
2 Short paths in Xp,q and SU(2)

2.1 The discrete case: LPS Ramanjuan graphs

2.1.1 Introduction, background and assumptions

The goal of this section will be to discuss techniques due to [CP18] and [Sar19]
for efficiently factoring typical elements of the LPS Ramanujan graphs Xp,q,
under mild assumptions on the relationship between p and q, as well as, in-
dependently, standard number theoretic assumptions. It is worth noting that
[Sar19, Theorem 1.9] argues, via reduction to the subset sum problem and as-
suming Cramér’s conjecture and the generalized Riemann hypothesis, that the
factorization problem for general elements is NP-complete. Nonetheless, it is
heartening that only a vanishing proportion (as q → ∞) fail to admit the
sought-after factorization.

We begin with the following hypothesis, which can be imprecisely stated as
“q is much larger than p.”

Assumption 1. p and q are fixed primes p, q ≡ 1 (mod 4) where
(
p
q

)
= 1 and

the following conditions are satisfied for some fixed constants γ and Cγ as in
Conjecture 6:

p ∈ o(q), q > 22p, q2 > 22pCγ(5 log q)γ .

We assume this henceforth even when not explicitly stated, though it will
not always be necessary; especially for results of [CP18], though, it simplifies
matters greatly, and is often the case in practice.

We now briefly introduce the object of study: the LPS Ramanujan graphs
Xp,q. Because they arise as Cayley graphs of PSL2(Z/qZ), we will interchange-
ably refer to their elements by their group-theoretic properties as matrices and
their graph-theoretic relations as vertices, and the “size” of a (possibly im-
proper) subset or subgroup1 will refer to the number of vertices. (Such a de-
scription can be found in any of [CP18, DSV03, Sar19], and many more. In
particular, [DSV03, Chapter 4] covers the construction in great detail.)

We begin with the integer quaternions H(Z) with Z-basis {1, i, j, k} satisfying
i2 = j2 = k2 = ijk = −1. The quaternion x = a + bi + cj + dk has conjugate
equal to x = a − bi − cj − dk and norm equal to N(x) = a2 + b2 + c2 + d2.
Identify

Σ = {x = a+ bi+ cj + dk ∈ H(Z) : N(x) = p; 2 - a > 0; 2 | b, c, d}
Ω = {x = a+ bi+ cj + dk ∈ H(Z) : ∃e ∈ N, N(x) = pe; 2 - a; 2 | b, c, d}

and it is clear that we may pick 1
2 (p + 1) elements αi of Σ that are inequiva-

lent under conjugation. (Note also that we can view these quaternions as the

matrices x′ =

(
a+ bi c+ di
−c+ di a− bi

)
where detx′ = N(x) and this equivalence of

1Typically not viewed as a subgraph.
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elements is preserved under multiplication.) Say that x � y for x, y ∈ Ω if
there is n ∈ Z with ±pnx = y. Let Ω′ be the (multiplicative) group of Ω’s �-
equivalence classes, denoted by [x] for x ∈ Ω. [LPS88, Corollary 3.2] argues that

Ω′ is a free group generated by Σ′ =
{

[α1], . . . , [α 1
2 (p+1)]

}
, so Ω′’s Cayley graph

with respect to Σ′ is a (p + 1)-regular tree, and so we have almost completed
the construction. Introduce

Ω̂′ = {[a+ bi+ cj + dk] ∈ Ω′ : 2q | b, c, d}C Ω′

and by Assumption 1, we have the map φ as, for x = a+ bi+ cj + dk,

Ω′/Ω̂′ PSL2(Z/qZ)

x

(
a+ bι c+ dι
−c+ dι a− bι

)
/
√
N(x)

∼

taking ι2 ≡ −1 (mod q) and
√
· to denote the modulo-q square root.2 Finally,

Xp,q is the Cayley graph of PSL2(Z/qZ) with respect to φ(Σ′).

Theorem 2 ([LPS88, Lemma 3.1 and Theorems 3.4 and 4.1]). The graphs Xp,q

are (p+ 1)-regular, connected, and Ramanujan, with

#Xp,q =
1

2
(q − 1)q(q + 1).

The proof of this theorem is omitted from this treatment, and we skip right
to results about paths in these graphs.

Theorem 3 ([LPS88, Lemma 3.1]). Take vertex v ∈ Xp,q and a0 + a1i+ a2j +
a3k ∈ [v] where gcd(a0, a1, a2, a3, p) = 1. Let h ∈ N. There is a bijection
between simple paths of the form I2 = v0, v1, . . . , vh = v—that is, paths of length
h—and solutions (x0, x1, x2, x3) ∈ Z4 to

x20 + x21 + x22 + x23 = ph

xi ≡ λai (mod 2q)

for some (possibly many) λ ∈ Z/2qZ.

