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Dear Scott and Andy,
Thanks for pointing me to the papers [KMM’12, RS’14]. I was not aware of these

interesting developments in connection with the Solovay–Kitaev theorem and the design
of universal 1-qubit quantum gates. These papers refer to some others which are also
very interesting such as [BGS’13]. All of these results can be understood in a unified way
in terms of the arithmetic of quaternion algebras. Doing so clarifies (at least for me) the
constructions and it also allows one to prove some fundamental properties for these gates
as well as to relate them to some older and more recent developments. I explicate these
points below, for myself as much as for the reader.

The problem is one of constructing an efficient universal set of quantum gates. That
such exist is the Solovay–Kitaev theorem [NC’00]. The basic state in quantum computa-
tion is a single qubit, which is a unit vector in C2. The construction of universal quan-
tum gates reduces to finding efficient topological generators of G = PSU(2) (or SU(2))
[NC’00]. G comes with a left and right invariant metric:

d2
G(x, y) = 1− |trace(x∗y)|

2
(1)

= d2
G(hx, hy) = d2

G(xh, yh). (2)

A set S = {s1, . . . , sν} of elements of G (the gates) are universal if Γ, the group gen-
erated by the sj’s, is topologically dense in G. Different gates might have different costs
w(sj) > 0 to be implemented. So define the height h(γ) of γ ∈ Γ to be

h(γ) = min

{
`

∑
k=1

w(sjk) : γ = sj1 · · · sj`

}
. (3)

The efficiency of the gate set S is measured by their ability to approximate any x ∈ G by
γ’s of small height (this corresponds to the size of the corresponding quantum circuit).
Given ε > 0 let tε be the least t for which

G ⊂
⋃

γ∈V(t)

BG(γ, ε) (4)

where
V(t) = {γ ∈ Γ : h(γ) 6 t} (5)

and BG(x, r) is a ball centered at x with radius r in G.
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Clearly
|V(tε)|µ(BG(ε)) > 1 (6)

where µ is the normalized Haar measure on G and BG(ε) any ball of radius ε (they all
have the same measure which is ∼cε3 as ε! 0). To measure the covering efficiency of the
points V(t), we define the covering exponent K(S) by

K(S) := lim sup
ε!0

log|V(tε)|
log 1

µ(BG(ε))

. (7)

Clearly K(S) > 1 and if K(S) = 1 then the generating gates are optimally asymptoti-
cally efficient. For example if the points in V(t) were behaving like a random set of |V(t)|
points, then we would have K(S) = 1.

The mathematical problems are∗:

(A) How small can we make K(S) by choosing the gates in S suitably?

(B) To give a poly log(1/ε) time algorithm to find good approximations to these minimal
cost circuits.

The Solovay–Kitaev theorem asserts that for any universal gate set S, given ε > 0 and
x ∈ G, an element γ ∈ Γ can be found in O((log(1/ε))2.71) steps for which dG(x, γ) is at
most ε and the height of γ is O((log(1/ε))3.97); these explicit powers of log(1/ε) being due
to [DN’06].

This is satisfactory from a theoretical point of view but in practice one would like to
do much better. Indeed from the above it does not even follow that K(S) < ∞. The last is
in fact true, at least if the entries in each sj are algebraic numbers. This follows from the
spectral gap theorem [BG’08] which asserts that the self adjoint operator (assuming S is
symmetric, sj ∈ S ⇐⇒ s−1

j ∈ S and w(sj) = w(s−1
j )) TS : L2(G) −! L2(G), given by

TS f (x) =
ν

∑
j=1

w(sj) f (sjx), (8)

has a gap in its spectrum below its top eigenvalue, which is
ν

∑
j=1

w(sj).

The proof of the spectral gap does not yield any feasible value of the gap and hence
for K(S). Moreover being a counting argument it offers nothing on problem (B). Still that
K(S) < ∞ is a good step and an indication of what one might achieve by choosing the
gates carefully.

All the known good gates S come from arithmetic and number theory and the proof
that they are efficient uses the theory of automorphic forms on associated groups. We
review the constructions, they all have the same pros and cons.

∗The super-efficient continued fraction algorithm approximates a real number by rationals using x 7!
x + n and x 7! 1/x, and one is seeking something like it for PU(2).
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(i) p = 5 ([LPS, BGS’13]):

S =
{

s1, s−1
1 , s2, s−1

2 , s3, s−1
3

}
where

s1 =
1√
5

(
1 + 2i

1− 2i

)
, s2 =

1√
5

(
1 2i
2i 1

)
, s3 =

1√
5

(
1 2
−2 1

)
.

