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We will discuss the implication from Proposition 3.13 to Proposition 3.11 in Huang,
McKenzie, and Yau’s new paper. Proposition 3.11 says that the joint cdfs of H(0) and
H(t) agree up to vanishing factors in N, and it is essentially half of the input towards
the edge universality result, Theorem 1.2.* Proposition 3.13 bounds the t-derivative
of the expected product of differences of two Stieltjes transforms.† It is not at all ob-
vious how to go from one to the other; the paper defers this to §17 of Erdos and Yau’s
book, and the goal of this talk is to describe how in that section, using a result closely
resembling Proposition 3.13, a result closely resembling‡ Proposition 3.11 is obtained.
In both Erdos–Yau and Huang–McKenzie–Yau, the result in question is the main way
in which different random matrix models are related; most other technical results fo-
cus on refining estimates for a single random matrix model (be it the adjacency matrix
itself, GOE, or the Gaussian divisble ensemble H(t)).

Switch now to numbering from Erdos–Yau. We want to prove Theorem 17.1: for statement of EY’s
main resultnice-enough N × N random matrices A and B with eigenvalues α1 ⩽ · · · ⩽ αN and

β1 ⩽ · · · ⩽ βN, there are ε, δ > 0 such that for all N sufficiently large and s ∈ R,

P
[

N2/3(αN − 2) ⩽ s − N−ε
]
− N−δ

⩽ P
[

N2/3(βN − 2) ⩽ s
]

⩽ P
[

N2/3(αN − 2) ⩽ s + N−ε
]
+ N−δ. (⋆)

The main input is Theorem 17.4, a Green’s function comparison theorem at the loose statement of
EY’s main inputedge of the spectrum. Take F : R −→ R nice-enough.§ The result is that, for all

*Recall that N is the size of the graph and H(t) = H +
√

tZ, where H is 1√
d−1

times the adja-
cency matrix of a random d-regular graph on N vertices, and Z ∼ GOE(N) conditioned to have 0
row/column sums.

†One is mt(·), the Stieltjes transform of H(t)’s empirical eigenvalue distribution (EED). The other
is md(·, t), a “limiting object,” namely the Stieltjes transform of the t-weighted free convolution of the
Kesten–McKay law (for the graph) with the semicircular law (for the GOE).

‡The main difference is that Huang–McKenzie–Yau study several (a fixed number of) top/bottom
eigenvalues simultaneously; for simplicity we focus only on the very top eigenvalue.

§The main instance will be that F is a smooth indicator on a ray.
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E1 and E2 close enough to 2 (the edge of the spectrum), if N ′
M(E1, E2) is a smoothed

eigenvalue count of M on the interval,* then∣∣E[
F(N ′

A(E1, E2))
]
− E

[
F(N ′

B(E1, E2))
]∣∣

is also very small. This quantifies that very similar random matrices should have
similar eigenvalue counts near the edge. The relevant aspect is that N ′

M is actually
written in terms of the Stieltjes transform of M’s EED. Thus, before diving more into
the details of the section, we first describe the plan of going from such a result to the proof idea
main Theorem and why the level of control presented is used.

Lemma 17.2 and Corollary 17.3 study functionals of the Stieltjes transforms mA
and mB and relate them to eigenvalue counts in intervals near the edge, such that if
they are sufficiently close, then so too are αN = λN(A) and βN = λN(B). In particular,
for a given random matrix model, Lemma 17.2 shows that the eigenvalue count is
very close (wvhp) to a smoothed version which is an integral functional of the Stieltjes
transform. Corollary 17.3 then relates the eigenvalue count at the edge to smoothed
versions at very small deviations from the edge. To make these results applicable will
require control on functionals for already-close Stieltjes transforms of different random
matrix models, which is where Theorem 17.4 enters.