(Observe that the representative exists by dividing out by p enough times,
by the equivalence relation.) One of the key ideas is that since we can translate
directly between paths in Xp,q and solutions to a particular Diophantine system
by noting that solving the system is equivalent to a lift up to Ω, which admits
efficient factorizations (Theorem 10), and so computing the least h for which
that system has solutions gives the shortest factorization of v in PSL2(Z/qZ).
This factorization is possible by another key result from [LPS88] about the
structure of Ω.

2
√
· is of course only defined when it exists, but it certainly does for powers of p. Also, the

sign of the square root is immaterial as this is quotiented away since the group is projective.
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Theorem 4 ([LPS88, Corollary 3.2]). Any matrix v ∈ Ω has a unique factor-

ization in Σ into v = ±pr
n∏
i=1

vi for vi ∈ Σ and not all entries of v divisible by

pr+1 (i.e. r is the largest it could be).

In particular, det v = pe for some e ∈ N and so logp det v = e = n + 2r, i.e.
n 6 logp det v. (This will be useful shortly.)

Conjecture 5. For all positive integers n, there exists an algorithm in poly log n
to factor n.

Integer factorization is not known to lie in P, but that it might be is not
an uncommonly belief (e.g. [Sar11, Coh]). Therefore, assuming the existence of
some efficient blackbox algorithm is not an unreasonable step.

Conjecture 6 ([Sar19, Conjecture 1.1]). Take any N, a0, a1 ∈ N satisfying
N ≡ a20+a21 (mod 4q) and gcd(N, 4q) = 1. Let r ∈ R+ and define the following:

Q(t0, t1) =
N

4q2
−
(
t0 +

a0
2q

)2

−
(
t1 +

a1
2q

)2

AQ,r =
{

(t0, t1) ∈ Z2 : Q(t0, t1) ∈ Z>0, t
2
0 + t21 < r2

}
.

There exist absolute constants γ,Cγ > 0 such that for any Q, r where #AQ,r >
Cγ(logN)γ , then there exists (t0, t1) ∈ AQ,r for which Q(t0, t1) is the sum of
two squares.

Roughly speaking, this Cramér-type conjecture posits that given enough
nearby lattice points in the plane, the quadratic form Q will take on enough
different integral values such that one is the sum of two squares.

Because Conjecture 5 and Conjecture 6 will so often be used in conjunction,
we consider the following:

Assumption 7 ([Sar19, (∗)]). Conjecture 5 and Conjecture 6 both hold.

Finally, it will be essential for the course of the algorithms to be able to
write numbers as the sum of two squares. Towards this, we introduce a method
whose proof we omit for sake of space that enables us to solve this problem
efficiently for the case of a prime.

Theorem 8 ([Sch85, §4]). Consider a prime p ≡ 1 (mod 4). There is a
O(log6 p) algorithm to compute a square root of −1 modulo p.

Now, we have an efficient way to tackle the problem we set out to solve:

Corollary 9. Consider a prime p ≡ 1 (mod 4). The Diophantine equation

x2 + y2 = p

can be solved over Z in O(log6 p) time.

Proof outline. Let m ∈
[
2, 12 (p− 1)

]
be a quadratic residue of −1, computable

using Theorem 8. The idea is to use the well-known fact that Z[i] has a Euclidean
algorithm, and then the standard technique of finding gcd(p,m+ i) (doable in
O(log p) time since |m+ i| = m2 + 1 < p2) whose real and imaginary parts are
x and y (order does not matter). �

3



2.1.2 Factoring in Ω

Theorem 10 ([CP18, Lemma 2]). Taking Assumption 1, any vertex v ∈ Ω can
be factored in Σ in time O(p logp det v).

Note that this algorithm involves precomputing all of Σ, which can trivially
be done in time Θ(p4) by simply trying all 4-tuples.

Proof. As in Theorem 4, express v as its (unknown) factorization ±pr
n∏
i=1

vi.

We proceed by induction on n. When n = 1, we readily compute r and the
sign and so v = ±prv1; v1 is trivially recognizable (e.g. in time Θ(p), by a
linear search) as one of the p + 1 elements of Σ. Now, suppose when v has n
Σ-factors that the factorization is obtainable in time Θ(pn) ⊂ O(n logp det v).