The weights w(sj) are all taken to be 1, Γ is a free group on s1, s2, s3 and h(γ) is the
reduced word length of γ. |V(t)| = 6 · 5t−1, for t > 1.

(a)
4
3
6 K(S) 6 2.

The last asserts (essentially) that for ε > 0 and x ∈ G there is a γ ∈ G
with h(γ) 6 6 log5(1/ε) and dG(x, γ) < ε, while there are y’s in G for which
dG(y, γ) < ε =⇒ h(γ) > 4 log5(1/ε).

(b) For ε > 0 there is tε with

log|Vtε |
log ε−3 ! 1 as ε! 0,

such that for most points y ∈ G w.r.t. Haar measure, there is an ε-approximation
of y of height tε (so optimal for most y’s).

(c) There is a poly log(1/ε) time algorithm which assuming some reasonable con-
jectures about the distribution of primes produces for any x ∈ G a γ ∈ Γ with
h(γ) 6 12 log5(1/ε) and dG(x, γ) < ε. Moreover if x is diagonal then γ has
h(γ) 6 4 log5(1/ε).

(d) There is a probabilistic algorithm with expected running time poly log(1/ε)
which for x diagonal produces (if it stops) the γ of smallest height in BG(x, ε)
(assuming that one has a polynomial time factoring algorithm) [RS’14].

(ii) p = 2 ([Ch’92]):

S = {s0, s1, s−1
1 }, where

s0 =

(
i
−i

)
, s1 =

1√
32

(
2 + i
√

2
√

26i√
26i 2− i

√
2

)
.

The weights w(sj) are all chosen to be 1. Γ ∼= Z/2Z ∗Z and h(γ) is reduced word
length in s0 (= s−1

0 ) and s1 (in PSU(2)). |V(t)| = 3 · 2t−1.
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(a)
4
3
6 K(S) 6 2.

The last asserts (essentially) that for ε > 0 and x ∈ G there is a γ ∈ G
with h(γ) 6 6 log5(1/ε) and dG(x, γ) < ε, while there are y’s in G for which
dG(y, γ) < ε =⇒ h(γ) > 4 log5(1/ε).

(b) For ε > 0 there is tε with

log|Vtε |
log ε−3 ! 1 as ε! 0,

such that for most points y ∈ G w.r.t. Haar measure, there is an ε-approximation
of y of height tε (so optimal for most y’s).

(c) There is a poly log(1/ε) time algorithm which assuming some reasonable con-
jectures about the distribution of primes produces for any x ∈ G a γ ∈ Γ with
h(γ) 6 12 log5(1/ε) and dG(x, γ) < ε. Moreover if x is diagonal then γ has
h(γ) 6 4 log5(1/ε).

(d) There is a probabilistic algorithm with expected running time poly log(1/ε)
which for x diagonal produces (if it stops) the γ of smallest height in BG(x, ε)
(assuming that one has a polynomial time factoring algorithm).

(iii) H–T gates ([AM’08, BS’12, KMM’12, RS’14]):

S = {H, T}

H = i√
2

(
1 1
1 −1

)
the “Hadamard gate”

T =

(
eiπ/8

e−iπ/8

)
the “π/8 gate.”

Gates such as H which lie in the finite Clifford group C (C =
〈

H, T2〉 ∼= S4 is a
quotient of C1 the usual Clifford group of order 192, since we work here in PSU(2))
are apparently much easier to prepare. To obtain a universal gate set one has to add
an element that is expensive. The T-gate which is of order 8 is a popular one to add
and whose implementation has been studied. Set w(c) = 0 for c ∈ C and w(T) = 1
(the weights can be chosen as in [BS’12]), so that h(γ) only counts applications of
the T gates. |Vt| ∼ c2t.

(a)
4
3
6 K(S) 6 2.

The last asserts (essentially) that for ε > 0 and x ∈ G there is a γ ∈ G
with h(γ) 6 6 log5(1/ε) and dG(x, γ) < ε, while there are y’s in G for which
dG(y, γ) < ε =⇒ h(γ) > 4 log5(1/ε).
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(b) For ε > 0 there is tε with

log|Vtε |
log ε−3 ! 1 as ε! 0,

such that for most points y ∈ G w.r.t. Haar measure, there is an ε-approximation
of y of height tε (so optimal for most y’s).

(c) There is a poly log(1/ε) time algorithm which assuming some reasonable con-
jectures about the distribution of primes produces for any x ∈ G a γ ∈ Γ with
h(γ) 6 12 log5(1/ε) and dG(x, γ) < ε. Moreover if x is diagonal then γ has
h(γ) 6 4 log5(1/ε).

