
Gaussian Divisible Ensemble and Reduction to Main Theorem

1 Previous bound on mN .

Idea: prove universality through Dyson Brownian motion. Compare empirical Green’s function mN (z)
with limiting Kesten McKay law, md(z). This is done through Dyson brownian motion, which has three
steps.

1. Optimal spectral rigidity: For any ϵ > 0, it is the case that for z = E + iη with |E| ⩽ 2.01 and,
setting κ = ||E| − 2|, Nη

√
κ+ η ⩾ N ϵ,

|mN −md| ⩽ NoN (1)

{
1

Nη |E| ⩽ 2
1√
κ+η

( 1
N

√
η + 1

(Nη)2 ) |E| > 2.
(1.1)

This is proven in the first paper.

2. Universality after adding a Gaussian component. [Landon-Yau ’17] For any ϵ > 0 and a GOE
matrix X, λ2(H +

√
tX) has a Tracy-Widom distribution for t ⩾ N−1/3+ϵ.

3. Preservation of statistics after adding Gaussian component. λ2(H) and λ2(H +
√
tX) have the

same distribution. This is the main result of the new paper..

The goal for today is to show how if we satisfy a given equation, this implies step 3. The way that we do
this is through a sharper version of the proof of step 1, so let’s recall how this is shown. We define

Q(z,G) =
∑
i∼j

G
(j)
jj .

We want to show that Q satisfies the self-consistent equation satisfied by msc, so for ℓ = ϵ logd−1 N , we
take Tℓ = Bℓ(o, T ), for T the infinite (d− 1) rooted tree with root o. Then we set

Yℓ(z,∆) = (−zI +HTℓ
−∆Π∂Tℓ

)−1
oo .

We can define Xℓ(Q) to be the equivalent structure with the d-regular tree rather than the (d − 1)-ary
tree. Note that msc(z) = Yℓ(z,msc(z)), md(z) = Xℓ(z,msc(z)). In the previous paper, the main result
was our empirical statistics also satisfy these equations up to small error.

Proposition 1.1 (Theorem 3.3 simplified). For p ⩾ 1, z ∈ D, |E| ⩽ 2,

E[1(G ∈ Ω)|Q− Y (Q)|p],E[1(G ∈ Ω)|mN −X(Q)|p] = NoN (1)

(√
κ+ η

Nη

)p

.

There is a similar expression for |E| ⩾ 2, but for pedigogy I will stick to this case. We will now show
how this gives (1.1).

For sufficiently large p, by Markov’s inequality,

|Q− Y (Q)|, |mN −X(Q)| ≲ NoN (1)

√
κ+ η

Nη
.
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We now need to convert this into a statement about the Green’s function. We have

Q− Y (Q) = Q−msc +msc − Y (Q)

= (1− Y ′(msc))(Q−msc)−
Y ′′(msc)

2
(Q−msc)

2 +O(|Q−msc|3).

This is a quadratic equation in Q−msc, through which we obtain that

Q−msc = O(
Q− Y (Q)

1− Y ′(msc)
).

For this, we can find Y ′(msc) = m2ℓ+2
sc . Moreover, from the textbook we know that |1−m2

sc(z)| ≍
√
κ+ η,

meaning

Q−msc = O(
NoN (1)

Nη
).

We then use a similar expansion as before, writing

mN −md = mN −X(Q) +X(Q)−md = O(
NoN (1)

Nη
)−X ′(msc)(Q−msc) +O(|Q−msc|2).

Thus, as X ′(msc) = d
d−1m

2
dm

2ℓ
sc, and reducing the imaginary parts to their desired forms, we find

(1.1).

2 Gaussian Divisible Ensemble

We want to do something similar, so we need to consider all matrices formed during Dyson Brownian
motion, this is known as the Gaussian divisible ensemble. We will consider X ∼ GOE(N), and Z =
(I − 1

N 11T )X(I − 1
N 11T ). We then set

Ht = H0 +
√
tZ. (Gaussian Divisible Ensemble) (2.1)

Our goal is to compare the spectral statistics at time 0 with those at time t = N−1/3+ϵ. To this end,
we consider the change in the spectral edge as time develops. However, this is well studied, and we use
the following lemma. For measure µ, we consider the free-convoluted measure µt := µ⊞ t−1/2µsc(t

−1/2·),
where µsc is the semicircle measure. It is known how these statistics develop.

Lemma 2.1 (Biane ’97). Define Ut := {z ∈ C+ :
∫

1
|x−z|2 dµ(x) < t−1}. Then z− tsµ(z) is a homeomor-

phism from U t to C+ ∪ R that is conformal on the interior. Moreover, for z ∈ Ut,

sµ(z) = sµt
(z − tsµ(z)).

A consequence of this lemma is that the right edge at time t is determined by ξt, the largest real z
such that ∫

1

|x− z|2
dµ(x) = t−1.

Specifically, for A := d(d−1)
(d−2)2 , ξt = 2 + A2t2

4 +O(t3), and

Et = ξt − tmd(ξt) = 2 +
d− 1

d+ 2
t− A2

4
t2 +O(t3).

We will therefore find a self-consistent equation for mt(z), which is the empirical Green’s function at
time t, and md(z, t), which is the Stieltjes transform of µt. Then

Qt :=
1

Nd

∑
i∼j

G
(i)
jj (z, t), Yt(z) = Yℓ(Qt(z), z + tmt(z)),
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so in Yt, we are converting the overall matrix back to time 0.