Suppose v′ has n+ 1 6 logp det v′ Σ-factors. Write v′ = ±pr′
n+1∏
i=1

v′i. There is a

unique matrix v′′ ∈ Σ for which v′n+1v
′′ = pI2, namely, v′′ = v′n+1. Since r′ is

easily computable, we simply consider
(

v′

±pr

)
w =

(
n+1∏
i=1

v′i

)
w with w ranging

over all of Σ, halting when p divides all of

(
n+1∏
i=1

v′i

)
w’s entries. Then we know

that w = v′n+1 and so we write v′n+1 = w and do the same consideration on

1
p

(
n+1∏
i=1

v′i

)
w =

n∏
i=1

v′i which by the induction hypothesis is factorable in the

stated time. Since this search took only Θ(p) time, we are done. �

2.1.3 Factorization of diagonal elements

The main result of this section is that a path of the shortest possible length can
be found between almost all pairs of diagonal vertices, and all diagonal vertices
have short factorizations. Stated precisely, we have two theorems of [Sar19].

Introduce the notation

h0 =
⌈
3 logp q + γ logp(5 log q) + logp Cγ + logp 22

⌉
.

Theorem 11 ([Sar19, Theorem 1.3]). Take Assumption 7. There exists a set

S ⊂ Xp,q of diagonal vertices such that #S 6 22πq4

ph0−1 and there exists an al-

gorithm that, given any diagonal vertex v ∈ Xp,q r S, returns a shortest path
between v and the identity, in particular, one of length at most h0.

Observe that this theorem extends immediately to finding shortest paths
between diagonal vertices v1, v2 ∈ Xp,q by finding a shortest path from the
identity to v = v−11 v2 and then translating each vertex in the path by v1.

Theorem 12 ([Sar19, Theorem 1.3]). Take Assumption 7. Pick any diagonal
vertex v ∈ Xp,q. There is a lower bound q′ such that if q > q′, the shortest path
between v and the identity is of length at most⌈

4

3
logp #Xp,q + logp 56

⌉
.
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Taken together, these theorems assert that all diagonal vertices have short
factorizations, and almost all (in particular, asymptotically in q) have very short
factorizations that can be found with an efficient (polynomial-time) algorithm.

The structure of this section will be to build up auxiliary results towards
proving these two theorems. The outline is as follows.

We start by introducing a binary integral quadratic form F that takes on
the same values on Z as Q from Conjecture 6 does on an index-q sublattice.
Using two results about the structure of the sign of F ’s image (Lemmas 16 and
18), we show that Algorithm 1 can efficiently find the special pair (t0, t1) ∈ AQ,r
guaranteed to exist by Conjecture 6, hence solving Problem 19 efficiently. Then,
having found a long path (one of length h0), shorter ones are found by changing
h in the Diophantine system, and a solution to that system corresponds to a lift
to Ω which is then factorable, by Theorem 10.

This approach is rather similar in spirit to Lenstra’s algorithm [Len83] for
finding lattice points in convex subsets of a fixed-dimensional real space. The
analogy primarily extends until the step of accepting a candidate lattice point,
where [Len83] has an unconditional means of accepting such a point in an effi-
cient time while [Sar19] rests on Assumption 7.

It is worth noting that a similar result for diagonal matrices is proved in
[CP18, Lemma 6]. They take similar steps, by also passing to a lattice in order
to lift up to Ω, and searching for a value of a quadratic form to take on a
sum of two squares. It is heuristically justified why this approach terminates in
poly log q time, but it is still highly conditional.

We first introduce some notation in the context of fixed a0, a1, N ∈ Z sat-
isfying a20 + a21 ≡ N (mod 4q) with N coprime to 2 and q. Since clearly we
cannot have q | a0, a1, without loss of generality let q - a0. By an appropriate
transformation from (x0, x1, x2, x3) to

x0 = 2qt0 + a0 x2 = 2qt2

x1 = 2qt1 + a1 x3 = 2qt3,

we will seek (t0, t1, t2, t3) satisfying

N

4q2
−
(
t0 +

a0
2q

)2

−
(
t1 +

a0
2q

)2

= t22 + t23;

recall Conjecture 6. Let k =
N−a20−a

2
1

4q . Because both sides are integers, we must

have a0t0 + a1t1 ≡ k (mod q), so let L ⊆ Z2 be the set of such integral pairs
(t0, t1), and let u0 be L’s shortest vector. Let integer c ∈

(
− 1

2 (q − 1), 12 (q − 1)
]

be the unique value satisfying c ≡ ka−10 (mod q), so L = (c, 0) + L′ where
L′ = {(t0, t1) ∈ Z : a0t0 + a1t1 ≡ 0 (mod q)} is a lattice with basis vectors
v1 = (q, 0) and v2 = (−a−10 a1, 1). Apply Gauss reduction on L′ to obtain
ordered basis u1, u2.