(d) There is a probabilistic algorithm with expected running time poly log(1/ε)
which for x diagonal produces (if it stops) the γ of smallest height in BG(x, ε)
(assuming that one has a polynomial time factoring algorithm).

Discussion

The source for (i) is the Hamilton quaternion algebra D (that is generated by 1, i, j, k
with i2 = j2 = −1, ij = −ji = k, . . . ) over Q. D is split at p = 5 (one could use any other
p 6= 2 just as well) and is ramified at the real place ∞ and at 2. So D ⊗Q5 ∼= Q2×2

5 and
if D∗(Z[1/5]) consists of all elements in D whose entries and those of their inverses are in
Z[1/5], then the diagonal embedding corresponding to p = 5 and ∞

D∗(Z[1/5]) ↪−! PGL2(Q5)× (SU(2)×R×)

has its image in SU(2) equal to Γ in (i). At the same time from the first factor D∗(Z[1/5])
acts isometrically on the 6-regular tree X = PGL2(Q5)/ PGL2(Z5) [LPS]. In fact as shown
in [LPS] it acts simply transitively on X and h(γ) is simply the distance in X from γξ
to ξ, where ξ = PGL2(Z5). This allows one to use automorphic forms to analyze the
equidistribution in G of the points in Vt which correspond to a ball in X of radius t [LPS].
The emphasis there was to establish sharp equidistribution, but for the purpose of the
covering number one can improve the exponent by a positivity argument. This was done
in the thesis [Ch’95] in a somewhat different setting. Since this leads to the best bound that
we have for K(S) namely K(S) 6 2, we give a variation of the argument in Appendix 1.
The number 2 is a reflection of the square root cancellation coming from the Ramanujan
conjectures (Deligne’s theorem). That is we need |V(tε)| to be the square of 1

µ(BG(ε))
in

order to ensure that Vtε meets every such ball. In Appendix 1 we also show that this
square root feature leads to most points having optimally short circuit approximations.

That K(S) > 4/3 is more elementary and is a consequence of the points in Vt having big
holes near the projections onto the unit sphere S3 (∼= SU(2) metrically) of integer points
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in Z4. This big hole phenomenon was first observed in the context of approximating real
2× 2 matrices of unit determinant by projections of ones of determinant p [Ha’90].

In our setting of (i) the points Vt correspond to integer solutions of

x2
1 + x2

2 + x2
3 + x2

4 = 5h, h 6 t. (9)

Claim 10. If 0 6= y ∈ Z4 then the ball BS3

(
y
|y| ,

1
10(|y|5t/2)1/2

)
contains a ball in S3 of radius

1
20t(|y|5t/2)1/2 which has no points of Vt.

We give a proof of (10) in Appendix 2. That K(S) > 4/3 follows immediately from (10).
The analysis of (ii) is similar. This time the gate set S comes from the quaternion

algebra D/Q where i2 = −2, j2 = −13. D is ramified at ∞ and p = 13. So in this case one
can localize at p = 2 and form the group D∗(Z[1/2]). In [Ch’92] it is shown that D∗(Z[1/2])
acts simply transitively on the 3-regular tree PGL2(Q2)/ PGL2(Z2). The generating set S
corresponds again to the 3-neighbors of PGL2(Z2). The rest of the analysis is the same as
in example (i).

We turn to (iii) which has been investigated directly and quite intensively recently
([KMM’12, Se’12, RS’14], . . . ). These H–T gates also come from a quaternion algebra and
this allows us, among other things, to conclude that K(S) 6 2. The quaternion algebra is
again the Hamilton quaternions D, but this time we consider it over the field k = Q(

√
2).

k has two archimedian places at both of which D is ramified, giving the algebra H(R).
We fix one of these real places. The prime 2 is ramified in k, (2) = (

√
2)2 := P2. kP =

Q2(
√

5), and D is split over kP (
√
−7+ 2i +

√
2j+ k is a zero divisor in DP := D⊗ kP; note√

7 ∈ Q2 ⊂ kP). In fact D/k is ramified only at its two infinite places. Let O be the ring
of integers of k and OP the integers in kP. The key arithmetic group is ∆ = D∗(O[1/2]).
Under the diagonal embedding

∆ = D∗(O[1/2]) ↪−! PGL2(kP)× (SU(2)×R×) (11)

(using our chosen real place), ∆ is mapped to a subgroup of SU(2). We show that ∆ is
equal to Γ = 〈H, T〉.