It is worth elaborating on the role of Theorem 17.4 and why it is effective at the effectiveness at the
edgeedge.† Let z = E + iη where E ≈ 2 and η ≪ 1

N2/3 . Consider im mM(z), where mM is
the Stieltjes transform of M’s EED. If M has an eigenvalue within η of E then

im mM(z) =
1
N ∑

λ∈σ(M)

η

(λ − E)2 + η2 ⩾
1

2Nη
≫ 1

N1/3

whereas if there is no such eigenvalue then im mM(z) ≲ 1
N1/3 since the denominator

terms become too large—the position at the edge is critical here, by optimal rigidity.‡

So, we can use im mM as a sort of indicator for the distribution of λN(M), and if we
can control this quantity to precision 1

N1/3 then we can identify the extremal eigenval-
ues.

We begin with some notation and the statements of the technical results (whose technical back-
ground

*Properly defined in (†).
†It is also important here that optimal rigidity for the matrix model be known. Recall that optimal

rigidity says that wvhp the eigenvalues λk(M) of a random matrix M differ from the “expected”
positions γk as

|λk(M)− γk| ⩽
1

N−a+2/3 min{k, N + 1 − k}1/3
,

where γk is the kth quantile of M’s limiting object’s spectral measure.
‡The idea is that for |λ − E| = O(η), the terms in the sum are O

(
1

Nη

)
and there are constant-many

such terms; if |λ − E| = Θ(1) then the terms are O
( η

N
)

and there are linearly-many such terms.
Compare this analysis with the situation in the bulk: the critical scale for η becomes 1

N since that is
the eigenvalue spacing and the order of im mM becomes 1. Thus it is easier to “flag” eigenvalues near
the edge.
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Figure 1: θ0.01(x) for −0.1 ⩽ x ⩽ 0.1.

proofs we do not give). Let NM(E1, E2) count M’s eigenvalues lying in [E1, E2]. Let
E+ = 2 + 1

Nε+2/3 . If M obeys optimal rigidity, then wvhp

NM(E, ∞) = NM(E, E+)

so letting χE be the indicator on [E, E+] (for E ≈ 2) we are interested in tr χE(M) to
count eigenvalues at the upper edge. However, χE is not smooth, so letting

θη(x) := im
1

x − iη

we prefer χE ∗ θη; see Figure 1. We first must check that this smoothing does not
substantially change the eigenvalue count:

Lemma 17.2
Let ℓ = 1

N3ε+2/3 and η = 1
N9ε+2/3 . Then for all N sufficiently large and E within

3
2

1
N−ε+2/3 of 2,

P

[∣∣NM(E, ∞)− tr(χE ∗ θη)(M)
∣∣ ≲ (

1
N2ε

+NM(E − ℓ, E + ℓ)

)]
⩾ 1 − 1

poly N

This is complemented by studying NM(E − ℓ, E + ℓ). Here we work with any
smooth function F0 which is 1 on (−∞, 1/9] and 0 on [2/9, ∞), the idea being that 1

9 is
“close enough” to 0 for the smoothed eigenvalue count.
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Corollary 17.3
Let ℓ′ = 1

2
1

Nε+2/3 . Then for all N sufficiently large and E within 1
N−ε+2/3 of 2,

P

[
tr(χE+ℓ′ ∗ θη)(M)− 1

Nε
⩽ NM(E, ∞) ⩽ tr(χE−ℓ′ ∗ θη)(M) +

1
Nε

]
⩾ 1− 1

poly N
.

Moreover,

E
[
F0
(
tr(χE−ℓ′ ∗ θη)(M)

)]
⩽ P[NM(E, ∞) = 0]

⩽ E
[
F0
(
tr(χE+ℓ′ ∗ θη)(M)

)]
+ O

(
1

poly N

)
(17.6)

The proof of this result essentially goes by relating the exact eigenvalue count to the
smoothed one by Lemma 17.2, using optimal rigidity, and the structure of F0 as an
indicator on all but a small, bounded window.