Lemma 13. |u0| < |u2|.
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Proof. Write (c, 0) in span 1
qZ
{u1, u2} as

(c, 0) =

(
h1 +

r1
q

)
u1 +

(
h2 +

r2
q

)
u2

(with h1, r1, h2, r2 ∈ Z and 0 6 r1, r2 < q) and since u0 = (c, 0)+`′ for some `′ ∈
L′ is a shortest vector of L, u0 ∈

{(
r1
q + i

)
u1 +

(
r2
q + j

)
u2 : i, j ∈ {−1, 0}

}
hence u0 = h′1u1 + h′2u2 for h′1, h

′
2 ∈ 1

qZ with |h′1| , |h′2| < 1
2 in order to ensure

that the vector is shortest (and strict inequality following from q’s oddness).
The claim follows. �

Now, write the three vectors in terms of their components: u0 = (u0,0, u0,1), u1 =
(u1,0, u1,1), u2 = (u2,0, u2,1). Because u0 ∈ L and u1, u2 ∈ L′, we have the fol-
lowing integers:

u′0 =
k − a0u0,0 − a1u0,1

q
u′1 =

a0u1,0 + a1u1,1
q

u′2 =
a0u2,0 + a1u2,1

q
.

These allow us to rewriteQ(t0, t1) by parameterizing L = (c, 0)+L′ =
{
u0 + u1x+ u2y : (x, y) ∈ Z2

}
in that way:

F (x, y) = (u′0 − xu′1 − yu′2)− (u0,1 + xu1,1 + yu2,1)
2 − (u0,2 + xu1,2 + yu2,2)

2
.

By the preceding definitions of (integral) variable, (t0, t1) has the form u0 +
u1x+u2y if and only if Q(t0, t1) ∈ Z. Now, we are prepared to characterize F ’s
positive domain.

Lemma 14 ([Sar19, Lemma 3.1]). When |(t0, t1)| <
√
N

2q − 1, Q(t0, t1) > 0.

Proof. In this case, |t0| , |t1| <
√
N

2q − 1 too, and so, recalling that |a0| , |a1| < q,

Q(t0, t1) =
N

4q2
− a20 + a21

4q2
−
(
t20 + t21

)
− a0t0 + a1t1

q

>
N

4q2
− 1

2
−

(
N

4q2
−
√
N

q
+ 1

)
−

(√
N

q
− 2

)

=
1

2
,

so the result is proved. �

Lemma 15 ([Sar19, Lemma 3.1]). When |(t0, t1)| >
√
N

2q +
√

2, Q(t0, t1) < 0.

Proof. In this case, |t0|+|t1| 6
√

2
(√

N
2q +

√
2
)

, and so, recalling that |a0| , |a1| <
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q,

Q(t0, t1) =
N

4q2
− a20 + a21

4q2
−
(
t20 + t21

)
− a0t0 + a1t1

q

<
N

4q2
−

(
N

4q2
+
√

2

√
N

q
+ 2

)
−
√

2

(√
N

2q
+
√

2

)

= −3
√

2N

2q
,

so the result is proved. �

Lemma 16 ([Sar19, Lemma 3.1]). If
√
N

q|u2| >
2
3

√
2 + 4, then F (x, y) > 0 when-

ever3

|x| 6
√
N

2q |u1|
− 1 and |y| 6

√
N

2q |u2|
− 1

and F (x, y) < 0 whenever4

|x| > 10
√
N

2q |u1|
− 10 or |y| > 10

√
N

2q |u2|
− 10.

Proof. Fix an identification of (t0, t1) = u0 + u1x+ u2y.
We have |(t0, t1)| 6 |u0| + |u1| |x| + |u2| |y| < |u1| |x| + |u2| (1 + |y|) and by

computation, when |x| 6
√
N

2q|u1| − 1 and |y| 6
√
N

2q|u2| − 1, we achieve the bound

necessary to apply Lemma 14, thereby finishing the first part of the Lemma.
We also have

|(t0, t1)| = |u0 + u1x+ u2y| > |u1x+ u2y| − |u0| >
1

2
(|u1| |x|+ |u2| |y|)− |u2|

(17)
using almost-orthogonality and |u0| < |u2|. There are now two cases to complete
for the second part of the Lemma:

• Case I: |x| > 5
√
N

q|u1| − 10. Since y ∈ Z, 1
2 |y| − 1 > −1. Using these

bounds, we have |(t0, t1)| > 5
√
N

2q − 5 |u1| − 1 =
√
N
q +

(
3
√
N

2q|u1| − 5
)
|u1|.

Now, |u2| > |u1| > 1 so we see that we can apply Lemma 15 to conclude
this case of the Lemma’s second part.