Let

H̃ =
i + k√

2
and T̃ =

2 +
√

2
2

+

√
2

2
i. (12)

Then
Norm(H̃) = 1 and Norm(T̃) =

√
2(1 +

√
2). (13)

Hence H̃ and T̃ are in ∆.
Also T̃2 = (1 +

√
2)(1 + i) so that under the usual identifications of H(R)×/R× with

SU(2) (x1 + x2i + x3 j + x4k 7−!
(

x1 + ix2 x3 + ix4
−x3 + ix4 x1 − ix2

)
) H̃ corresponds to H and T̃ to T.
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It follows that
〈

H̃, T̃
〉
⊂ ∆. One way of seeing that these groups are equal is to consider

their image under the usual double cover π : D∗ −! SO f (over k) where f (x1, x2, x3) =

x2
1 + x2

2 + x2
3 over k. Now π(∆) ⊂ SO f (O[1/2]) and as shown in [Ser’11]∗ the last group is

the quaquaversal group G(4, 8) generated by rotations R4 and R8 of orders 4 and 8 about
orthogonal axes (and also G(4, 8) ∼= S4 ∗

D4
D8). Moreover π(T̃) = R8 and π(H̃T̃2H̃−1) =

R4. Hence G(4, 8) ⊂ π(∆) and so π(∆) = SO f (O[1/2]) and Γ = ∆. To exploit this
realization of Γ as the arithmetic group D∗(O[1/2]) we need to relate the height h(γ) in
terms of T counts to the action of γ on the 3-regular tree X = PGL2(kP)/ PGL2(OP) under
the embedding (11). The elements in DP of the form

OP
1 + i + j + k

2
+OP

1 + i
2

+OP +OPi +OP j +OPk

form a maximal order MP of OP. Note that H̃ and T̃2 are units in MP, so that the Clifford
group C =

〈
H̃, T̃2〉 is contained in the unit group of MP. It follows that C stabilizes

ξ = PGL2(OP) in X. On the other hand since Norm(T̃) = (
√

2) it follows that T̃ moves ξ
to one of its neighbors in X and H̃T̃ and T̃−1 move ξ to the other two nearest neighbors.
Thus ∆ acts transitively on X and the height of any γ ∈ ∆ in terms of T̃ and T̃−1 counts,
is it most the distance from ξ to γξ in X plus O(1). One can also use T-counts alone as is
done in [BS’12, RS’14], where one treats the gates in C as being free. Again the distance in
X from ξ to γξ is essentially this T-count.

With this analysis we are in the same position as in examples (i) and (ii) and every-
thing there applies equally well for the H–T gates (the Ramanujan conjectures for definite
division algebras over totally real number fields are known).

One can also study this example (iii) in terms of an arithmetic unitary group. This view
point is perhaps even more natural when examining gates sets such as the cyclotomic-
Clifford gates in [FGKM’15]. Let n > 3 and E the “CM-field” Q(ζ2n) and F the corre-
sponding totally real subfield Q(ζ2n + ζ−1

2n ), here ζ2n is a primitive 2nth root of 1. The
unitary group U /F consists of all 2 × 2 matrices with entries in E, which preserve the
hermitian form h(u, w) = u1w1 + u2w2, where u = (u1, u2), w = (w1, w2) and · is Galois
conjugation E/F. As a group over F one can localize U to places ν of F. Denote by Fν the
completion of F at ν and by Uν the corresponding unitary group over Fν (its elements are
matrices in Eν = E⊗ Fν). If ν is split in E then Uν is isomorphic to GL2(Fν), while if ν is
inert or ramified in E then Uν is a genuine unitary group over Fν with corresponding field
extension Eν. At the archimedian places σ of F (all such places are real) Uσ is a definite
(compact) unitary group. The group U2(Rn) in [FGKM’15] is the full S-arithmetic group
U(O[1/2]) where O is the ring of integers of F. To see this as an S-arithmetic group, factor
2 in O; (2) = (P1 · · · Pg)e where e f g = deg[F : G], e is the ramification and f the degree
of the residue fields of any FPj . In this way U2(Rn) is the S-arithmetic group consisting of

∗in answer to a question posed in [Ro’06].
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all elements in U(F) which are integral outside of S = {P1, . . . , Pg}. The local groups UPj ,
j = 1, . . . , g, are noncompact and isomorphic. The diagonal embedding

U2(Rn) ↪−! UP1 × · · · ×UPg (∗)

realizes U2(Rn) as a cocompact lattice in the latter group. The gate group gn in [FGKM’15]

is the group generated by the finite Clifford group C and the element Tn =

(
1

eiπ/n

)
.

