
·

 e1
...

Y3

 dx, (3.16)

where Ñnonlin
Q = Ñnonlin[(hQ, πQ), (h̃Q, π̃Q)] and Nnonlin

□;Q = (RHS of (2.7)) with (h, π) = (h□;Q, π□;Q) with
□ = in or out.

For the nonlinear contribution n[Q], we claim that

|n[Q]| ≲ ϵ2, ∥n[·]∥Lip ≲ Kϵ.
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We begin by recalling the expressions (3.14) and (3.16). The terms that do not involve ∂i′∂j′h
ij
Q and

∂i′π
ij
Q , where (hQ, πQ) may be (h̃Q, π̃Q), (hQ, πQ), (hin;Q, πin;Q), or (hout;Q, πout;Q), can be handled us-

ing the L∞ and H1 × L2 norms of (hQ, πQ) (which are all ϵ-small), as well as the trivial observation that
1, x1, . . . , e1, . . . ,Y3 and their derivatives are uniformly bounded on Ã1. For the terms containing such a
factor, observe that this factor is always linear and we may integrate one derivative by parts off of it, after
which the L∞ and H1 norms of (hQ, πQ) again suffice. The Lipschitz bound is proved similarly, using in
addition (1.12).

We are now ready to conclude this step. For the sake of concreteness, we focus on the case of exterior
gluing from this point on; the case of interior gluing is similar. Then Q[(gin;Q, kin;Q);A1] = Q̊, whereas
Q[(gout;Q, kout;Q);A1] = Q. Hence, (3.13)–(3.15) reduce to a fixed point problem

Q = Q̊+ n[Q]. (3.17)

Moreover, we have shown that |n[Q]| ≲ ϵ2 and ∥n[Q]∥Lip ≲ Kϵ. We take Mc to be the implicit constant
in the first inequality so that |n[Q]| ≤ Mcϵ

2. By hypothesis, dist(Q̊, ∂Q) > Mcϵ
2. Hence, for ϵc sufficiently

small (recall that ϵ < ϵc), the RHS of (3.17) is thus a contraction on {Q : |Q− Q̊| ≤ Mcϵ
2} ⊆ Q. It follows

that a unique Q ∈ Q satisfying (3.17) and |Q− Q̊| ≤ Mcϵ
2 exists by the Banach fixed point theorem.

Step 4: Conclusion of the proof. It remains to verify that, taking ϵc > 0 smaller if necessary, the
Lipschitz dependence and persistence of regularity properties hold. The Lipschitz dependence property is
immediate from the Picard iteration (or Banach fixed point) schemes above; we omit the details. In case of
persistence of regularity, we need to differentiate (3.4) and estimate (∂αh̃Q, ∂

απ̃Q) in Hs×Hs−1 for |α| ≤ m.
While achieving this bound is straightforward if ϵc is allowed to depend on m, we need to show that a single
choice of ϵc works for all m. We sketch the necessary argument below.

From now on, we omit the subscript Q since it remains fixed. We first consider a-priori bounds under the
assumption that all objects are smooth. We take ∂α of (3.4) and rearrange the equations as

(∂αh̃, ∂απ̃)− S⃗
(
D(h̃,π̃)(M̃, Ñ)[(∂αh̃, ∂απ̃)]

)
= S⃗[∂α(F,G)] + [∂α, S⃗](M̃, Ñ)(h̃, π̃) + (E

α,M̃
, Eα,Ñ )[(h̃, π̃)],

(3.18)

where D(h̃,π̃)(M̃, Ñ)[(ḣ, π̇)] is the linearization of M̃ around (h̃, π̃) applied to (ḣ, π̇). (Here, hij(x), πij(x)

are regarded as coefficients). Observe that we have put all highest order derivatives of (h̃, π̃) on the LHS.
Proceeding as in Step 2, but also using (S4) and (T4), as well as Gagliardo–Nirenberg, we may show that

∥RHS of (3.18)∥Hs×Hs−1 ≲ (1 + ϵ)∥(h, π)∥Hs+m×Hs+m−1

+
[
∥(h, π)∥Hs+1×Hs + ∥(h̃, π̃)∥Hs+1×Hs

]
∥(h̃, π̃)∥Hs+m−1×Hs+m−2 ,

where m = |α|. On the other hand, observe that the LHS of (3.18) defines the same linear operator for
(∂αh̃, ∂απ̃) independent of α. Proceeding as in Step 2, for ϵ sufficiently small independent of α, we obtain

∥LHS of (3.18)∥Hs×Hs−1 ≳ ∥(∂αh̃, ∂απ̃)∥Hs×Hs−1 .

We fix ϵc > 0 so that this estimate holds. At this point, it is straightforward to set up an induction
scheme involving difference quotients to prove the persistence of regularity. □

4. Asymptotic flatness

In this section, we collect some facts concerning asymptotic flat initial data sets, which will be useful in
the remainder of this paper. As an application, we also establish Theorem 1.6.

Lemma 4.1 (Annular restriction of asymptotically flat data). Let (g, k) be an α-asymptotically flat pair on
Bc

R0
solving (1.1), and let r ∈ 2Z. Then the following holds.

(1) The pair (g(r), k(r)) solves (1.1) on {|x| > r−1R0} and obeys

∥(g(r) − δ, k(r))∥Hs×Hs−1(Ã1)
≤ D0r

−α,

where s, D0 and α are from (1.13).
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(2) For α > 1
2 , E

ADM and PADM are well-defined for (g, k). Moreover, for r ≥ R0 such that D0r
−α ≤ 1,

we have

|E[(g(r), k(r));A1]− r−1EADM |+ |P[(g(r), k(r));A1]− r−1PADM | ≲ D2
0r

−2α, (4.1)

where EADM and PADM are evaluated for (g, k). For the remaining averaged charges, for r ≥ r0 ≥
R0 such that D0r

−α
0 ≤ 1, we have

|(C,J)[(g(r), k(r));A1]| ≲ r−2|(Cr0 ,Jr0)|+D2
0r

−2min{α,1}r
2min{0,1−α}
0 logδ1(α)( r

r0
), (4.2)

where δ1(α) = 1 when α = 1 and 0 otherwise, and (Cr0 ,Jr0) := (C,J)[(g, k);Ar0 ].
(3) Assume furthermore that (g, k) also satisfies the α−-parity (or Regge–Teitelbaum) condition,

∥g−ij(x)∥Ḣs(Ãr)
+ ∥∂i(g−jk(x))∥Ḣs−1(Ãr)

+ ∥k+ij(x)∥Ḣs−1(Ãr)
≤ D0r

−s+ 3
2−α− (4.3)

for all r ∈ 2Z ∩Bc
R0

. If α− + α > 2, then CADM
i and JADM

i (i = 1, 2, 3) are well-defined for (g, k).
Moreover, for r ≥ R0 such that D0r

−α ≤ 1, we have∑
i

|Ci[(g
(r), k(r));A1]− r−2CADM

i |+
∑
i

|Ji[(g
(r), k(r));A1]− r−2JADM

i | ≲ D2
0r

−α−α− .

where CADM
i and JADM

i are evaluated for (g, k).

Part (1) is trivial, Part (2) is proved using Lemma 2.7 and proceeding as in Step 3 in Section 3, and
Part (3) follows from the observation that the contribution of (h−, π+) in Lemma 2.7 for C,J vanishes due
to parity considerations. We omit the details as they are straightforward.

We also state the following quantitative facts concerning (exterior) Kerr initial data sets.

Lemma 4.2. Let E := {Q ∈ R10 : |E(Q)| > |P(Q)|}. For each Q ∈ E, there exists an exterior region of an
initial data set for one of the Kerr spacetimes, denoted by (gKerr

Q , kKerr
Q ), such that

QADM [(gKerr
Q , kKerr

Q )] = Q, (4.4)

|x|n|∂(n)(gKerr
Q − δ)|+ |x|n+1|∂(n)kKerr

Q | ≤ CD(n, γ)|M||x|−1, (4.5)

|x|n|∂(n)gKerr,−
Q |+ |x|n+1|∂(n)kKerr,+

Q | ≤ CD(n, γ)|M||x|−2, (4.6)

|x|n|∂(n)∂E,Pg
Kerr
Q |+ |x|n+1|∂(n)∂E,Pk

Kerr
Q | ≤ CD(n, γ)|x|−1, (4.7)

|x|n|∂(n)∂E,Pg
Kerr,−
Q |+ |x|n+1|∂(n)∂E,Pk

Kerr,+
Q | ≤ CD(n, γ)(|M|−1|(C,J)|+ 1)|x|−2, (4.8)

|x|n|∂(n)∂C,Jg
Kerr
Q |+ |x|n+1|∂(n)∂C,Jk

Kerr
Q | ≤ CD(n, γ)|x|−2, (4.9)

for |x| ≥ CR(γ)(|M|+ |M|−1|(C,J)|), where M = sgnE
√

E2 − |P|2 and γ = |E|
|M| .

An elegant construction of such a family has been given in [16] (via application of isometries of the
background Minkowski metric to Kerr initial data sets), although the bounds (4.7)–(4.9) are not explicitly
established there. We sketch the proof of Lemma 4.2 in Appendix A.