• Case II: |y| > 5
√
N

q|u2| − 10. Since x ∈ Z, 1
2 |y| > 0. Using these bounds,

we have |(t0, t1)| > 5
√
N

2q − 6 |u2| =
√
N
q +

(
3
√
N

2q|u2| − 6
)
|u2|. Now, |u2| > 1

so we see that we can apply Lemma 15 to conclude the Lemma’s second
part.

3For convenience, we refer to these bounds as A and B, respectively, and the set of such
(x, y) as C.

4It follows that such (x, y) lie in (10C)c.
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Therefore we are done. �

Lemma 18 ([Sar19, Lemma 3.2]). If
√
N

q|u2| <
2
3

√
2 + 4 and F (x, y) > 0, then

|y| 6 9.

Proof. From (17) and (the contrapositive of) Lemma 15,(
1

2
|y| − 1

)
|u2| 6 |(t0, t1)| 6

√
N

2q
+
√

2

and so we conclude, since |u2| > 1 hence 1
|u2| 6 1,

|y| 6
√
N

q |u2|
+ 2

(√
2 + 1

)
≈ 9.77

thereby showing the desired bound. �

Problem 19. Take N ∈ poly q coprime to 2 and q, and let a0, a1 ∈ Z be given
values with a20 + a21 ≡ N (mod 4q). Find (x0, x1, x2, x3) ∈ Z4 with

x20 + x21 + x22 + x23 = N (20)

and, modulo 2q,

x0 ≡ a0 x2 ≡ 0

x1 ≡ a1 x3 ≡ 0.

Theorem 21 ([Sar19, Theorem 1.11]). Take Assumption 7. The (deterministic)
algorithm specified in Algorithm 1 solves Problem 19, if a solution exists, in
poly log q time.

It warrants clarifying here some of the notation in some lines of Algorithm
1.

3–4, 15–16: The factorization of F (x, y) is given in terms of some primes pi 6≡ 3

(mod 4) and qj ≡ 3 (mod 4) for which F (x, y) =
n∏
i=1

peii
m∏
j=1

q
fj
j .

7, 19: This line simply runs and returns Theorem 9 on the prime pi 6≡ 3 (mod 4),
writing it as x2i + y2i = pi.

8, 20: It is an elementary fact that the product of sums of two squares is again a
sum of two squares: (x20 +x21)(y20 + y21) = (x0y0 +x1y1)2 + (x0y1−x1y0)2.
Since all primes pi 6≡ 3 (mod 4) can be so decomposed e.g. via Theorem
9, finite products of such primes also have such decompositions. In par-
ticular, given a finite list of tuples (x0, x1), (y0, y1), (z0, z1), . . . , we define
Combine({(x0, x1), (y0, y1)}) = (x0y0 + x1y1, x0y1 − x1y0) and for longer
lists, Combine({(x0, x1), (y0, y1), (z0, z1), . . . }) = Combine({(x0y0+x1y1, x0y1−
x1y0), (z0, z1), . . . }), i.e. a call of Combine on a shorter input.
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Algorithm 1 Algorithm to solve Problem 19.

Require: p, q,N, a0, a1, u1, u2, F

1: if
√
N

q|u2| >
2
3

√
2 + 4 then

2: for (x, y) ∈ 10C do
3: `← Factor(F (x, y))
4: `← {(pi, ei) : i ∈ [n]} ∪ {(qj , fj) : j ∈ [m]}
5: if 2 | fj for all j ∈ [m] then
6: for (pi, ei) ∈ ` do
7: (xi, yi)← Schoof(pi)

8: (X,Y ) ← Combine({(xi,j , yi,j) : i ∈ [n], j ∈ [ei], (xi,j , yi,j) =
(xi, yi)})

9: return
m∏
i=1

q
fj/2
j (X,Y )

10: else
11: for y ∈ [−9, 9] ∩ Z do
12: G(x)← F (x, y)
13: G(x)← A′x2 +B′x+ C ′

14: for x ∈
[
−B′−

√
B′2−4A′C′
2A′ , −B

′+
√
B′2−4A′C′
2A′

]
∩ Z do

15: `← Factor(F (x, y))
16: `← {(pi, ei) : i ∈ [n]} ∪ {(qj , fj) : j ∈ [m]}
17: if 2 | fj for all j ∈ [m] then
18: for (pi, ei) ∈ ` do
19: (xi, yi)← Schoof(pi)

20: (X,Y ) ← Combine({(xi,j , yi,j) : i ∈ [n], j ∈ [ei], (xi,j , yi,j) =
(xi, yi)})

21: return
m∏
i=1

q
fj/2
j (X,Y )
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Proof. Case I:
√
N

q|u2| >
2
3

√
2 + 4 (lines 1–9). If 4AB > Cγ(logN)γ then it

suffices to simply search radially outward from the origin (0, 0), and Conjecture
6 ensures that in time Cγ(logN)γ ∈ poly log q a satisfactory lattice point will
be found. By Conjecture 5, lines 3–4 run in polynomial time. Theorem 9 is
well-known to be in poly log pi as it has the same runtime as the Euclidean
algorithm. The other steps are trivially efficient.