Given this, we satisfy a new equation, that is more accurate than the previous one. This is the main
theorem of the new work.

3 Main results

Proposition 3.1 (Theorem 3.8). For sufficiently small δ > 0, define M = {w : N−2/3−δ ⩽ Im[w] ⩽
N−2/3+δ, and −N−2/3+δ ⩽ Im[w] ⩽ N−2/3+δ}. We have, for any 0 ⩽ t ⩽ N2/3+ϵ, p ⩾ 0, and z = Et+w
and for 1 ⩽ j ⩽ p− 1 zj = Et + wj for w ∈ M

A2

ℓ+ 1
E

1(G ∈ Ω)(Qt(z)− Yt(z))

p−1∏
j=1

(mt(zj)−md(zj , t))

+ E

1(G ∈ Ω)
∂zmt(z)

N

p−1∏
j=1

(mt(zj)−md(zj , t))


+

2

N2

∑
j∈[p−1]

E

1(G ∈ Ω)∂zj

(
mt(z)−mt(zj)

z − zj

)∏
i ̸=j

(mt(zi)−md(zi, t))

 = O

(
N (p+1)(2δ−1/3)

(d− 1)ℓ/2

)
.

A similar statement is true if we replace (mt(z)−md(z, t)) with Qt − Yt. Note that the error here is
smaller than 1/(Nη), meaning it is sufficiently small to think about the distribution.

This level of tightness is sufficient for step 3 of DBM.

Proposition 3.2 (Proposition 3.13). For any p ⩾ 1, z = Et + w for w ∈ M ,

∂tE

1(G ∈ Ω)

p∏
j=1

N1/3(mt(zj)−md(zj , t))

 ≲
N2(p+2)δN1/3

(d− 1)ℓ/2
.

Thus, if ℓ ≫ 2(p+ 3)δ logd−1 N ,

E

1(G ∈ Ω)

p∏
j=1

N1/3(mt(zj)−md(zj , t))

 ∣∣∣∣N−1/3+δ

t=0

= O((d− 1)−ℓ/4).

The rest of the talk is dedicated towards showing that Proposition 3.1 implies Proposition 3.2. The
first step to this proof is to consider the change in Stieltjes transforms visa vi Dyson Brownian motion.
We have Dyson’s original equation

dλi =

√
2

N
dBi(t) +

1

N

∑
j ̸=i

1

λj − λi
.

Therefore, by Itô’s lemma,

dmt(z) = −
√

2

N3

∑
i

dBi(t)

(λi − z)2
+

1

2
∂z(m

2
t (z) +

∂zmt(z)

N
)dt.

We can create a similar equation for md(z, t), which is simpler as it is deterministic.

dm(z, t) =
1

2
∂z(m

2
t (z))dt.

Taking the difference immediately gives a function d(mt(z) −md(z, t), however we will slightly alter
this by making z a function of t as well, writing it as z = Et + w, for w fixed. Using the fact that
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∂tEt = −md(Et, t), we can write

d(mt(z)−md(z, t)) = −
√

2

N3

∑
i

dBi(t)

(λi − z)2
+

1

2
∂z(Ft(z))dt (3.1)

for

Ft(z) := (mt(z)−md(z, t))
2 + 2(md(z, t)−md(Et, t))(mt(z)−md(z, t)) +

∂zmt(z)

N
.

We now will rewrite Ft(z) as a function of the self-consistent equation.

Claim 3.3 (Lemma 3.14).

Ft(z) =
A

ℓ+ 1
(Qt − Yt) +

∂tmt(z)

N
+O(N−5/6+ϵ). (3.2)

This is proven doing a similar similar expansion as we did to show (1.1). The only difference is that
we expand around z = 2 as well, where we know 1 − msc(z)

2 = 2
√
z − 2 + O(|z − 2|), and we expand√

zt − 2 as
√
ξt − 2 +

√
z − Et +O(t

√
|z − Et|+ t2).

Proof of Proposition 3.2 assuming Proposition 3.1. By (3.1) and Itô’s Lemma, we have

∂tE

1(G ∈ Ω)

p∏
j=1

(mt(zj)−md(zj , t))


=

1

2

p∑
i=1

E

1(G ∈ Ω)∂ziFt(zi)
∏
j ̸=i

((mt(zj)−md(zj , t)))


+
∑
j ̸=i

E

1(G ∈ Ω)

N3

 ∑
α∈[N ]

1

(λα − zi)2(λα − zj)2

 ∏
k ̸=i,j

(mt(zk)−md(zk, t))

 .

(3.3)

We can write all of this as a derivative in ∂z. We have

(3.3) =
∑
i

∂ziE
[
1(G ∈ Ω)

(
Ft(zi)

∏
j ̸=i

(mt(zj)−md(zj , t))

+
∑
j ̸=i

2

N3
∂zj

mt(z)−mt(zj)

z − zj

∏
k ̸=i,j

(mt(zk)−md(zk, t))

)]
.

(3.4)

We then use Cauchy’s integral formula. Take C to be a ball of radius N−2/3−δ/10 around zi. Then by
Proposition 3.1,

Np/3|(3.4)| ≲
∮
C

N (p+1)(2δ)−1/3|dz|
(d− 1)ℓ/2|z − zi|2

≲
N2(p+2)δ+1/3

(d− 1)ℓ/2
(3.5)

as desired.
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