Proof of Theorem 1.6. Assume, without loss of generality, that 1
2 < α < 1. Let (̊g, k̊) = (g

(r)
in , k

(r)
in ), where

r > 0 will be fixed at the end. By Lemma 4.1.(1)–(2),

∥(g(r)in − δ, k
(r)
in )∥Hs×Hs−1(Ã1)

≤ D0r
−α,

(E,P)[(g
(r)
in , k

(r)
in );A1] = r−1(EADM ,PADM )[(gin, kin)] +O(D2

0r
−2α),

|(C,J)[(g
(r)
in , k

(r)
in );A1]| ≲ D0r

−2r2−α
0 +D2

0r
−2α,

(4.10)

where r0 = D
1
α
0 (so that D0r

−α
0 = 1). Define ϵ = D0r

−α and Q = BMcϵ2(Q̊) with Q̊ = Q[(g
(r)
in , k

(r)
in );A1] so

that (1.9) and (1.10) trivially hold. We shall construct a Q-admissible family from Lemma 4.2 by rescaling
and reparametrizing Q. Observe that, by (4.5)–(4.6) and Lemma 4.1.(1)–(3),

∥(gKerr(r)
Q − δ, k

Kerr(r)
Q )∥Hs×Hs−1(Ã1)

≤ Cs,γ |M(Q)|r−1,

(E,P)[(g
Kerr(r)
Q , k

Kerr(r)
Q );A1] = r−1(E,P)(Q) +Oγ(|M(Q)|2r−2),

(C,J)[(g
Kerr(r)
Q , k

Kerr(r)
Q );A1] = r−2(C,J)(Q) +Oγ(|M(Q)|2r−3),

(4.11)
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where γ = |E(Q)|
|M(Q)| , as long as

r ≥ Cγ(|M(Q)|+ |M(Q)|−1|(C,J)(Q)|), (4.12)
Similarly, by (4.5)–(4.9) and Lemma 4.1.(1)–(3),

Q[(g
Kerr(r)
Q , k

Kerr(r)
Q );A1]−Q[(g

Kerr(r)
Q′ , k

Kerr(r)
Q′ );A1] (4.13)

= (r−1(E,P)(Q−Q′), r−2(C,J)(Q−Q′)) +Oγmax

(
Mmaxr

−1|(r−1(E,P)(Q−Q′), r−2(C,J)(Q−Q′))|
)

for γmax ≥ max{γ(Q), γ(Q′)}, Mmax ≥ max{|M(Q)|, |M(Q′)|} and r satisfying (4.12) with respect to Q,Q′.
Consider

E(r)
1 =

{
Q ∈ E : 1

2E(Q) < EADM [(gin, kin)] < 2E(Q), γ(Q) < 2γADM [(gin, kin)], |(C,J)|(Q) ≤ CD2
0r

2−2α
}
,

where γADM = ((EADM )2−|PADM |2)− 1
2EADM and C is larger than the implicit constant in the last bound

in (4.10). Since α > 1
2 , there exists R1 ≥ R0 such that (4.12) is satisfied for all r ≥ R1 and Q ∈ E(r)

1 .
In particular, by (4.13), the map T (r) : E(r)

1 → R10, Q 7→ Q[(g
Kerr(r)
Q , k

Kerr(r)
Q );A1] is one-to-one and bi-

Lipschitz if r ≥ R1. Moreover, in view of (4.10) and (4.11), as well as the inverse function theorem, we may
ensure that T (r)(E(r)

1 ) contains Q = BMcϵ2(Q̊) if r is sufficiently large. Hence, inverting T (r) and composing
with (g

Kerr(r)
Q , k

Kerr(r)
Q ), we produce a Q-admissible family on A1. Finally, taking r even larger if necessary,

we obtain ϵ < ϵc and CD(⌈s⌉, γ)ϵ < ϵc, so Theorem 1.3 can be applied. □

5. Obstruction-free gluing

In this section, we prove the obstruction-free gluing theorems stated in Section 1.4.

5.1. Outline of the proof. Our proof consists of the following steps.

5.1.1. Construction of a single localized bump. At the heart of our proof is the following construction. Given
θ ∈ (0, π

2 ), ω ∈ S2, b > 0, t > 0, ℓ ∈ R3 and ξ ∈ R3 such that Bb(ξ) ⊆ Cθ(ω) ∩ A8, we construct a smooth
solution (gt,ℓ,ξ, kt,ℓ,ξ) to (1.1) on R3 that

(i) equals (δ, 0) outside Cθ(ω) ∩ {|x| > 8}, and
(ii) attains the following (averaged) charges ∆Q ∈ R10 in an outer annulus (say, A16):

(E,Pi,Ci,Ji)[(gt,ℓ,ξ, kt,ℓ,ξ);A16] = (γ(ℓ)t2, γ(ℓ)t2ℓi, γ(ℓ)t
2ξi, γ(ℓ)t

2ϵ jk
i ξjℓk) + · · · ,

where γ(ℓ) = (1− |ℓ|2)− 1
2 and we omitted terms that are smaller than t2 provided that t ≪ b ≪ 1.

Intuitively, (gt,ℓ,ξ, kt,ℓ,ξ) may be thought of as bump (or particle) with the mass, velocity and position t2, ℓ
and ξ, respectively, with characteristic scale b.

A key difficulty in this construction is the fact that any smooth solution (α, β) on R3 to the linearization
of (1.1) around (δ, 0) has zero charges (measured on any Ar) due to the conservation laws, Lemma 2.7.
Hence, (ii) must arise from the properties of the nonlinearity of (1.1). Another difficulty lies in ensuring the
support property (i) while achieving (ii).

With these difficulties in mind, let us first consider the zero velocity (or time-symmetric) case ℓ = 0. Let
α̊ij be a smooth symmetric 2-tensor that satisfies α̊ = O(t), supp α̊ ⊆ Bb(0) and

∂i(α̊ij − δij trδ α̊) = 0,

which is stronger than (α̊, 0) solving the linearized constraint equation (i.e., ∂i∂j(α̊ij − δij trδ α̊) = 0).
Suppose that (gt,0,0, kt,0,0) is a solution to (1.1) such that (gt,0,0, kt,0,0) = (δ+ α̊, 0)+O(t2). A key nonlinear
computation, which is similar to that of Bartnik in [7], shows that the charges of (gt,0,0, kt,0,0) are determined
by an explicit expression in α̊ up to leading order:

(E,Pi,Ci,Ji)[(gt,0,0, kt,0,0);Ar0(ξ0)] =
(

1
16

∫ ∑
j,k,ℓ

(∂kα̊jℓ − ∂ℓα̊jk)
2 dx, 0, 0, 0

)
+ · · · ,

where supp α̊ ⊆ Br0(ξ0). By normalizing α̊, we may ensure that E[(gt,0,0, kt,0,0);Ar] = t2.
To construct such a solution (gt,0,0, kt,0,0) with a good support property, we use the conic solution operator

S⃗c from [28] (see Section 2.3) to set up a Picard iteration argument. By selecting the convolution kernel of
S⃗c to be supported in Cθ(ω), we may ensure that supp(gt,0,0, kt,0,0) ⊆ ∪x∈supp α̊(Cθ(ω) + x). Applying the
spatial translation x 7→ x− ξ (with b and ξ as above), we obtain (gt,0,ξ, kt,0,ξ) with properties (i) and (ii).
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To handle the case ℓ ̸= 0, the idea is to utilize Lorentz boosts, which now requires thinking about objects
defined on spacetime (as opposed to spacelike hypersurface). For solutions to the linearization of (1.2) around
η, an elegant proof of the transformation properties of the charges under Lorentz boosts can be given using
the Hamiltonian (2.16) associated with (continuous) isometries of η introduced by Chruściel [12]. One way
to extend this property to our nonlinear setting is to first consider the Cauchy development of (gt,0,ξ, kt,0,ξ)
with respect to (1.2) using the Choquet-Bruhat theorem [20], then controlling the nonlinear error terms in
the proof of the transformation property (cf. [16, Appendix E] in the case of the ADM charges). The upside
is that this procedure produces a boosted pair (g̃t,ℓ,ξ, k̃t,ℓ,ξ) attaining the desired charges (ii). The downside,
however, is that the support property (i) is difficult to keep, particularly for |ℓ| close to 1.

To avoid this issue, we instead consider the Cauchy development α of (α̊, 0) with respect to the linearized
Einstein vacuum equation (around η), obtain the boosted pair (αt,ℓ,ξ, βt,ℓ,ξ) solving the linearized constraint
equation (around (δ, 0)), then upgrade it using the conic solution operator S⃗c to a solution (gt,ℓ,ξ, kt,ℓ,ξ) to
(1.1) with the desired support property (i). Next, we apply the above Lorentz boost argument in reverse
for the Cauchy development of (gt,ℓ,ξ, kt,ℓ,ξ) with respect to (1.2). The key observation is that the resulting
un-boosted (also un-translated by ξ) pair still obeys (g̃t,0,0, k̃t,0,0) = (δ+ α̊, 0)+O(t2), which is sufficient for
the charge computations to go through.

5.1.2. Multi-bump configurations with prescribed charges. The next step of the proof is to put together
multiple bumps obtained in §5.1.1 – which may be arranged to have pairwise disjoint supports – to construct
a smooth solution (gbump;Γ

∆Q , kbump;Γ
∆Q ) to (1.1) on R3 that attains the (averaged) charges ∆Q ∈ R10 as measured

in the annulus A16 for any ∆Q = (∆E, . . . ,∆J3) satisfying

∆E > |∆P|, ∆E√
(∆E)2−|∆P|2

< 2Γ, ∆E < ϵ2b , |∆C|+ |∆J| < µb∆E,

with ϵb, µb sufficiently small depending on Γ. Importantly, this range is larger than (1.15)–(1.18) (ϵo, µo will
be chosen small compared to ϵb, µb).

There are many possible ways to achieve this goal. Our configuration consists of six bumps – see Figure 1.
Two of these bumps are placed symmetrically (relative to 0) on the x3 axis and carry most of E and all of
P while contributing zero C and J. The remaining four are placed roughly symmetrically (relative to 0)
on the x1 and x2 axes, are almost time-symmetric (i.e., small |ℓ|) and attain the desired values of C and
J while contributing zero P. We remark that the P, C and J of the latter quadruple is well-approximated
by the total linear momentum, center of mass and angular momentum of the system of 4 point particles in
Newtonian mechanics in the same configuration.

5.1.3. Extension procedures and proof of Theorem 1.7. Extending (gout, kout) to Ã16 (which is straightfor-
ward; see Lemma 5.9) and applying Theorem 1.3 (gluing up to linear obstructions), the proof of Theo-
rem 1.7 is reduced to constructing an admissible family of extensions (g∆Q, k∆Q) (in the outward direction)
of (gin, kin) with

Q[(g∆Q, k∆Q];A16) ≈ Q[(gin, kin];A1) + ∆Q ≈ Q[(gout, kout];A32)

up to errors of order O(c∆E) with c = c(Γ) small. To achieve this goal, we first extend (gin−δ, kin) outward
to (g̃in − δ, k̃in) using Carlotto–Schoen-type techniques (but based on conic- and Bogovskii-type solution
operators as in [28]), which can be arranged to have disjoint supports from (gbump;Γ

∆Q , kbump;Γ
∆Q ); see Figure 1.

We then simply superpose (g̃in − δ, k̃in) on (gbump;Γ
∆Q , kbump;Γ

∆Q ) to produce the desired pair (g∆Q, k∆Q).