If 4AB 6 Cγ(logN)γ then as N ∈ poly q, we have 400AB ∈ poly log q)
(where 400AB ≈ #(10C)). Therefore it is a simple task of running through
10C (which we want to do since AQ,r ⊂ 10C for all r >

√
A2 +B2). By

Conjecture 5, lines 3–4 run in polynomial time. Theorem 9 is well-known to be
in poly log pi as it has the same runtime as the Euclidean algorithm. The other
steps are trivially efficient.

Case II:
√
N

q|u2| <
2
3

√
2+4 (lines 10–21). By writing F (x, y) as a polynomial

G in just x for fixed y ∈ [−9, 9], we see that by construction, G’s leading
coefficient is negative, so there are only finitely many integer values that x can
take for which G(x) > 0; these are given in line 14. Again using Conjecture 6
in the case that there are more than Cγ(logN)γ pairs (x, y) thusly obtained,
we run through these points, where lines 15–16 run in polynomial time and
Theorem 9 is well-known to be in poly log pi as it has the same runtime as the
Euclidean algorithm. The other steps are trivially efficient. �

Take v ∈ Xp,q of the form v =

(
a+ bι

a− bι

)
. v’s lattice in Z2 is

Lv =
{

(x, y) ∈ Z2 : ax+ by ≡ 0 (mod q)
}
.

Theorem 22 ([Sar19, Theorem 1.13]). Take Assumption 7. Let v =

(
a+ bι

a− bι

)
∈

Xp,q be any diagonal matrix with lattice Lv having Gauss reduced basis {u1, u2},
u1 being a shortest vector of Lv. Then, the shortest path from the identity to v
is of length h, where

h <

{⌈
4 logp q − 2 logp |u1|+ logp 22

⌉ |u2|
|u1| > Cγ(5 log q)γ⌈

3 logp q + γ logp(5 log q) + logp Cγ + logp 22
⌉

otherwise.

For both cases, the approach to this proof will be the same. First, we
will quickly argue why we want to solve the particular class of Diophantine
equations. Then, we establish that a path exists of length up to some upper
bound (specifically, the bound given in the Theorem statement). Finally, we
will verify that all paths lengths, in increasing order, can be checked efficiently.

Proof. We seek to find paths of length h by first translating the task to one
of Diophantine equations (accomplished in Theorem 3), and then to efficiently
solving said Diophantine equations (accomplished in Theorem 21).

10



Let p̂ ∈ Z satisfy p̂2 ≡ p (mod q). (p̂ exists by Assumption 1.) Fix h0 as on
the right-hand side of the h-bound in the Theorem statement. Letting

x0 = 2qt0 + ap̂h0 x2 = 2qt2

x1 = 2qt1 + bp̂h0 x3 = 2qt3,

Theorem 3 tells us that there is a path of length h0 from the identity to v if and
only if there is (t0, t1, t2, t3) ∈ Z4 satisfying

x20 + x21 + x22 + x23 = ph0 .

We solve this using Algorithm 1 (recall the notation from there) and as noted in
the proof of Theorem 21, if 4AB > Cγ(log q5)γ > Cγ(log ph0)γ then a solution
is guaranteed to exist, by Conjecture 6, and is found efficiently, by Theorem 10,
and projected back down by φ.

Case I: |u2|
|u1| > Cγ(5 log q)γ. We observe that

ph0 >
22q4

|u1|2

and so

B =

√
ph

4q |u2|
− 1 >

√
22q2

2q |u1| |u2|
− 1.

By almost-orthogonality we have |u1| |u2| 6 2√
3
q and so we verify that B >

√
3·22
4 −1 > 1. From the definitions of A and B and the fact that |u2| > |u1|, we

have A > |u2|
|u1|B > Cγ(5 log q)γB, hence 4AB > 4Cγ(5 log q)γB2 > Cγ(5 log q)γ .

This shows existence of the path of length h0, thereby bounding from above the
length of the shortest path.

To show that the shortest path can be found in polynomial time, increment
h from 1 to h0, and halt once the following system has a solution: letting

x0 = 2qt0 + ap̂h x2 = 2qt2

x1 = 2qt1 + bp̂h x3 = 2qt3,

find (t0, t1, t2, t3) ∈ Z4 satisfying

x20 + x21 + x22 + x23 = ph.

If this system has a solution but no smaller h suffices then by Theorem 3
there will be a path of length h and none shorter.