Clearly gn 6 U2(Rn) and we want to know when these are equal or at least when does gn
have finite index in U2(Rn); that is whether gn is thin or not in the sense of [Sa’14].

The first thing to not is that if g > 1 then gn is thin. Indeed as explained in [FGKM’15],
gn has a presentation as a simple amalgamated product. It follows from rigidity theorems
for lattices in different groups, namely ones in a rank one type group (such as an amal-
gamated product as above) and ones in a higher rank gruop, cannot be isomorphic. So if
g > 1 so that the product group in (∗) is of higher rank, then gn cannot be a lattice and so
it is thin.

One can analyze the factorization of 2 in OF using Dirichlet characters and one finds
that if 2n = 2ks with s odd, then g = 1 iff {−1, 2} generated (Z/sZ)× and f = |(Z/sZ)×/(±1)|.
On the other hand [FGKM’15] show that the intersection of gn with the diagonal torus

A =

{(
?

?

)
∈ U

}
is finite, while that of U2(Rn) with A is finite iff −1 is in the group

generated by 2 in (Z/sZ)×. Combining these we have that if gn is arithmetic then 2 must
generate (Z/sZ)×.

Restricting to the cases where gn might be arithmetic, let p be the unique prime in F
above 2. Up is a split 2-dimensional unitary group over Fp (since we are not assuming that
gn is infinite, Up cannot be definite). The projective group PUp is isomorphic to PGL2(Fp).
Hence PU2(Rn) is realized as a lattice in PGL2(Fp) and it acts discontinuously and iso-
metrically on the 2T + 1 regular tree X = PGL2(Fp)/ PGL2(Op). In this setting deciding
anything about gn such as a presentation, or whether it acts with a compact quotient (i.e. it
is arithmetic since U2(Rn) does so) can be done in any given instance using the techniques
in [Ser’77]. In fact using these he shows in [Ser’11] that in the case s = 1, for n = 2, 4, 8
gn is arithmetic (his generators are H and Tn but since H and T2 generate C, his group is
the same as gn) and in fact gn = U2(Rn) while if n = 2ν with ν > 4 then gn is thin (for the
latter he compares Euler characteristics and estimates these using Tamagawa numbers,
i.e. arithmetic formulae for the volumes of U2(Rn)\X). Presumably one can proceed sim-
ilarly in the remaining cases when s 6= 1. However given the normal forms for members
of gn in [FGKM’15] it seems to me that one can complete the analysis by simply counting
elements in gn. Note that if gn were arithmetic then |{γ ∈ gn : dX(γe, e) 6 t}| ∼ cgn 2 f t

as t ! ∞, with cgn > 0. This follows from a lattice point count in the tree X. However
according to the normal form [FGKM’15, Cor 4.2] and relating the T-count of γ ∈ gn to
the distance it moves e in X (I didn’t check that the relation is similar to the n = 4 case)
one only has O(2t) such elements in gn. So if gn is to be arithmetic then we must have
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f = 1 and hence s = 1 or 3. If so the only possible new arithemtic cases are n = 3 · 2ν with
ν > 1. According to [FGKM’15] ν = 1 and 2 are in fact arithmetic (and again gn = U2(Rn)
in these cases). For ν larger I expect that again by counting the number of elements in
gn with dX(γe, e) 6 t, the count will be too small (and certainly by estimating Tamagawa
numbers).

In summary it is likely that the cases n = 3, 4, 8, 12 from [FGKM’15] are the full list of
arithmetic Clifford-cyclotomic gates. As for the case n = 4 discussed in (iii) above, the
Ramanujan conjectures are known for these unitary groups and (a), (b), (c), (d) holds for
them.

The basic algorithm

We review the algorithm ([KMM’12, BGS’13, Se’12, RS’14]) for finding good approxi-
mations of small height. Consider the case (i) (the same ideas work in (ii) and (iii)). The
elements in Vt are solutions to (9). A key point is that if we have an integral solution x to
(9) which approximates some y ∈ G suitably, then finding the short circuit for x in terms
of the gates S can be done quickly (i.e. polynomial in t = O(log(1/ε))). The action of Γ
on the 6-regular tree X tells us how to move γ of height h to the identity coset ξ using
the gates; one simply navigates along the geodesics in X. An equivalent way of achiev-
ing this pointed out in [BGS’13] is to use the left and right unique factorization theory
in D(Z). Thus the problem of finding a short circuit is reduced to finding solutions to
(9) with x/5h/2 doing the required approximation. The idea is that for a diagonal matrix

Z =

(
α

α

)
, |α| = 1 one can find a good approximation as follows:

We seek x of height t such that x satisfies (9) and

|x1 − ξ1| 6 5t/2ε, |x2 − ξ2| 6 5t/2ε, |x3| 6 5t/2ε, |x4| 6 5t/2ε (14’)

where

ξ2
1 + ξ2

2 = 5t
(

α =
ξ1 + iξ2

5t/2

)
. (14)

Choose

x1 = bξ1c − k1, x2 = bξ2c − k2, with 0 6 k1, k2 6 tA for some fixed A > 1. (15)

Then
0 < 5t − (x2

1 + x2
2) 6 2tA5t/2. (16)

For each choice of k1, k2 as above we check if 5t − x2
1 − x2

2 is a prime p ≡ 1 (mod 4). This
can be done in poly t steps [AKS’04] and if this happens then one can find x3, x4 in poly t
steps [Sc’85], satisfying:

x2
3 + x2

4 = 5t − x2
1 − x2

2. (17)
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In this case we arrive at a solution to (14) with ε = 2tA/2/5t/4. That is we arrive at a
point of height (essentially) 4 log5(1/ε). If our choice of x1, x2 fails to produce such a p we
repeat with different choices of k1, k2 and do so t2A (poly t) times. Given the density of the
distribution of primes we expect that if A is big enough (but fixed) that one will always
arrive at such a prime p. So assuming this heuristic about the distributino of primes of
this form, one will find (in poly t steps) an ε approximation to z of height at most 4 log5

1/ε.
To approximate the general y ∈ G one factors y as r1r2r3 with the r’s diagonal about
different orthogonal axes and approximates each rj by the above algorithm. This leads to
the 12 log5

1/ε length circuit approximating y.
The probabilistic algorithm searches (quickly) for x1, x2 in the region defined by (14’)

and 5t − (x2
1 + x2

2) 6 ε25t. We won’t describe it further except to point out that it is in
solving (17) for x3, x4 in poly t steps that one needs to assume that the right hand side of
(17) can be factored quickly. In the H–T gate case (iii) this involves a search for integers
in k in certain regions [RS’14]. The probabilistic algorithm apparently works very well in
practice as illustrated with some runs in [RS’14].

Intrinsic Diophantine Approximation

In these arithmetic cases the problem of finding a global solution to (9) which approxi-
mates a given g ∈ G is an extension of the problem of approximating points on spheres by
rational and ‘S-integral’ points of small height. These are problems of intrinsic diophan-
tine approximation that have been studied recently.

(a) The classic case of rational numbers a/q in [0, 1] with the height of a/q being q. Vt
consists of the Farey fractions of denominator at most t. There are ∼t2 such points
and their spacing vary from 1/t to 1/t2. Hence the exponent K is

K([0, 1], Farey) = 2.

The fact that most points in [0, 1] can be approximated to within 1/t2 by these Farey
points while at the same time there are points that cannot be approximated so well
(i.e. K 6= 1) is the source of the rich theory of diophantine approximation.

(b) Consider the rational points in [0, 1] which are ‘2-integral’ that is the points Z[1/2] ∩
[0, 1].

This time the 2t points of height at most t are exactly 2−t apart in [0, 1]. Thus the
exponent is

K([0, 1], Z[1/2]) = 1.

The theory of diophantine approximation here is simply the truncation of the dyadic
expansion of a real number. So the theory is very simple.
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The following concern the standard unit sphere Sn in Rn+1 (n > 0) and subsets of rational
points on Sn which we denote by Q.

(c) Q =
{

x/q : X is integral, q > 1, |x/q|2 = 1
}

h(x/q) = q if (x1, . . . , xn+1, q) = 1. The recent work [KM’13] shows that

K(Sn, Q) 6 2.

The repulsion property (10) for these points takes a simpler and transparent form

dSn

(
x
q

,
x′

q′

)
>

1
(qq′)1/2

. (18)

From this it follows that
K(Sn, Q) = 2,

and here too there is a rich theory of diophantine approximation.

(d) Consider S1 with rational points which are say 5-integral that is in Z[1/5]. These
correspond to solutions of

x2 + y2 = 52h, x, y ∈ Z.

The question of what K(S1, Z[1/5]) is reduces to the diophantine properties of the
generator of these rational points, namely the numbers in mα (mod 2πZ), m > 1,
where

α = cos−1(3/5).

If as we expect this number is a typical irrational in terms of its diophantine proper-
ties then

K(S1, Z[1/5]) = 1.

On the other hand if α is not typical then K > 1. I am not sure what if anything is
known about the type of the number α/2π.