5.1.4. Theorem 1.7 ⇒ Theorem 1.10. This is a simple rescaling argument (cf. Section 4).

Remark 5.1 (Comparison with [19]). Apart from the apparent differences – such as null vs. spacelike gluing,
spherical vs. annular data and the use of a Lorentz boost to optimize the range of ∆P – perhaps the biggest
difference between our approach and [19] is the absence of extra oscillations in the bumps, which correspond
to, in the context of [19], the “nonlinear corrections” for “gluing” the charges. Roughly speaking, instead of
separation in frequencies as in [19], we rely on separation in physical space to preclude dangerous interactions.
Our use of conic solution operators (also Bogovskii operators for extension procedures) to ensure that the
multi-bump configuration and (g̃in − δ, k̃in) have disjoint supports is an instance of this idea. Placing the
gluing annulus A16 outside the support of the leading order part (αt,ℓ,ξ, βt,ℓ,ξ) of all bumps is another (at a
more technical level, note the improved bounds (5.31), (5.32) in this region).
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Figure 1. Six-bump configuration. The two darker balls represent the two bumps carrying
most of E and all of P, while the four lighter balls represent the four bumps that give C
and J. The six-bump solution is supported inside the union of the six cones and away from
the inner dashed ball. The extension (g̃in − δ, k̃in) of (gin − δ, kin) will be designed to have
disjoint support from the six-bump solution. The gluing annulus A16 sits outside of all the bumps.

In the rest of this section, we carry out the proof of Theorems 1.7 and 1.10 outlined above.

5.2. Construction of a single localized bump. The main goal of this subsection is to prove the following.

Proposition 5.2. Fix any −1 < δ < − 1
2 , θ ∈ (0, π

2 ) and ω ∈ S2. For any s > 3
2 , b > 0 and Γ > 1, there

exists ϵb,0 = ϵb,0(b,Γ) > 0 such that the following holds. Given t > 0, ℓ ∈ R3 and ξ ∈ R3 obeying

t < ϵb,0, 1 ≤ γ(ℓ) := (1− |ℓ|2)− 1
2 < Γ, Bb(ξ) ⊆ Cθ(ω) ∩A8,

there exists a solution (gt,ℓ,ξ, kt,ℓ,ξ) ∈ C∞(R3) to (1.1) satisfying

supp(gt,ℓ,ξ − δ, kt,ℓ,ξ) ⊆ Cθ(ω) ∩ {|x| > 8}, (5.1)

and, for n = 0, 1,

∥(t∂t, ∂ℓ, ∂ξ)(n)(gt,ℓ,ξ − δ, kt,ℓ,ξ)∥Hs,δ
b ×Hs−1,δ+1

b
≲s,b,Γ t, (5.2)

(t∂t, ∂ℓ, ∂ξ)
(n)
[
E[(gt,ℓ,ξ, kt,ℓ,ξ);A16]− γ(ℓ)t2

]
= Ob,Γ(t

3), (5.3)

(t∂t, ∂ℓ, ∂ξ)
(n)
[
Pi[(gt,ℓ,ξ, kt,ℓ,ξ);A16]− γ(ℓ)t2ℓi

]
= Ob,Γ(t

3), (5.4)

(t∂t, ∂ℓ, ∂ξ)
(n)
[
Ci[(gt,ℓ,ξ, kt,ℓ,ξ);A16]− γ(ℓ)t2ξi

]
= O(bt2) +Ob,Γ(t

3), (5.5)

(t∂t, ∂ℓ, ∂ξ)
(n)
[
Ji[(gt,ℓ,ξ, kt,ℓ,ξ);A16]− γ(ℓ)t2ϵ jk

i ξjℓk
]
= O(bt2) +Ob,Γ(t

3). (5.6)

Moreover, the following improved bound holds in {|x| > 16} (for n = 0, 1):

∥(t∂t, ∂ℓ, ∂ξ)(n)(gt,ℓ,ξ − δ, kt,ℓ,ξ)∥Hs,δ
b ×Hs−1,δ+1

b ({|x|>16}) ≲s,b,Γ t2. (5.7)

We remark that Bb(ξ) contains the support of the seed bump, or more precisely the O(t) part of
(gt,ℓ,ξ, kt,ℓ,ξ); the reason behind the improvement (5.7) is that {|x| > 16} is disjoint from Bb(ξ).

To establish Proposition 5.2, we need some preliminary lemmas.

Lemma 5.3 (Charge computation for special initial data). Given r0 ∈ 2N0 , ξ0 ∈ R3, t, b0, A > 0 and
τ ∈ (−δ0, δ0) for some δ0 > 0, let (g, k) = (g(τ), k(τ)) ∈ C2 ×C1(B2r0(ξ0)) be a solution to (1.1) satisfying,
for n = 0, 1,

∥∂n
τ (gij − δij − α̊ij , kij)∥C2×C1(B2r0

(ξ0)) ≤ At2,
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where α̊ij = α̊(τ)ij obeys the special condition

∂i(α̊ij − δij trδ α̊) = 0, (5.8)

as well as the size and support properties (for n = 0, 1 and n′ = 0, 1, 2)

|∂n
τ (b0∂x)

(n′)α̊| ≤ Ab
3
2
0 t, supp α̊ ⊆ Bb0(0). (5.9)

Provided that Bb0(0) ⊆ Br0(ξ0), we have, for n = 0, 1,

∂n
τ

[
E[(g, k);Ar0(ξ0)]− 1

16

∫ ∑
j,k,ℓ

(∂kα̊jℓ − ∂ℓα̊jk)
2 dx

]
= OA,b0(t

3),

∂n
τ Pi[(g, k);Ar0(ξ0)] = OA,b0(t

3),

∂n
τ Ci[(g, k);Ar0(ξ0)] = O(A2b0t

2) +OA,b0(t
3),

∂n
τ Ji[(g, k);Ar0(ξ0)] = OA,b0(t

3).

Proof. For simplicity, we drop the τ -dependence; we leave the similar proof of the C1-dependence on τ to
the reader. Define (h, π) := ((g − δ) − δ trδ(g − δ), k − δ trδ k) and (h1, π1) := (α̊ − δ trδ α̊, 0). Using the
notation in (2.8), the charges are given by(

E
Ck

)
[(g, k);Ar0 ] = −1

2

∫
χr0,2r0(x− ξ0)∂i∂jh

ij

(
1
xk

)
dx = −1

2

∫
χr0,2r0(x− ξ0)M(h, π)

(
1
xk

)
dx

= −1

2

∫
M(h1, π1)

(
1
xk

)
dx+OA,b0(t

3) = −1

2

∫
R[δ + α̊]

(
1
xk

)
dx+OA,b0(t

3),

(
Pk

Jk

)
[(g, k);Ar0 ] = −

∫ ∑
j

χr0,2r0(x− ξ0)∂iπ
ij

(
ejk
Yj

k

)
dx = −

∫ ∑
j

χr0,2r0(x− ξ0)N
j(h, π)

(
ejk
Yj

k

)
dx

= −
∫ ∑

j

N j(h1, π1)

(
ejk
Yj

k

)
dx+OA,b0(t

3) = OA,b0(t
3),

where we used the fact that ∂i∂jh
ij
1 = 0, π1 = 0 and supp(h1, π1) ⊆ Br0(ξ0).

The above already implies the desired assertions for Pk and Jk. For E and Ck, recall the general formulae

R[g] = (g−1)ij(∂kΓ
k
ij − ∂jΓ

k
ik + Γk

kℓΓ
ℓ
ij − Γk

iℓΓ
ℓ
jk), Γk

ij =
1

2
(g−1)kℓ(∂igjℓ + ∂jgiℓ − ∂ℓgij).

Let (g1)ij := δij + α̊ij and write (g−1
1 )ij = δij + α̃ij , where we observe that α̃ij = −α̊ij +OA,b0(t

2). We will
abbreviate terms that are linear in α̊ by lin – note that they will all vanish since (α̊, 0) is chosen to solve the
linearized constraint equation. We have

R[g1] =
1

2
(g−1

1 )ij∂kα̃
kℓ(∂iα̊jℓ + ∂jα̊iℓ − ∂ℓα̊ij) +

1

2
(g−1

1 )ij(g−1
1 )kℓ∂k(∂iα̊jℓ + ∂jα̊iℓ − ∂ℓα̊ij)

−1

2
(g−1

1 )ij∂jα̃
kℓ∂iα̊kℓ −

1

2
(g−1

1 )ij(g−1
1 )kℓ∂j∂iα̊kℓ + (g−1

1 )ij(Γk
kℓΓ

ℓ
ij − Γk

iℓΓ
ℓ
jk)

=
1

2
∂k(α̃

kℓ(2∂iα̊iℓ − ∂ℓα̊ii)) +
1

2
α̃ij∂k(2∂iα̊jk − ∂kα̊ij)−

1

2
∂i(α̃

kℓ∂iα̊kℓ)−
1

2
α̃ij∂i∂jα̊kk

+
1

4
∂ℓα̊kk(2∂iα̊iℓ − ∂ℓα̊ii)−

1

4
(∂iα̊kℓ)

2 +
1

4
(∂kα̊iℓ − ∂ℓα̊ik)

2 + lin +OA,b0(t
3).

To simplify the nonlinear terms, we use the special condition (5.8), which implies

∂iα̊ij = ∂j trδ α̊, ∂i∂jα̊ij = ∆trδ α̊.

Recall also that lin = DδR[α̊] = 0, g1 = δ + α̊ and α̃ij = −αij +OA,b0(t
2). Thus

R[δ + α̊] =

(
1− 1

2
+

1

2
− 1

4
− 1

2

)
(∂j trδ α̊)

2 +

(
−1

2
− 1

4
+

1

2

)
(∂kα̊ij)

2 + ∂(α̊, ∂α̊) +OA,b0(t
3)

=
1

4
(∂j trδ α̊)

2 − 1

4
(∂kα̊ij)

2 + ∂(α̊, ∂α̊) +OA,b0(t
3)
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= −1

8
(∂kα̊iℓ − ∂ℓα̊ik)

2 + ∂(α̊, ∂α̊) +OA,b0(t
3).