Case II: |u2|
|u1| < Cγ(5 log q)γ. We repeat much of the logic from Case I. We

observe that
ph0 > 22Cγ(5 log q)γq3.

11



The hypothesis also implies that |u2|2 < Cγ(5 log q)γ |u1| |u2| 6 Cγ(5 log q)γ 2√
3
q

and combining these gives

B =

√
ph0

2q |u2|
− 1 >

√
22
√
Cγ(5 log q)γq3/2

2q
√
Cγ(5 log q)γ

√
2√
3
q
− 1

=

√
22

2
√

2√
3

− 1

> 1

and since A > B > 1, we have A > 1
2 (A+1) =

√
ph0

4q|u1| and B > 1
2 (B+1) =

√
ph0

4q|u2| ,

therefore

4AB > (A+ 1)(B + 1) >
ph0

16q2 |u1| |u2|
>

22
√

3

32
Cγ(5 log q)γ > Cγ(log ph0)γ .

This shows existence of the path of length h0, thereby bounding from above the
length of the shortest path.

To show that the shortest path can be found in polynomial time, increment
h from 1 to h0, and halt once the following system has a solution: letting

x0 = 2qt0 + ap̂h x2 = 2qt2

x1 = 2qt1 + bp̂h x3 = 2qt3,

find (t0, t1, t2, t3) ∈ Z4 satisfying

x20 + x21 + x22 + x23 = ph.

If this system has a solution but no smaller h suffices then by Theorem 3
there will be a path of length h and none shorter. �

Proof of Theorem 11. Suppose that vertex v =

(
a+ bι

a− bι

)
∈ Xp,q is

of distance h from the identity, and that h > h0. By Theorem 22, h 6⌈
4 logp q − 2 logp |u1|+ logp 22

⌉
and exponentiating and rearranging reveals

|u1|2 6
22q4

ph−1
. (23)

The question then is how many such v there can be. The lattice Lv is determined
by its shortest vector, since if (α, β) is a shortest vector then considering vectors
(αλ, βλ) mod q for various λ ∈ Z gives rise to a vector outside of spanZ 〈(α, β)〉.
Further, v, as a member of a projective group, is uniquely determined by Lv
by deducing all possible values of (a, b) and noting that they must all differ by
some multiplicative constant λ ∈ F×q . Hence, u1 determines v. Since there are

at most 22πq4

ph−1 ∈ O(q) integer vectors u1 satisfying (23), these are at most that
many v at distance h > h0. �
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Proof of Theorem 12. Case I: |u2|
|u1| > Cγ(5 log q)γ. As a shortest vector of a

sublattice of Z2, |u1| > 1, so −2 logp |u1| 6 0 and vanishes when we upper-

bound the quantity. Then, note that q3 = 2#Xp,q

1− 1
q2

, so 4 logp q = 4
3 logp #Xp,q −

4
3 logp

(
1− 1

q2

)
+ 4

3 logp 2. There is a lower bound q1 = 20 for which when

q > q1, 22

(
2

1− 1
q2

)4/3

6 56, as 22 · 24/3 ≈ 55.4.5 Therefore, we find that the

first bound on h from Theorem 22 becomes
⌈
4
3 logp #Xp,q + logp 56

⌉
.

Case II: |u2|
|u1| < Cγ(5 log q)γ. Observe that there is a lower bound q2 for

which when q > q2, Cγ(5 log q)γ 6 q, hence the second bound on h from
Theorem 22 becomes

⌈
4 logp q + logp 22

⌉
6
⌈
4
3 logp #Xp,q + logp 56

⌉
when also

q > q1.
Therefore, in both cases, we have the claimed bound when q > max{q1, q2}.

�

This completes the proof of Theorems 11 and 12. We now move onto how
we can leverage this factorization only twice (in contrast with [Sar19], which
uses it four times) to factor general elements.

2.1.4 Factorization of general elements

We shall prove the following result:

Theorem 24 ([CP18, Lemma 7]). Taking Conjecture 5, any vertex v ∈ Xp,q

can be written in the form v = X1φ(v2)X3 where X1, X3 ∈ Xp,q are diagonal
and v2 ∈ Ω in poly log q time.

From this, it is immediate to efficiently obtain a factorization of nearly all
elements of length up to (7+o(1)) logp q by applying the algorithms of Theorems
10 and 11. For completeness’ sake, we write this out:

Theorem 25 ([CP18, Lemma 8]). Taking Conjecture 5, asymptotically-all ver-
tices x ∈ Xp,q can be efficiently written as the product of up to (7 + o(1)) logp q
elements of S.