We then use the exact form

tr(χE ∗ θη)(M) = N
∫ E+

E
im mM(y + iη)dy (†)

to relate the distribution of λN(M) to mM:

Theorem 17.4
Let η = 1

Nε+2/3 . For F smooth with bounded first three derivatives, and ε > 0
sufficiently small, there is a constant C independent of N such that if E1 and E2
are both within C

N−ε+2/3 of 2, we have that∣∣∣∣E[
F
(

N
∫ E2

E1

im mA(y + iη)dy
)]

− E

[
F
(

N
∫ E2

E1

im mB(y + iη)dy
)]∣∣∣∣ ⩽ 1

poly N
.

(17.10)

There are a few comments to make about this fact.

• Observe that in the argument of F above, “N
∫

” provides a factor of order Nε+1/3

which compensates for the size of the Stieltjes transforms, i.e. the arguments of
F are approximately constant-sized.

• The result is stated for a very general class of F, but we only need it for the
specific choice used in Corollary 17.3.

• We remark that this result is crucial since it is essentially the only time in this
proof that A and B will “meet”—everything else is focused on the study of a
single random matrix model, not two distinct but similar models.
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• While Theorem 17.4 is proved in Erdos–Yau, we take care to omit its proof as
subsequent talks in the seminar will focus on the techniques needed in Huang–
McKenzie–Yau for the analogous result (in contrast to Lemma 17.2 and Corol-
lary 17.3, which are omitted for pedagogical reasons).*

With these three preliminaries in hand, we prove (⋆). proof of EY’s main
result

Proof (Theorem 17.1; (⋆)). From optimal rigidity at the edge, wvhp, αN and βN are
within 1

N−ε+2/3 of 2, and N
(

2 − C
N−ε+2/3 , 2 + C

N−ε+2/3

)
⩽ CNε. Thus, if |s| > Nε, (⋆)

consists of three trivial quantities. Suppose not, then, and let E = 2 + s
N2/3 . We begin

by proving the lower bound of (⋆).
To do this, we simply chain three inequalities:

P[NB(E, ∞) = 0] ⩾ E
[
F0
(
tr(χE−ℓ ∗ θη)(B)

)]
by (17.6) lower

⩾ E
[
F0
(
tr(χE−ℓ ∗ θη)(A)

)]
− 1

poly N
by (17.10)

⩾ P[NA(E − 2ℓ, ∞) = 0]− 1
poly N

by (17.6) upper.

The other inequality follows by symmetry of the models. ■

Let’s revisit Huang–McKenzie–Yau in light of this. Proposition 3.13, in the case
p = 1, says that†

E
[

N1/3(mt(z)− md(z, t))
]∣∣∣∣t= 1

Na+1/3

t=0
⩽

1
poly N

and substituting in the bounds for t and letting T = 1
Na+1/3 we find that the LHS is

E
[

N1/3((md(z, 0)− md(z, T)) + (mT(z)− m0(z)))
]

and the term md(z, 0)− md(z, T) can be readily understood since the corresponding
measure for md(·, t) is a free convolution of two well-understood measures, so that
the Proposition really is a statement about expected differences of Stieltjes transforms,
in analogy to the case F(x) = x in Theorem 17.4; the case of higher p corresponds to
more complicated F.

This Proposition arises from showing that the derivative in T is bounded (and
subsequently integrating), so we will discuss starting next time how to reach this re-
sult by controlling the leading order terms; this will simultaneously shed light on
the techniques used for Stieltjes transform results required for the large-t regime pre-
sented by Izzy.

*The Erdos–Yau book focuses on generalized Wigner matrices, whose entries are independent. The
model of interest in Huang–McKenzie–Yau importantly does not obey this.

†Assuming the random graph obeys certain overwhelmingly-high-probability properties about
uniform tight bounds on Green’s function entries and Stieltjes transforms; this is given as Theorem
2.14 in the paper, and is a reproduction of Theorem 4.2 of Huang and Yau.
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