Plugging in this formula into the above formulae for E and Ck, and using the fact that |xk| ≤ b0 in
supp α̊ ⊆ Bb0(0), the desired assertions for E and Ck follow. □

To state the next lemma, consider a Lorentzian metric g ∈ C2(Ω), where Ω ⊆ R1+3. Given (Λ, ξ) ∈
SO+(1, 3)× R1+3, let yµ = Λµ

µ′xµ′
+ ξν . Then, with respect to the coordinates (y0, . . . , y3), define

g
(Λ,ξ)
ij = gij

∣∣∣
{y0=0}∩Ω

, k
(Λ,ξ)
ij =

−(g−1)0µ

2
√

−(g−1)00
(∂µgij − ∂igjµ − ∂jgiµ)

∣∣∣
{y0=0}∩Ω

. (5.10)

Motivated by Lemma 2.8, we introduce the notation

(P0,Pi, Ji0, Jjk)[(g, k);Ar0(ξ0)] = (E,Pi,Ci, ϵ
i
jkJi)[(g, k);Ar0(ξ0)]. (5.11)

Lemma 5.4 (Effect of boost and translation). Given t, A > 0 and τ ∈ (−δ0, δ0) for some δ0 > 0, let
g = g(τ) ∈ C2(Ω) be a solution to (1.2) satisfying, for n = 0, 1,

∥∂n
τ (gµν − ηµν −αµν)∥C2(Ω) ≤ At2,

where αµν = α(τ)µν obeys
DηG[α] = 0, ∥∂τα∥C2(Ω) ≤ At.

(1) For any C1-curve (Λ(τ), ξ(τ)) ∈ SO+(1, 3)× R1+3 with |∂τ (Λ, ξ)| ≤ A, we have, for n = 0, 1,

∥∂n
τ (g

(Λ,ξ)
ij − δij − α(Λ,ξ), k

(Λ,ξ)
ij − β(Λ,ξ))ij)∥C2(Ω) = OA(t

2),

where
α
(Λ,ξ)
ij = αij

∣∣∣
{y0=0}

, β
(Λ,ξ)
ij =

1

2
(∂0αij − ∂iαj0 − ∂jαi0)

∣∣∣
{y0=0}

with respect to yµ = Λµ
νx

ν + ξµ.
(2) Let (g, k) = (g(I,0), k(I,0)). Assume that, for each σ ∈ [0, 1], there exists hypersurface Uσ ⊆ Ω such

that ∂Uσ = {x0 = 0, |x| = (1 + σ)r0} ∪ {y0 = 0, |y| = (1 + σ)r}, Uσ ∩ suppα = ∅, and Vol(Uσ) ≤ A,
with the volume induced from the auxiliary Riemannian metric (dx0)2+· · · (dx3)2. Then for n = 0, 1,

∂n
τ

[
Pµ[(g

(Λ,ξ), k(Λ,ξ));Ar]− Λ µ′

µ Pµ′ [(g, k);Ar0 ]
]
= OA(t

4),

∂n
τ

[
Jµν [(g(Λ,ξ), k(Λ,ξ));Ar]−

(
Λ µ′

µ Λ ν′

ν Jµ′ν′ + ξµΛ
ν′

ν Pν′ − ξνΛ
µ′

µ Pµ′

)
[(g, k);Ar0 ]

]
= OA(t

4).

Proof. For simplicity, we drop the τ -dependence; we leave the similar proof of the C1-dependence on τ to
the reader. Statement (1) is a simple consequence of extracting the terms of linear order in (5.10) around η.
For Statement (2), observe first that g = OA(t

2) on Uσ since Uσ ∩ suppα = ∅, and hence DηG[g] = OA(t
4)

on Uσ. Applying (2.18) to U = Uσ, we obtain∫
{y0=0,|y|=(1+σ)r}

⋆(X)U[g]−
∫
{x0=0,|x|=(1+σ)r0}

⋆(X)U[g] = OA(t
4),

for any Killing vector field X with respect to η. In view of (2.22), we obtain

Pµ[g; {y0 = 0, |y| = (1 + σ)r}] = Λ µ′

µ Pµ′ [g; {x0 = 0, |x| = (1 + σ)r0}] +OA(t
4).

Using Lemma 2.8 and smoothly averaging in σ, we obtain the desired assertion for Pµ. The case of Jµν is
similar. □

Lemma 5.5. Consider an open subset Ω ⊆ R1+3 such that Σ0 := {x0 = 0} ∩Ω is a Cauchy hypersurface
in Ω. Consider a symmetric covariant two-tensor field Fαβ satisfying ∇αFαβ = 0 and a 1-form Jβ defined
on Ω, as well as a pair of symmetric covariant two-tensor fields (αij , βij), a function n and a 1-form Nj

defined on Σ0. The following initial value problem posed on Ω

DηG[α]αβ = Fαβ , ∇αH[α]αβ = Jβ ,

(αij , ∂0αij)|Σ0 = (αij , 2βij + ∂iNj + ∂jNi), α00|Σ0 = n, α0j |Σ0 = Nj ,

is equivalent to the following reduced problem posed on Ω:

□ααβ = −2(Fαβ − 1
2ηαβ trη F) +∇αJβ +∇βJα,
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(αij , ∂0αij)|Σ0 = (αij , 2βij + ∂iNj + ∂jNi), α00|Σ0 = n, α0j |Σ0 = Nj ,

(∇αH[α]αβ − Jβ)|Σ0
= 0, (DηG[α]α0 − Fα0)|Σ0

= 0.

We remark that ∇αH[α]αβ = 0 is the linearized wave coordinate condition, and that (∇αH[α]αβ−Jβ)|Σ0

induces initial conditions for ∂0α0β |Σ0 . The reduced problem, being an inhomogeneous initial value problem
for the classical wave equation, is well-posed (in, say, Hs ×Hs−1({x0 = τ} ∩Ω)) by our hypothesis on Ω.

Proof. This is a well-known computation essentially dating back to [20]. From (2.15), it follows that

□ααβ = −2(Fαβ − 1
2ηαβ trη F) +∇αJβ +∇βJα

⇔ DηG[α]αβ = Fαβ +
1

2

(
∇α(∇γH[α]γβ − Jβ) +∇β(∇γH[α]γα − Jα)− ηαβ∇δ(∇γH[α]γδ − Jδ)

)
.

From this equivalence, the derivation of the reduced problem from the first problem is immediate. To show
that the solution α to the reduced problem solves the first problem, it suffices to show that ∇αH[α]αβ = Jβ .
Observe that the second equation combined with ∇αDηG[α]αβ = 0 (linearized Bianchi) and ∇αFαβ = 0
implies □(∇αH[α]αβ − Jβ) = 0. Moreover, the same equation combined with (DηG[α]α0 − Fα0)|Σ0 = 0
implies ∂0(∇αH[α]αβ − Jβ)|Σ0

= 0. Since (∇αH[α]αβ − Jβ)|Σ0
= 0 as well, it follows from uniqueness of

the initial value problem for the classical wave equation that ∇αH[α]αβ = Jβ . □

Proof of Proposition 5.2. Step 1. Choice of α̊. We begin by choosing α̊ij ∈ C∞
c (R3), to which we shall

apply Lemma 5.3 in the end (in particular, for our motivation behind the choices b0 = 1
2Γ

−2b and (5.12),
see Steps 2 and 5 below, respectively). Fix a function χ ∈ C∞

c (B1) such that
1

16

∫
|∂(∂2

11 + ∂2
22)χ|2 dx = 1. (5.12)

Following [28, Sec. 4.1], we set

α̊ = t

 1
2 (∂

2
22χb,Γ − ∂2

11χb,Γ) −∂2
12χb,Γ 0

−∂2
12χb,Γ

1
2 (∂

2
11χb,Γ − ∂2

22χb,Γ) 0
0 0 − 1

2 (∂
2
11 + ∂2

22)χb,Γ


where χb,Γ(x) = ( 12Γ

−2b)
3
2χ(2Γ2b−1x) so that ∥∂3

ijkχb,Γ∥2L2 = ∥∂3
ijkχ∥2L2 . From the definition, it is straight-

forward to verify that ∂iα̊ij = ∂j trδ α̊ and (5.9) hold with b0 = 1
2Γ

−2b.
Step 2. Construction of α and (αt,ℓ,ξ, βt,ℓ,ξ). We use Lemma 5.5 to define α ∈ C∞(R1+3) to be the
unique solution to the problem

DηG[α]αβ = 0, ∇αH[α]αβ = 0,

(αij , ∂0αij)|{x0=0} = (α̊ij , 0), α00|{x0=0} = 0, α0j |{x0=0} = 0,
(5.13)

where ∂0α00|{x0=0}, ∂0α0j |{x0=0} are induced by ∇αH[α]αβ = 0. Recall also from Lemma 5.5 that, in fact,
□αµν = 0 and supp(αµν , ∂tαµν)|{x0=0} ⊆ {x0 = 0, |x| < 1

2Γ
−2b} for each µ, ν. Hence, by finite speed of

propagation,
suppα ⊆ Ωα := {|x| < |x0|+ 1

2Γ
−2b}. (5.14)

Using the parameters ℓ and ξ, define Λℓ ∈ SO+(1, 3) (Lorentz boost by velocity ℓ) and ξ ∈ R1+3 by

(Λℓx)
0 = γ(ℓ)(x0 − ℓ · Pℓx), (Λℓx)

j = γ(ℓ)(−ℓjx0 + (Pℓx)
j) + (P⊥

ℓ x)j , ξ0 = 0, ξj = ξj ,

where γ(ℓ) = (1− |ℓ|2)− 1
2 (Lorentz contraction factor), and Pℓ, P

⊥
ℓ : R3 → R3 are orthogonal projections to

(ℓ) and (ℓ)⊥, respectively. Define
yµ = (Λℓ)

µ
νx

ν + ξµ,

which constitute another set of canonical coordinates. With respect to the coordinates (y0, . . . , y3), we define
(αt,ℓ,ξ, βt,ℓ,ξ) on {y0 = 0} as (cf. (2.19))

(αt,ℓ,ξ)ij = αij

∣∣
{y0=0}, (βt,ℓ,ξ)ij =

1
2 (∂0αij − ∂iαj0 − ∂jαi0)

∣∣
{y0=0}. (5.15)

Note that this pair solves the linearized constraint equation, in the sense that (ht,ℓ,ξ, πt,ℓξ) = (αt,ℓ,ξ −
δ trδ αt,ℓ,ξ, αt,ℓ,ξ − δ trδ βt,ℓ,ξ), as in (2.1), solves P⃗ (ht,ℓ,ξ, πt,ℓ,ξ) = 0. We claim that

∥(t∂t, ∂ℓ, ∂ξ)n(αt,ℓ,ξ, βt,ℓ,ξ)∥Hs×Hs−1(R3) + ∥∇(t∂t, ∂ℓ, ∂ξ)
nα0µ∥Hs−1(R3) ≲n,s,b,Γ t, (5.16)

supp(αt,ℓ,ξ, βt,ℓ,ξ) ⊆ Bb(ξ). (5.17)
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The Hs ×Hs−1 bound (5.16) follows from the standard energy estimate applied to □(t∂t, ∂ℓ, ∂ξ)
nαµν = 0

in the region between the two planes {x0 = 0} and {y0 = 0}. To verify (5.17), observe first that, since
|x0| ≤ |ℓ||x| on {y0 = 0}, we have

{y0 = 0} ∩ {|x| > 1
2 (1− |ℓ|)−1Γ−2b} ⊆ {|x| > |x0|+ 1

2Γ
−2b} = R1+3 \Ωα.