Proof of Theorem 24. First, we note the decomposition of generic elements into
diagonal matrices; in a sense, for any ring R, R2×2 is a two-dimensional mod-

ule over its subring of diagonal matrices spanned by I2 =

(
1

1

)
and J =(

1
−1

)
, via the (trivially) unique representation

M =

(
a b
c d

)
=

(
a

d

)
I2 +

(
b
−c

)
J,

556 is not special beyond being the “smallest nice number” on the interval
(
22 · 24/3,∞

)
.
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so in a sense, we can take M ’s I2- and J-“components.”6 Therefore, decompose
v = D+EJ . We seek diagonal X1, X3 ∈ Xp,q and nondiagonal v2 = X2+Y2J ∈
Ω satisfying v = X1φ(v2)X3, or, for some e ∈ N,

D + EJ = X1φ(X2 + Y2J)X3

=⇒ D = X1φ(X2)X3 (26)

=⇒ E = X1φ(Y2)X3 (27)

det v2 = pe = detX2 + detY2 (28)

with the last line coming from the definition of Ω. From (26) and (27), we
conclude

detX2 ≡ pe
detD

det v
(mod q)

detY2 ≡ pe
detE

det v
(mod q)

and so having chosen some e ∈ N, we attempt to find 1 6 d 6 pe such that
both d and pe−d can be efficiently represented as the sum of two squares. This

is desirable because both X2 and Y2 take the form M =

(
a+ bi

a− bi

)
and

so detM = a2 + b2, which can be found using Theorem 9; if d = detX2 then
by (28), detY2 = pe − d. We do this by searching that interval for such d in
an arithmetic progression of difference q such that d ≡ pe detDdet v (mod q), and
as in Algorithm 1 we factor d and pe − d in each iteration (using our blackbox
factoring algorithm, Conjecture 5) to find the representation. If no such d exists,
we increment e. Having found such an e and hence fixing X2, Y2, and hence v2,
we now move on to finding X1 and X3.

Write

K1 = Dφ(Y2)E−1φ(X2)
−1

K3 = Eφ(X2)D−1φ(Y2)−1.

Clearly X1K1 = X1 and X3K3 = X3 by manipulating (26) and (27). We solve
this now for XK = X, as identical reasoning suffices for both equations. If

K = I2 then just pick X = I2. Otherwise, write K =

(
w0 + x0ι

w0 − x0ι

)
and we wish to find X =

(
w + xι

w − xι

)
. Solving the system of two variables

in two equations gives w = x0 and x0 = w0 − 1. (Clearly this is degenerate if
and only if K = I2, which is why we treat that separate case.) This completes
the decomposition.

6J also enjoys the following nice properties, which are trivial to check:

• If M decomposes into M1 + M2J then detM = detM1 + detM2.

• JM = MJ .

14



The näıve approach specified above for searching the intervals [pe] is suffi-
ciently fast when the number of terms considered (which comprise the set Ie),

about pe

q , is small, but in the case that pe

q ∈ ω (log q) this routine becomes su-
perlinear and possibly even exponential. We seek some assurance then that the
algorithm typically halts for e ∈ O (log q). We primarily rest on a belief, in the
style of Cramér’s conjecture and Conjecture 6, that sums of squares are dense
in N. Seeking to analogize Conjecture 6 in particular, we note that the opera-
tive aspect is that a dense cluster of lattice points will represent a sum of two
squares, and that a point accomplishing this will be found quickly even through
a linear search. We see that for small sets of values of e, e.g. [n] for n ∈ O (log q),
we get a similarly dense subset of N2 by looking at De = {(i, pe − i) : i ∈ Ie}
and

n⋃
k=1

Dk ⊂ N2. �

2.1.5 Changes made to values in [Sar19]

Here lists how each result in this summary can be modified to agree exactly
with the statements in [Sar19]. These are primarily cosmetic alterations, made
to fit the specifics here, and do not alter the thrust of the arguments in any way.

• Assumption 1 has the added inequalities simply to make it additionally
evident why the bounds later proved will hold.

• [Sar19]’s definition of h0 has · · ·+ γ logp log q + · · · .

• Theorem 11 is stated in terms of a parameter α whose use does not arise
in our setting.

• In Theorems 11, 12, and 22, [Sar19] has 89 instead of 22π, 56, and 22,
respectively.

• In Lemma 14, [Sar19] has
√
N
q − 1. In Lemma 15, [Sar19] has

√
N
q + 1.

• In Lemma 16, [Sar19] has 14
3 = 4.6̄ rather than the value given, 2

3

√
2+4 ≈

4.94.

• In Lemma 18, [Sar19] has 13 rather than 9.

• In Theorem 22, [Sar19] has Cγ(log 2q)γ as the cutoff for |u2|
|u1| .
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