(e) S2 with the points in Z[1/5]. This is a very interesting case and corresponds to solu-
tions to

x2
1 + x2

2 + x2
3 = 52t. (19)

Using automorphic forms (again the Ramanujan conjectures) exploiting that the
right hand side of (19) is a square, one can show that

K(S2, Z[1/5]) 6 2. (20)

In the recent paper [BRS’12] the local statistics of the distribution on S2 of sums of
3-squares is investigated. The thesis there is that these behave like a random set of
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points placed on S2, at least if the r.h.s. of (19) is squarefree. I expect that this also
holds for (19) and hence that

K(S2, Z[1/5]) = 1.

If true this would be striking.

(f) S3 with points in Z[1/5]. That is solutions to

x2
1 + x2

2 + x2
3 + x2

4 = 52h, h 6 t. (21)

This is very close to (i) except that the exponent of 5 in (21) is restricted to be even.
As discussed in (i) we have

4
3
6 K(S3, Z[1/5]) 6 2. (22)

So this is the smallest dimension for Sn for which there is definitely a rich theory
of intrinsic diophantine approximation for ‘S-integers’. An in depth study of such
problems in great generality has been carried out in [GNN’12]. In particular they
define local covering exponents which in this case are given as follows:

For x ∈ S3 and ε > 0 let tε(x) be the least t such that BS3(x, ε) contains an element in
S3 with coordinates in Z[1/5] and of height 5h with h 6 t. Set

K(x, Z[1/5]) := lim sup
ε!0

log|Vtε(x)|
log(1/ε3)

.

They show that for almost all x (w.r.t. Lebesgue measure on S3)

K(x, Z[1/5]) = 1. (23)

This of course is optimal (again the Ramanujan conjectures are an ingredient).

(g) For n > 4 the determination of K for S-arithmetic points on Sn becomes easier.
As pointed out to me by Bourgain, an application of the circle method as done in
[BR’12, Appendix] can be promoted to an asymptotic (and not just an upper bound)
when one has this many variables, for counting these points in small caps. As a
consequence we have together with the repulsion (18) that for n > 4,

K(Sn, Z[1/5]) = 2− 2
n

. (24)

We end with some basic problems:

(1) For the arithmetic S’s in (i), (ii) and (iii) to show that K(S) < 2 and perhaps even
that K(S) = 4/3.
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(2) Is there a set of gates with K(S) = 1? Perhaps with ‘thin’ subgroups (see [Sa’14])
where all we know is that K(S) < ∞, there may be some cases where K(S) = 1.

(3) For the arithmetic gates S we know that for most points y ∈ G there are optimally
short circuits approximating them. Find a probabilistic algorithm with expected
running time poly log(1/ε), which finds such short circuits. So for the H–T gates this
means an algorithm to find for most y’s in G and ε > 0 a circuit of T-count at most
(1 + δ)3 log2(1/ε) which ε-approximates y (δ arbitrarily small). In practice achieving
optimality for most y’s in G, while being only slightly worse for singular y’s, would
render these arithmetic S’s to be Golden Gates.

Appendix 1

We work in the context of a Hecke orbit on S2 coming from the points on a ball in the
p-regular tree, as in [LPS]. The analysis for SU(2) or more generally the setting of Hecke
orbits in cases where the Ramanujan conjectures are known, is similar.

Let Vt = {S ∈ O f } (with f (x1, x2, x3) = x2
1 + x2

2 + x2
3) be a set of representatives for

the Hecke points. One can find an orthonormal basis φj of L2(S2) of Hecke eigenfunctions
(each is also a spherical harmonic that is an eigenfunction of the Laplacian ∆S2). If the
Hecke orbit in S2 comes from Vt applied to a fixed point x0 ∈ S2 then

∑
s∈Vt

φj(sx0) = λj(t)φj(x0) φ0 =
1√
4π

and λ0(t) = |Vt|. (25)

|Vt| = 6 · 5t−1 for case (i) and for simplicity we stick to this case. The Ramanujan conjec-
tures imply that ∣∣λj(t)

∣∣ 6 t|Vt|
1/2 for j 6= 0. (26)

Let kε(x, y) be a point-pair invariant on S2, that is kε(σx, σy) = kε(x, y) for σ ∈ O f , which is
nonnegative and an approximation to the identity under ∗ (k1 ∗ k2(x, y) =

∫
S2 k1(x, z)k2(z, y)dA(y)).

Specifically

kε(x, y) > 0∫
S2

kε(x, y)dA(y) = 1

kε(x, y) = 0 if dS2(x, y) > ε.