Note also that, on {y0 = 0}, the coordinates (y1, y2, y3) see length contraction by γ−1 in the direction of ℓ
relative to (x1, x2, x3), i.e.,

(yj − ξj)
∣∣
{y0=0} = γ−1(Pℓx)

j + (P⊥
ℓ x)j

∣∣
{y0=0}. (5.18)

In particular, |x| ≥ |y − ξ|. Putting these facts together, and using 1
2 (1− |ℓ|)−1 ≤ γ2 < Γ2, we have

{y0 = 0, |y − ξ| ≥ b} ⊆ {y0 = 0, |x| ≥ b} ⊆ {y0 = 0, |x| > 1
2 (1− |ℓ|)−1Γ−2b} ⊆ R1+3 \Ωα.

In view of (5.14), α = 0 in an open neighborhood of {y0 = 0, |y − ξ| ≥ b}, which implies the desired support
statement.
Step 3. Construction of (gt,ℓ,ξ, kt,ℓ,ξ). We work on the hyperplane {y0 = 0} using the coordinates
(y1, y2, y3). By (5.16), (5.17) and hypothesis, note that

supp(ht,ℓ,ξ, πt,ℓ,ξ) ⊆ Cθ(ω) ∩A8, ∥(t∂t, ∂ℓ, ∂ξ)(ht,ℓ,ξ, πt,ℓ,ξ)∥Hs,δ
b ×Hs−1,δ+1

b
= Os,b,Γ(t),

where the weights do not play any role in the second assertion by the support property. Let S⃗c = (Sc, Tc) be
the conic solution operators in Lemma 2.5 adapted to Cθ(ω). By the computation in Section 2.1, in order
to construct a solution to (1.1) of the form (gt,ℓ,ξ, kt,ℓ,ξ) = (δ + αt,ℓ,ξ + α̃, βt,ℓ,ξ + β̃), it suffices to solve

(h̃, π̃) = S⃗cN⃗(ht,ℓ,ξ + h̃, πt,ℓ,ξ + π̃),

where (h̃, π̃) = (α̃ − δ trδ α̃, β̃ − δ trδ β̃). By standard Picard iteration, there is a unique solution (h̃, π̃) ∈
(Hs,δ

b ×Hs−1,δ+1
b )0(Cθ(ω)) as long as t is sufficiently small depending on s, b,Γ, such that

∥(t∂t, ∂ℓ, ∂ξ)n(h̃, π̃)∥Hs,δ
b ×Hs−1,δ+1

b
≲n,s,b,Γ t2.

By (2.2), assertions (5.1) and (5.2) immediately follow. Moreover, since (gt,ℓ,ξ − δ, kt,ℓ,ξ) = (α̃, β̃) outside of
supp(αt,ℓ,ξ, βt,ℓ,ξ), (5.7) follows as well.
Step 4. Construction of g and identification with α up to O(t2). In preparation for computation of
the charges for (gt,ℓ,ξ, kt,ℓ,ξ) on {y0 = 0}, we consider its Cauchy development g. More precisely, we solve the
vacuum Einstein equation G(g) = 0 in the domain Ω = {(y0, y1, y2, y3) ∈ R1+3 : |y0| < 64, |y|+2|y0| < 256}
under the wave coordinate gauge condition □gy

µ = 0 with the following initial data:

g00|{y0=0} = −1 +α00|{y0=0}, g0j |{y0=0} = α0j |{y0=0}, (5.19)

as well as gij |{y0=0}, ∂0gij |{y0=0}, ∂0g0j |{y0=0} and ∂0g00|{y0=0} determined (in order) from the initial data
set (gt,ℓ,ξ, kt,ℓ,ξ) using (5.10) and □gy

µ = 0. Assuming that t < ϵb,0 with ϵb,0 sufficiently small depending
on b,Γ, we may ensure the existence of g in Ω by the standard local well-posedness theory [30, Ch. 14–15]
(see also [20]). Observe also that ∂Ω is spacelike with respect to η, and hence with respect to g provided
that t is sufficiently small. By (5.16), boundedness, persistence of regularity, Cauchy stability and Sobolev
embedding, we have

∥(t∂t, ∂ℓ, ∂ξ)n(g − η)∥Cs(Ω) ≲n,s,b,Γ t. (5.20)

To conclude this step, it remains to identify g with α up to terms of order t2. Observe, from (5.15) and our
choice of initial data for g, that α̃ = g − η −α solves

DηG[α̃]αβ = O(t2), ∇αH[α̃]αβ = O(t2),

(α̃ij , ∂0α̃ij)|{y0=0} = O(t2), (α̃00, α̃0j)|{y0=0} = 0, (∂0α̃00, ∂0α̃0j)|{y0=0} = O(t2),

where g = O(t2) is a shorthand for ∥(t∂t, ∂ℓ, ∂ξ)ng∥Cs(Ω) ≲n,s,b,Γ t2. It follows from Lemma 5.5 (and Sobolev
embedding) that

∥(t∂t, ∂ℓ, ∂ξ)n(g − η −α)∥Cs(Ω) ≲n,s,b,Γ t2. (5.21)

Step 5. Computation of charges. Thanks to (5.21), we may now use Lemma 5.4 to compute the charges
of (gt,ℓ,ξ, kt,ℓ,ξ), which equals (g(Λℓ,ξ), k(Λℓ,ξ)) in the notation of Lemma 5.4, in terms of those of (g, k), which
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is the induced data on {x0 = 0}. Moreover, in view of (5.10) with (Λ, ξ) = (I, 0), (5.13) and (5.21), we may
appeal to Lemma 5.3 with α̊ as in Step 1 to compute the charges of (g, k). By (5.12), we have

1

16

∫ ∑
j,k,ℓ

(∂kα̊jℓ − ∂ℓα̊jk)
2 dx =

1

8

∫ ∑
j,k,ℓ

(∂jα̊k,ℓ)
2 −

∑
j

(∂j trδ α̊)
2

 dx

= t2
∫ [

1

4
|∂∂2

12χb,Γ|2 +
1

16
|∂(∂2

11 − ∂2
22)χb,Γ|2

]
dx

=
t2

16

∫
|∂(∂2

11 + ∂2
22)χ|2 dx = t2.

Since {x0 = 0, 16 ≤ |x| ≤ 32} and {y0 = 0, 16 ≤ |y| ≤ 32} are contained in Ω yet disjoint from Ωα, for
each σ we may find a hypersurface Uσ such that ∂Uσ = {x0 = 0, |x| = 16(1 + σ)} ∪ {y0 = 0, 16(1 + σ)},
Uσ ∩ suppα = ∅ while Vol(Uσ) = O(1). By Lemma 5.3, we have

(P0,Pi, Jµν)[(g, k);A16] = (t2, 0,O(Γ−2bt2)) +Ob,Γ(t
3),

and similarly after applying of (t∂t, ∂ℓ, ∂ξ). Applying Lemma 5.4, (5.11) and ∥Λℓ∥R4→R4 ≲ γ ≲ Γ, we
immediately arrive at (5.3)–(5.4) for the charges of (gt,ℓ,ξ, kt,ℓ,ξ) on {y0 = 0}. Moreover, (5.5)–(5.6) follow
as well by estimating (Λℓ)

µ′

µ (Λℓ)
ν′

ν O(Γ−2bt2) = O(bt2). □

5.3. Multi-bump configurations with prescribed charges. Our first goal is to establish the following.

Proposition 5.6 (Almost time-symmetric four-bump configuration). Fix −1 < δ < − 1
2 and θ ∈ (0, π

2 ), and
define C

(4)
θ = Cθ(e1) ∪ Cθ(−e1) ∪ Cθ(e2) ∪ Cθ(−e2). For s > 3

2 , there exists ϵb,1 = ϵb,1(s) > 0 such that the
following holds. Consider

U = {Q ∈ R10 : 0 < E < 2ϵ2b,1, |C|+ |P|+ |J| < 2ϵ2b,1E}.

For any Q ∈ U , there exists (gbump
Q , kbump

Q ) ∈ C∞(R3) such that

supp(gbump
Q − δ, kbump

Q ) ⊆ C
(4)
θ ∩ {|x| > 8} and Q[(gbump

Q , kbump
Q );A16] = Q.

Moreover, the map Q 7→ (gbump
Q − δ, kbump

Q ) is C1 in the Hs,δ
b ×Hs−1,δ+1

b topology, and

∥(gbump
Q − δ, kbump

Q )∥Hs,δ
b ×Hs−1,δ+1

b
≲s

√
E, (5.22)

∥∂Q(gbump
Q , kbump

Q )∥Hs,δ
b ×Hs−1,δ+1

b
≲s

1√
E
. (5.23)

Moreover, in {|x| > 16}, we have the improved bounds

∥(gbump
Q − δ, kbump

Q )∥Hs,δ
b ×Hs−1,δ+1

b ({|x|>16}) ≲s E, (5.24)

∥∂Q(gbump
Q , kbump

Q )∥Hs,δ
b ×Hs−1,δ+1

b ({|x|>16}) ≲s 1. (5.25)

Proof. We would like to consider a superposition of 4 bumps with disjoint supports and use the inverse
function theorem around E > 0,C = P = J = 0. For Bb(ξ) ⊆ Cθ(e1) ∩A8, Bb(η) ⊆ Cθ(e2) ∩A8, let

supp(gt,ℓ,ξ − δ, kt,ℓ,ξ) ⊆ Cθ(e1), supp(gt,m,η − δ, kt,m,η) ⊆ Cθ(e2)

be the single bumps constructed in Proposition 5.2. We define

(g∗t,ℓ∗,ξ∗(x), k
∗
t,ℓ∗,ξ∗(x)) := (gt,ℓ∗,−ξ∗(−x),−kt,ℓ∗,−ξ∗(−x)) ∈ C∞(Cθ(−e1)),

(g∗t,m∗,η∗(x), k∗t,m∗,η∗(x)) := (gt,m∗,−η∗(−x),−kt,m∗,−η∗(−x)) ∈ C∞(Cθ(−e2))

be the dual bumps defined by inversion symmetry. Since the solutions have disjoint supports, we define the
superposition of 4 bumps

(g(4)− δ, k(4)) := (gt,ℓ,ξ − δ, kt,ℓ,ξ)+ (gt,m,η − δ, kt,m,η)+ (g∗t,ℓ∗,ξ∗ − δ, k∗t,ℓ∗,ξ∗)+ (g∗t,m∗,η∗ − δ, k∗t,m∗,η∗), (5.26)

which solves (1.1). Now we get a family with 25 parameters and we are interested in the charges

Q : (t, ℓ, ℓ∗, ξ, ξ∗,m,m∗, η, η∗) 7→ Q[(g(4), k(4));A16]. (5.27)
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We need to choose 10 of them with a uniform non-degenerate Jacobian. Intuitively, we will choose t for the
energy, ξ for the central charge, ℓ for the momentum and three parameters among (ℓ∗,m) for the angular
momentum.

We note at ℓ = 0 we have kt,ℓ,ξ = 0 and thus

P[(gt,0,ξ, kt,0,ξ);A16] = J[(gt,0,ξ, kt,0,ξ);A16] = 0.

Moreover, by the inversion symmetry, for ξ + ξ∗ = 0, η + η∗ = 0, we have

C[(g(4), k(4));A16] = 0.

Now we fix ξ∗, η, η∗,m∗ and compute the Jacobian of the family (t, ξ, ℓ, ℓ∗,m) 7→ Q with 13 parameters
at the point ℓ = ℓ∗ = m = m∗ = 0 and ξ + ξ∗ = η + η∗ = 0:

t∂tE ∂ξE ∂ℓE ∂ℓ∗E ∂mE
t∂tC ∂ξC ∂ℓC ∂ℓ∗C ∂mC
t∂tP ∂ξP ∂ℓP ∂ℓ∗P ∂mP
t∂tJ ∂ξJ ∂ℓJ ∂ℓ∗J ∂mJ

 =


8t2 0 0 0 0
0 t2 0 0 0
0 0 t2 t2 t2

0 0 t2ϵ jk
i ξj t2ϵ jk

i ξ∗j t2ϵ jk
i ηj

+


Ob(t

3)
O(bt2) +Ob(t

3)
Ob(t

3)
O(bt2) +Ob(t

3)

 .

(5.28)

If we subtract the ℓ columns from the ℓ∗ columns, and then half the ℓ∗ column and add to the ℓ column,
and finally subtract the ℓ column from the m column, we would get

8t2 0 0 0 0
0 t2 0 0 0
0 0 t2 0 0

0 0 0 t2ϵ jk
i ξ∗j t2ϵ jk

i ηj

+


Ob(t

3)
O(bt2) +Ob(t

3)
Ob(t

3)
O(bt2) +Ob(t

3)

 .

Let ξ = (12, 0, 0) so that ξ∗ = (−12, 0, 0), and η = (0, 12, 0), then the 3× 6 minor in the bottom-right corner
of the first matrix is

t2(ϵ jk
i ξ∗j , ϵ

jk
i ηj) = t2

0 0 0 0 0 12
0 0 12 0 0 0
0 −12 0 −12 0 0


We can then select the variables ℓ∗2, ℓ

∗
3,m3 so that

∂(E,C,P,J)

∂(t, ξ, ℓ, ℓ∗2, ℓ
∗
3,m3)

is non-degenerate once we choose

t ≪b 1 and b ≪ 1.
Now we fix a sufficiently small b > 0 and use the inverse function theorem to conclude the proposition.

We denote Θ = (ξ, ℓ, ℓ∗2, ℓ
∗
3,m3) and fix ξ∗ = (−12, 0, 0), η = (0, 12, 0), η∗ = (0,−12, 0), ℓ∗1 = m1 = m2 = 0

and m∗ = 0, and apply the inverse function theorem over the region

Uϵ1 := {(1− ϵ2b,1)ϵ
2
1 < E < (1 + ϵ2b,1)ϵ

2
1, |C|+ |P|+ |J| < 10ϵ2b,1ϵ

2
1}.

By (5.28), for ϵ1 sufficiently small, the map (τ,Θ) 7→ ϵ−2
1 Q(ϵ1τ,Θ) is a diffeomorphism with uniformly

non-degenerate Jacobian near the point

ϵ−2
1 E = 1, ϵ−2

1 C = ϵ−2
1 P = ϵ−2

1 J = 0, ϵ1 ≪b 1, b ≪ 1.

More precisely, there is a uniform (i.e. independent of ϵ1) neighbourhood V near τ = 1/2,Θ = 0 such that

(τ,Θ) 7→ ϵ−2
1 Q(ϵ1τ,Θ) : V → ϵ−2

1 Uϵ1

is a diffeomorphism with uniformly bounded inverse in C1. Let Q̃ 7→ (τ,Θ) be the inverse map so that

Q̃ 7→ (τ,Θ) 7→ ϵ−2
1 Q(ϵ1τ,Θ) = Q̃, Q̃ ∈ ϵ−2

1 Uϵ1 .

Then we have

Q[(g, k)(ϵ1τ,Θ)Q̃
;A16] = ϵ21Q̃, Q̃ ∈ ϵ−2

1 Uϵ1 .

Taking Q = ϵ21Q̃, we conclude the construction of a reparametrized family of (gbump
Q , kbump

Q ) such that
Q[(gbump

Q , kbump
Q );A16] = Q for any Q ∈ Uϵ1 . It also follows from the construction that Q 7→ (gbump

Q −δ, kbump
Q )
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is smooth in the Hs,δ
b ×Hs−1,δ+1

b topology. Note that by varying ϵ1, we can cover U with

U ⊂
⋃

0<ϵ1<10ϵb,1

Uϵ1 .

By the uniqueness of the inverse function theorem, the ϵ1-family {gQ : Q ∈ Uϵ1} glues together to a smooth
family gbump

Q for Q ∈ U .
Moreover, by Proposition 5.2, we have for n = 0, 1 (recall t = ϵ1τ ≃ ϵ1),

∥(t∂t, ∂Θ)(n)(gbump
Q − δ, kbump

Q )∥Hs,δ
b ×Hs−1,δ+1

b
= O(t) = O(

√
E),

as well as the following chain of estimates:

∥∂Q(gbump
Q , kbump

Q )∥Hs,δ
b ×Hs−1,δ+1

b
= ϵ−2

1 ∥∂Q̃(g
bump
Q , kbump

Q )∥Hs,δ
b ×Hs−1,δ+1

b

≲ ϵ−2
1 ∥∂(τ,Θ)(g

bump
Q , kbump

Q )∥Hs,δ
b ×Hs−1,δ+1

b

= O(ϵ−1
1 ) = O(

√
E

−1
).

We are left to check the uniform C1-dependence on Q in {|x| > 16}. By (5.7), for n = 0, 1,

∥(t∂t, ∂Θ)(n)(gbump
Q − δ, kbump

Q )∥Hs,δ
b ×Hs−1,δ+1

b ({|x|>16}) = O(t2) = O(E).

Thus

∥∂Q(gbump
Q , kbump

Q )∥Hs,δ
b ×Hs−1,δ+1

b ({|x|>16}) = ϵ−2
1 ∥∂Q̃(g

bump
Q , kbump

Q )∥Hs,δ
b ×Hs−1,δ+1

b ({|x|>16})

≲ ϵ−2
1 ∥∂(τ,Θ)(g

bump
Q , kbump

Q )∥Hs,δ
b ×Hs−1,δ+1

b ({|x|>16}) = O(1). □

To extend the range of allowed P, we adjoin to the four-bump configuration two more bumps that carry
most of the total linear momentum.

Proposition 5.7 (Six-bump configuration). Fix −1 < δ < − 1
2 and θ ∈ (0, π

2 ), and define C
(6)
θ = C

(4)
θ ∪

Cθ(e3) ∪ Cθ(−e3). Given s > 3
2 and Γ ≥ 1, there exist ϵb = ϵb(s,Γ) > 0 and µb = µb(s,Γ) such that the

following holds. Consider

UΓ =

{
Q ∈ R10 : E > |P|, E√

E2−|P|2
< 2Γ, E < ϵ2b , |C|+ |J| < µbE

}
.

For each Q ∈ UΓ, there exists (gbump;Γ
Q , kbump;Γ

Q ) ∈ C∞(R3) such that

supp(gbump;Γ
Q − δ, kbump;Γ

Q ) ⊆ C
(6)
θ ∩ {|x| > 8} and Q[(gbump;Γ

Q , kbump;Γ
Q );A16] = Q.

Moreover,

∥(gbump;Γ
Q − δ, kbump;Γ

Q )∥Hs,δ
b ×Hs−1,δ+1

b
≲s

√
E, (5.29)

∥∂Q(gbump;Γ
Q , kbump;Γ

Q )∥Hs,δ
b ×Hs−1,δ+1

b
≲s

1√
E
. (5.30)

Moreover, in {|x| > 16}, we have the improved bounds

∥(gbump;Γ
Q − δ, kbump;Γ

Q )∥Hs,δ
b ×Hs−1,δ+1

b ({|x|>16}) ≲s E, (5.31)

∥∂Q(gbump;Γ
Q , kbump;Γ

Q )∥Hs,δ
b ×Hs−1,δ+1

b ({|x|>16}) ≲s 1. (5.32)

Proof. We first apply Proposition 5.2 to place two boosted bumps in Cθ(e3)∪Cθ(−e3) that carries most of E
and all of P, then use Proposition 5.6 to correct the remaining charges. To be more precise, let (gt,ℓ,ξ, kt,ℓ,ξ)
be the boosted bump supported in Cθ(e3) ∩ {|x| > 8} constructed in Proposition 5.2 and define the dual
bump by

(g∗t,ℓ∗,ξ∗(x), k
∗
t,ℓ∗,ξ∗(x)) := (gt,ℓ∗,−ξ∗(−x),−kt,ℓ∗,−ξ∗(−x)) ∈ C∞(Cθ(−e3)).