We can also choose k to be positive-definite (i.e. hk(t) > 0 where hk is the spherical trans-
form of k at a nonnegative eigenvalue t of ∆S2), by taking k = kε/2 ∗ kε/2 for example.
Moreover we can choose kε so that

kε(x, x) 6
c
ε2 for a fixed constant c. (27)
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Expanding kε(x, y) in the basis φj yields [Se’56]:

kε(x, y) =
∞

∑
j=0

hkε
(tj)φj(x)φj(y). (28)

Applying (25) with x = x0 gives

∑
s∈Vt

kε(sx0, y) =
|Vt|√

4π
+

∞

∑
j=1

h(tj)λj(t)φj(x0)φj(y). (29)

If for some y ∈ S2 ∑
s∈Vt

kε(sx0, y) = 0, then from (29) and (26)

|Vt|√
4π

6
∞

∑
j=1

h(tj)
∣∣λj(t)

∣∣∣∣φj(x0)
∣∣∣∣φj(y)

∣∣
6 |Vt|

1/2t
∞

∑
j=1

h(tj)

∣∣φj(x0)
∣∣2 + ∣∣φj(y)

∣∣2
2

6 |Vt|
1/2tkε(z, z)

6 |Vt|
1/2t

c
ε2 (30)

using (27).
That is

|Vt| 6
4πct2

ε4 . (31)

Hence if |Vt| > 4πct
ε4 then for every y, ∑

s∈Vt

kε(sx0, y) > 0 and in particular dS2(sx0, y) < ε

for some s ∈ Vt. This proves that K 6 2 in this case, and in fact this sharper and non-
asymptotic form.

To see that most y’s have optimally good approximation by members of Vt we compute
the variance over y in (29)

∫
S2

∣∣∣∣∣∑s∈Vt

kε(sx0, y)− |Vt|√
4π

∣∣∣∣∣
2

dA(y) =
∞

∑
j=1

hε(tj)
2∣∣λj(t)

∣∣2∣∣φj(x0)
∣∣2

6 t2|Vt|
∞

∑
j=1

hε(tj)
2∣∣φj(x0)

∣∣2
6 t2|Vt|

∫
S2
|kε(x0, y)|2 dA(y) (32)

(using (28)).
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Now from (27) we get that

∫
S2

∣∣∣∣∣∑s∈Vt

kε(sx0, y)− |Vt|√
4π

∣∣∣∣∣
2

dA(y) 6
c2t2|Vt|

ε2 . (33)

If B =

{
y : ∑

s∈Vt

kε(sx0, y) = 0

}
then B ⊃ {y : dS2(sx0, y) = 0 for all s ∈ Vt}. According to

(33)

µS2(B)
|Vt|2

4π
6

c2t2|Vt|
ε2

or

µS2(B) 6
4πc2t2

ε2|Vt|
. (34)

This is a quantitative and explicit form of the fact that B has a small measure if |Vt| is
somewhat larger than 1

µS2 (B) .

Appendix 2

Let x, y ∈ Z4 both not 0 and x
|x| 6=

y
|y| . Set |x|2 = M and |y|2 = N. Then

d2
S3

(
x
|x| ,

y
|y|

)
= 2− 2〈x, y〉√

MN

= 2

(√
MN − 〈x, y〉√

MN

)
. (34)

If x
|x| and y

|y| are close ethen 〈x, y〉 > 0 and

d2
S3

(
x
|x| ,

y
|y|

)
=

2(MN − 〈x, y〉2)√
MN(

√
MN + 〈x, y〉)

=
MN − 〈x, y〉2

MN
. (35)

In the interval
[

MN −
√

MN, MN
]

there is at most one square number tMN . It follows
that if

〈x, y〉2 6= tMN then d2
S3

(
x
|x| ,

y
|y|

)
>

1√
MN

. (36)

So given a y as above then for x with |x|2 = M, either d
(

y
|y| ,

x
|x|

)
= ξMN with

0 < ζMN <
1

(MN)1/4
or d

(
x
|x| ,

y
|y|

)
>

1
(MN)1/4

. (37)
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For h 6 t and x varying over
|x|2 = 5h,

and our given y, we have either

d
(

x
|x| ,

y
|y|

)
= ξh, 0 < ξh <

1

(|y|25t)1/4
, or d

(
x
|x| ,

y
|y|

)
>

1

(|y|25t)1/4
.

Hence there is an annulus Aα,β about the point y
|y| in S3

Aα,β =

{
z ∈ S3 : α 6 d

(
y
|y| , z

)
6 β

}
with β 6 1

(|y|25t)1/4 and β− α > 1
2t(|y|25t)1/4 , which is free of any x ∈ Vt. Choosing a maximal

radius ball B in this annulus yields (10).
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