Since the two bumps have disjoint supports, the superposition

(g
(2)
t,ℓ,ξ − δ, k

(2)
t,ℓ,ξ) := (gt,ℓ,ξ − δ, kt,ℓ,ξ) + (g∗t,ℓ,−ξ − δ, k∗t,ℓ,−ξ) (5.33)



26 YUCHEN MAO, SUNG-JIN OH, AND ZHONGKAI TAO

solves (1.1). By inversion symmetry, we have

C[(g
(2)
t,ℓ,ξ, k

(2)
t,ℓ,ξ);A16] = J[(g

(2)
t,ℓ,ξ, k

(2)
t,ℓ,ξ);A16] = 0.

Moreover, we have

(t∂t, ∂ℓ, ∂ξ)
(n)((E,P)[(g

(2)
t,ℓ,ξ, k

(2)
t,ℓ,ξ);A16]− 2γ(ℓ)t2(1, ℓ)) = Ob,Γ(t

3).

Using inverse function theorem over the region

UE,P
Γ :=

{
(E,P) ∈ R4 : |P| < E < 10ϵ2b ,

E√
E2−|P|2

< 10Γ

}
,

it is easy to see we have a 4-parameter family (g
(2)
E,P, k

(2)
E,P) for (E,P) ∈ UE,P

Γ with

(E,P)[(g
(2)
E,P, k

(2)
E,P);A16] = (E,P), (C,J)[(g

(2)
E,P, k

(2)
E,P);A16] = 0. (5.34)

Now we want to add the almost time-symmetric four-bump configuration in Proposition 5.6 to (g(2), k(2)):

(g(6) − δ, k(6)) := (g
(2)

Ẽ,P̃
− δ, k

(2)

Ẽ,P̃
) + (gbump

Q − δ, kbump
Q ), (5.35)

which again solves (1.1). The charges are given by

(E,P)[(g(6) − δ, k(6));A16] = (Ẽ + E, P̃ + P ), (C,J)[(g(6) − δ, k(6));A16] = (C, J), (5.36)

for (Ẽ, P̃ ) ∈ UE,P
Γ and Q ∈ U . For (E,P,C,J) ∈ UΓ, we take

Ẽ = E
√
1− (10Γ)−2, E = E− Ẽ, P̃ = P, P = 0, C = C, J = J. (5.37)

Then it is easy to check (Ẽ, P̃ ) ∈ UE,P
Γ and Q = (E,P,C, J) ∈ U for ϵb > 0, µb > 0 small enough. The

estimates follow from Proposition 5.2 and Proposition 5.6. □

5.4. Extension procedures. In this subsection, we prove extension lemmas for (gin, kin) and (gout, kout).

Lemma 5.8. Let (gin, kin) ∈ Hs × Hs−1(A1) be a pair solving (1.1). Fix any −1 < δ < − 1
2 , θ > 0 and

ω0 ∈ S2. Provided that ∥(gin − δ, kin)∥Hs×Hs−1(A1) is sufficiently small, there exists (g̃in, k̃in) solving (1.1)
on R3 such that

(g̃in, k̃in) = (gin, kin) in A1, supp(g̃in − δ, k̃in) ⊆ B4 ∪ Cθ(ω0)

∥(g̃in − δ, k̃in)∥Hs,δ
b ×Hs−1,δ+1

b
≲s,δ,θ ∥(gin − δ, kin)∥Hs×Hs−1(A1).

Proof. Step 1. The first step is to construct a solution operator S⃗out for P⃗ (i.e., P⃗ S⃗out = I) with the
mapping property

S⃗out : (H
s−2,δ+2
b )0(A2 ∪ Cθ(ω0)) → (Hs,δ

b ×Hs−1,δ+1
b )0(A2 ∪ Cθ(ω0)).

We begin by constructing a Bogovskii-type operator S⃗B for the region Ω := (A2∪Cθ(ω0))∩{|x| < 8} such
that P⃗ S⃗Bf = f in Ω\Cθ(ω0) for f ∈ C∞

c (Ω). To achieve this, we carry out an argument similar to the proof
of Lemma 2.2 above. We begin with covering Ω by finitely many regions Ωj , j = 0, 1, · · · , J star-shaped with
respect to small balls Bj ⊂ Ωj such that B0 ⊂ Cθ(ω0) and the following joins of consecutive balls lie in Ω:

ch(Bj , Bj+1) := {tx+ (1− t)y : x ∈ Bj , y ∈ Bj+1, t ∈ [0, 1]} ⊂ Ω, j = 0, 1, · · · , J − 1.

Let S⃗j be the Bogovskii-type operator on Ωj defined in Lemma 2.3 and χj be a partition of unity with respect
to Ωj . First of all, uj = S⃗j(χjf) solves the equation P⃗ uj = χjf outside Bj . Note S⃗j is also well-defined on
the star-shaped region ch(Bj , Bj+1), we correct the errors inductively:

vJ := 0, wJ := 0, vj−1 := S⃗j−1(χjf − P⃗ uj + wj) ∈ C∞
c (ch(Bj−1, Bj)),

wj−1 := (χjf − P⃗ uj + wj)− P⃗ vj−1 ∈ C∞
c (Bj−1), j = 1, 2, · · · , J.
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Once we define u :=
J∑

j=0

(uj + vj), it is easy to see P⃗ vk = 0 and P⃗ u = f outside ∪Bj . For x ∈ Bk, k =

1, 2, · · · , J , we note P⃗ vj(x) = 0 for j ̸= k, k − 1 and thus

P⃗ u(x) =
∑
j ̸=k

χjf + P⃗ uk(x) + P⃗ vk(x) + P⃗ vk−1(x)

=
∑
j ̸=k

χjf + P⃗ uk(x) + P⃗ vk(x) + χkf − P⃗ uk(x) + wk(x)

= f(x) + (χk+1f − P⃗ uk+1 + wk+1)(x) = f(x).

We conclude that P⃗ u = f outside B0 ⊂ Cθ(ω0).
Next, let S⃗c be the conic solution operator adapted to the cone Cθ(ω0) so that P⃗ S⃗cf = f for f ∈

C∞
c (Cθ(ω0)). Let χ ∈ C∞

c ({|x| < 8}) be a cutoff function such that χ(x) = 1 near A2. We then define

S⃗outf := S⃗c(f − PS⃗B(χf)) + S⃗B(χf) : (H
s−2,δ+2
b )0(A2 ∪ Cθ(ω0)) → (Hs,δ

b ×Hs−1,δ+1
b )0(A2 ∪ Cθ(ω0)),

which obeys P⃗ S⃗outf = f for any f ∈ C∞
c (A2 ∪ Cθ(ω0)) as desired.

Step 2. Let (hin, πin) be the initial data corresponding to (gin, kin) under the transformation (2.1), and
we can freely extend (hin, πin) to Hs

0 ×Hs−1
0 ({|x| < 4}) (with control on the norm). We then consider the

following fixed point problem:

(h̃, π̃) = S⃗out(N⃗(hin + h̃, πin + π̃)− P⃗ (hin, πin)).

By the Banach fixed point theorem, there exists a unique solution (h̃, π̃) ∈ (Hs,δ
b ×Hs−1,δ+1

b )0(A2 ∪Cθ(ω0))

such that ∥(h̃, π̃)∥Hs,δ
b ×Hs−1,δ+1

b
≲ ∥(hin, πin)∥Hs×Hs−1(A1). Define (g̃in, k̃in) to be the solution corresponding

to (hin + h̃, πin + π̃). Since (h̃, π̃) is supported outside A1, we have (g̃in, k̃in) = (gin, kin) in A1. □

Lemma 5.9. Let (gout, kout) ∈ Hs ×Hs−1(A2R) be a pair solving (1.1). If ∥(gout − δ, kout)∥Hs×Hs−1(A2R)

is sufficiently small, there exists (g̃out, k̃out) solving (1.1) on ÃR such that

(g̃out, k̃out) = (gout, kout) in A2R, ∥(g̃out − δ, k̃out)∥Ḣs×Ḣs−1(ÃR) ≲s ∥(gout − δ, kout)∥Hs×Hs−1(A2R).

Proof. We may assume R = 1 by rescaling. First we may freely extend (gout, kout) to Hs({|x| ≤ 4}) (with
control on norm). Let S⃗in be the Bogovskii operator on B2 as in Lemma 2.3 with η ∈ C∞

c ({|x| < 1/4}). We
consider the following fixed point problem:

(h̃, π̃) = S⃗in(N⃗(hin + h̃, πin + π̃)− P⃗ (hin, πin)).

By the Banach fixed point theorem, there exists a unique solution (h̃, π̃) ∈ (Hs × Hs−1)0(B2). Define
(g̃out, k̃out) to be the solution corresponding to (hout + h̃, πout + π̃). By the support of η, (g̃out, k̃out) solves
the (1.1) on Ã1. Since supp(h̃, π̃) ⊆ B2, we have (g̃out, k̃out) = (gout, kout) in A2. □

5.5. Proof of Theorem 1.7. Fix −1 < δ < − 1
2 and θ ∈ (0, π

8 ). Let UΓ(∆E) = {∆Q′ ∈ UΓ : 1
2∆E ≤

E(∆Q′) ≤ 2∆E}. Given ∆Q′ ∈ UΓ(∆E), by Proposition 5.7, there exists a six-bump initial data (gbump;Γ
∆Q′ −

δ, kbump;Γ
∆Q′ ) supported in C

(6)
θ \ B4. By Lemma 5.8, given any ω0 ∈ S2, there also exists (g̃in − δ, k̃in) ∈

Hs,δ
b × Hs−1,δ+1

b extending (gin − δ, kin) which is supported in B4 ∪ Cθ(ω0). By an appropriate choice of
ω0, we may ensure that C

(6)
θ and Cθ(ω0) have disjoint closures, so that the same holds for C

(6)
θ \ B4 and

Cθ(ω0) ∪B4. We may thus define

(g∆Q′ − δ, k∆Q′) := (g̃in − δ, k̃in) + (gbump;Γ
∆Q′ − δ, kbump;Γ

∆Q′ ),

which extends (gin−δ, kin), belongs to Hs,δ
b ×Hs−1,δ+1

b (R3) and solves (1.1) by the disjoint support property.
Moreover, by Lemma 2.7, we have

Q[(g∆Q′ , k∆Q′);A16] = Q[(gbump;Γ
∆Q′ , kbump;Γ

∆Q′ );A16] +Q[(g̃in, k̃in);A16]

= ∆Q′ +Q[(gin, kin);A1] +OΓ(µo∆E),
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while

Q[(g∆Q′ , k∆Q′);A16]−Q[(g∆Q′′ , k∆Q′′);A16] = ∆Q′ −∆Q′′.

In particular, the map T : UΓ(∆E) → R10, ∆Q′ 7→ Q[(g∆Q′ , k∆Q′);A16] is bi-Lipschitz.
Next, by Lemma 5.9, there exists (g̃out, k̃out) on Ã16Γ extending (gout, kout). Again by Lemma 2.7,

Q[(g̃out, k̃out);A16] = Q[(gout, kout);A32] +OΓ(µo∆E).

By the preceding identities and the definition of ∆Q, we have

T (∆Q′) = Q[(g∆Q′ , k∆Q′);A16] = Q[(g̃out, k̃out);A16] + (∆Q′ −∆Q) +OΓ(µo∆E).

Choosing µo even smaller depending on µb and Γ, we may apply the inverse function theorem to ensure
that the image of the bi-Lipschitz map T (UΓ) covers a ball of radius OΓ(µo∆E) around Q[(g̃out, k̃out);A16];
here, it is important that UΓ in Proposition 5.7 is larger than the subset of R10 defined by (1.15)–(1.18). By
inverting this bi-Lipschitz map and composing with (g∆Q′ , k∆Q′), we may produce an admissible family on
A16 verifying (1.10)–(1.12) with ϵ = OΓ(µ

1
2
o (∆E)

1
2 ) and K = OΓ(1); that (g̃out, k̃out) verifies (1.9) is also

clear. Choosing ϵo sufficiently small, we can apply Theorem 1.3 and conclude the proof. □

5.6. Proof of Theorem 1.10. Given the two asymptotically flat solutions, we first rescale them using (1.3).
Arguing as in the proof of (4.10) in the proof of Theorem 1.6, we have

(E,P)[(g
(r)
□ , k

(r)
□ );AR□

] = r−1(E,P)[(g□, k□);ArR□
] = r−1(EADM ,PADM )[(g□, k□)] +O(r−2α),

(C,J)[(g
(r)
□ , k

(r)
□ );AR□

] = r−2(C,J)[(g□, k□);ArR□
] = O(r−2α),

for □ = in or out, where Rin = 1 and Rout = 32. Therefore, for sufficient large r ≥ R0, we verify the
conditions (1.15)–(1.18). The asymptotic flatness condition (1.13) implies (1.19), since

∥(g(r)in − δ, k
(r)
in )∥2Hs×Hs−1(A1)

+ ∥(g(r)out − δ, k
(r)
out)∥2Hs×Hs−1(A32)

≲ r−2α < µo∆E

for sufficiently large r ≥ R0. We can then apply Theorem 1.7 to conclude the proof. □

Appendix A. Proof of Lemma 4.2

For simplicity, we omit the superscript Kerr below. Following [15], we use the Kerr-Schild coordinates
(x0, x1, x2, x3), with respect to which

(gM,a)µν = ηµν +
2Mr3

r4 + a2(x3)2
kµkν , k = dx0 +

rx1 + ax2

r2 + a2
dx1 +

rx2 − ax1

r2 + a2
dx2 +

x3

r
dx3. (A.1)

where r is implicitly defined by r2((x1)2 + (x2)2) + (r2 + a2)(x3)2 = r2(r2 + a2).
According to [16, Appendix F], there exists a map

E → R× SO+(1, 3)× R× SO(3)× R3, Q = (E,P,J,C) 7→ (M(E,P),Λ(E,P), a(Q), R(Q), ξ(Q))

such that (gQ, kQ) = (g
(R,ξ,Λ)
M,a , k

(R,ξ,Λ)
M,a ), where the right-hand side is the initial data set induced from gM,a

on the hypersurface {y0 = 0}, where yµ = Λµ
ν(R

ν
λx

λ + ξν) (i.e., rotate, translate, then boost). In fact,

M = sgnE
√
E2 − |P|2, Λ = Λℓ with ℓ = E−1P, a = M−1|J(Λ−1

ℓ Q)|, ξ = −M−1C(Λ−1
ℓ Q) (A.2)

where Q′ = Λ(Q) is defined by the relations

Pµ(Q
′) = Λ µ′

µ Pµ′(Q), Jµν(Q′) = Λ µ′

µ Λ ν′

ν Jµ′ν′(Q),

where (P0,Pi, Ji0, Jjk)(Q) = (E,Pi,Ci, ϵ
i
jkJi)(Q) (cf. (5.11), Lemma 5.4 and [16, Prop. E.1]). Moreover, R

is a rotation in the plane spanned by
∑

j J(Λ
−1
ℓ Q)j∂xj and ∂x3 that maps the former to the latter. Note

also that the Lorentz factor γ of Λ equals (E2 − |P|2)− 1
2 |E|.

In what follows, we shall freely make use of the following basic facts:

γ−1 ≲ |Λ|R4→R4 ≲ γ, |(a, ξ)| ≃ γ−2M−1(C,J), ||x|−α − |x− ξ|−α| ≲α |x|−α−1 for |x| ≥ 10|ξ|. (A.3)

Moreover, to simplify the exposition, we now adopt the following conventions: (1) M,a ≥ 0 (the general
case is similar), (2) all bounds we state in the variables y are to be satisfied for |y| ≥ CR(M +M−1|(C,J)|)
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for some CR = CR(γ), which may vary line by line, and (3) unless otherwise specified, all implicit constants
may depend on n and γ.

We begin with

∂MgM,a =
2r3

r4 + a2(x3)2
kµkν , ∂agM,a = ∂a

(
2Mr3

r4 + a2(x3)2

)
kµkν +

2Mr3

r4 + a2(x3)2
(∂akµkν + kµ∂akν).

Notice that |∂(n)kµ| ≲ |x|−n, so we have |x|n|∂(n)∂MgM,a| ≲ |x|−1. Moreover, notice that

∂ar = − r((x1)2 + (x2)2)

(r2 + a2)2 − a((x1)2 + (x2)2)
= O(|x|−1),

from which it follows that

|x|n
∣∣∣∣∂(n)∂a

(
2Mr3

r4 + a2(x3)2

)∣∣∣∣ ≲ Ma

|x|3
+

M

|x|2
, |x|n

∣∣∣∂(n)∂akµ

∣∣∣ ≲ O(|x|−1).

We conclude that

|xn||∂(n)∂a(gM,a)| ≲
Ma

|x|3
+

M

|x|2
.

Recall yµ = Λµ
ν(R

ν
λx

λ + ξν), as well as (5.10). Using the preceding identities, (A.1) and (A.3), we have

|y|n
∣∣∣∂(n)

y g
(R,ξ,Λ)
M,a

∣∣∣ ≲ M |y|−1, |y|n
∣∣∣∂(n)

y ∂Mg
(R,ξ,Λ)
M,a

∣∣∣ ≲ |y|−1, |y|n
∣∣∣∂(n)

y ∂ag
(R,ξ,Λ)
M,a

∣∣∣ ≲ M |y|−2.

We may also compute5

|y|n
∣∣∣∂(n)

y ∂ξg
(R,ξ,Λ)
M,a

∣∣∣ ≲ M |y|−2, |y|n
∣∣∣∂(n)

y ∂Λg
(R,ξ,Λ)
M,a

∣∣∣ ≲ M |y|−1, |y|n
∣∣∣∂(n)

y ∂Rg
(R,ξ,Λ)
M,a

∣∣∣ ≲ Ma|y|−2,

where we used the rotation invariance of the leading term of the Kerr metric for the last bound. Moreover,
for g

(R,ξ,Λ),−
M,A , the leading term is cancelled and |y|−1 improve to |y|−2 in the above bounds. Finally, by

(5.10), similar bounds follow for k
(R,ξ,Λ)
M,a and k

(R,ξ,Λ),+
M,a .

From the preceding assertions, (4.5)–(4.6) immediately follow. To establish the remaining bounds, observe
also that, by (A.2) and the definition of R (which is locally well-defined),∣∣∣∣ ∂Λ

∂(E,P)

∣∣∣∣ ≲γ
1

M
,

∣∣∣∣ ∂R

∂(C,J)

∣∣∣∣ ≲γ
1

Ma
,

∣∣∣∣ ∂R

∂(E,P)

∣∣∣∣ ≲γ
|(C,J)|

M

1

Ma
,

∣∣∣∣ ∂(a, ξ)∂(C,J)

∣∣∣∣ ≲γ
1

M
,

∣∣∣∣ ∂(a, ξ)∂(E,P)

∣∣∣∣ ≲γ
|(C,J)|
M2

.

For (4.7), we have

|y|n|∂(n)∂E,Pg
(R,ξ,Λ)
M,a | ≲

∣∣∣ ∂M
∂(E,P)

∣∣∣ |y|n|∂(n)∂Mg
(R,ξ,Λ)
M,a |+ | ∂Λ

∂(E,P) ||y|
n|∂(n)∂Λg

(R,ξ,Λ)
M,a |

+ | ∂a
∂(E,P) ||y|

n|∂(n)∂ag
(R,ξ,Λ)
M,a |+ | ∂R

∂(E,P) ||y|
n|∂(n)∂Rg

(R,ξ,Λ)
M,a |+ | ∂ξ

∂(E,P) ||y|
n|∂(n)∂ξg

(R,ξ,Λ)
M,a |

≲ |y|−1 +M−1M |y|−1 + |(C,J)|
M2 M |y|−2 + |(C,J)|

aM2 aM |y|−2 ≲ |y|−1

and we have a similar bound for k
(R,ξ,Λ)
M,a . The proof of (4.8) is similar. For (4.9), we have

|y|n|∂(n)∂C,Jg
Kerr
Q |

≲ | ∂a
∂(C,J) ||y|

n|∂(n)∂ag
(R,ξ,Λ)
M,a |+ | ∂R

∂(C,J) ||y|
n|∂(n)∂Rg

(R,ξ,Λ)
M,a |+ | ∂ξ

∂(C,J) ||y|
n|∂(n)∂ξg

(R,ξ,Λ)
M,a |

≲ M−1M |y|−2 + (Ma)−1Ma|y|−2 +M−1M |y|−2 ≲ |y|−2

and we have a similar bound for k
(R,ξ,Λ)
M,a . □

5The exact choices of the coordinates Λ and R on SO+(1, 3) and SO(3), respectively, are not too important. For instance,
they may be regarded as local coordinates near given Λ(E,P) and R(Q) obtained by left-translation of normal coordinates near
the identity in SO+(1, 3) and SO(3), respectively.
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