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In this note, I will present Anantharaman’s ‘ergodic-theoretic’ “Proof 3” (§5) of
quantum ergodicity for diagonal operators on regular graphs (theorem statement be-
low). This proof joins two others in reproving the result of Anantharaman–Le Masson.
The objective here is to somewhat streamline the presentation of the result through re-
organization, slightly simplified notation, and easier proofs due to the cleaner nature
of the relevant operators. Please do let me know if you spot any mistakes!

Fix q. Let T be the (q + 1)-regular tree. We consider sequences (Gn(Vn, En))n∈N

of (q + 1)-regular non-bipartite graphs arising as finite quotients of T, with #Vn in-
creasing. dn is the shortest-path metric on Gn. AG is the unnormalized adjacency ma-
trix of G. For x ∈ Vn, we say that rn(x) is the greatest integer R such that the in-
duced subgraph Gn[{y ∈ Vn : dn(x, y) 6 R}] is isomorphic to the (q + 1)-regular tree
of depth R (having leaves at depth R). Say that rn = r(Gn) = min

x∈Vn
rn(x) is Gn’s injec-

tivity radius, since the isomorphism with the finite tree gives rise to an injective map
Gn[{y ∈ Vn : dn(x, y) 6 rn}] ↪→ T for all x ∈ Vn.

Definition 1 (family of expanders). (Gn)n∈N is a family of expanders (EXP) if the
spectral gap of the normalized adjacency matrix is bounded below by some con-
stant.

Definition 2 (Benjamini–Schramm convergence). (Gn)n∈N converges in the sense
of Benjamini–Schramm (BSC) if for all injectivity radii r, the proportion of Vn of
injectivity radius up to r limits in n to 0.

Theorem 3 (quantum ergodicity)

Suppose (Gn)n∈N satisfies EXP and BSC. SupposeAGn has eigenpairs
(

λ
(n)
j , ψ

(n)
j

)
.

Consider the vector wn ∈ CVn , ‖wn‖∞ 6 1. Put µn as the average of wn. Then,

lim
n→∞

1
n ∑

j∈[n]

∣∣∣∣∣ ∑
x∈Vn

wn(x)ψ(n)
j (x)2 − µn

∣∣∣∣∣
2

= 0.
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1 Miscellaneous preliminaries

All balls of radius k in T have the same size, (q + 1)qk−1. Call this quantity v(k).
Let Γn < Aut T induce the quotient graph Γn\T = Gn. Let πn : V(T)→ Vn be the

quotient map, and let Ṽn be a fixed choice of lifts of Vn under πn. (In general, elements
and subsets of the tree cover will be denoted with tildes.)

Definition 4. LetH(n) consist of the Γn-invariant linear operators on V(T) which
are `2 with respect to the inner product

〈K1, K2〉H(n) :=
1

#Vn
∑

x̃∈Ṽn
ỹ∈V(T)

K1(x̃, ỹ)K2(x̃, ỹ).

Introduce also the decomposition

H(n) =
⊕
k∈N

H(n)
k

forH(n)
k those K ∈ H(n) such that if dn(x̃, ỹ) 6= k then K(x̃, ỹ) = 0.(

H(n)
k

)
k∈N

is clearly a decomposition ofH(n) into orthogonal subspaces.

When we are handed a test function wn, we realize it as a Γn-invariant diagonal
operator Wn (an element of H(n)) by putting Wn(γx̃, γx̃) = wn(πn(x̃)) for all x̃ ∈ Ṽn
and γ ∈ Γn.

When we wish for K ∈ H(n) to act on `2(Vn), we put

KG(x, y) := ∑
γ∈Γ

K(x̃, γỹ)

for fixed lifts x̃ ∈ π−1
n (x̃) and ỹ ∈ π−1

n (ỹ).
In general we will consider only one graph at a time (arising from some n) and as

such will drop the sub-/superscripts n and (n) as appropriate.

Definition 5. For K ∈ H, we write C(K) := [AT, K].

Lemma 6
C is a bounded operator.

This is immediate from the definition, since ‖AT‖ = q + 1.

Definition 7 (Hilbert–Schmidt norm). For K ∈ H, let

‖K‖2
HS :=

1
#V ∑

x̃∈Ṽ

∣∣∣∣∣∣ ∑
ỹ∈V(T)

K(x̃, ỹ)

∣∣∣∣∣∣
2

.

That is, ‖·‖HS is the matrix norm after KG “collapses” K to be a functional on Vn ×Vn.
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2 Reduction to mean-zero

As alluded to earlier, pick some n and drop subsequent reference to it.
We first establish that it suffices to consider only w with µ = 0. Indeed, if w′ has

mean µ and induces W ′, then
〈
ψj, W ′Gψj

〉
− µ =

〈
ψj, (W ′G − µIV)ψj

〉
, where IV is the

identity operator. Thus it suffices to prove for W ′′ := W ′ − µIV that

lim
n→∞

1
n ∑

j∈[n]

∣∣〈ψj, W ′′Gψj
〉∣∣2 = 0. (1)

The condition that the largest diagonal entry lies in D could in principle be violated,
but replacing now W ′′ by W := 1

2W ′′ (and then at the very end multiplying back by 2)
resolves the concern.

3 Case of mean-zero

We are motivated by (1) to study the following:

Definition 8 (quantum variance). Suppose AG’s eigenpairs are
(
λj, ψj

)
. Then the

quantum variance of K ∈ H is

QVar(K) :=
1

#V ∑
j∈[#V]

∣∣〈ψj, KGψj
〉∣∣2.

Lemma 9
For all K ∈ H:

(a) QVar(K) 6 ‖K‖2
HS;

(b) QVar(C(K)) = 0;

(c) if QVar(K′) = 0 then for any K, QVar(K + K′) = QVar(K).

Proof. (a) Notice that ‖K‖2
HS = Tr

(
K†

GKG
)
= Tr

(
U†K†

GKGU
)
= Tr

((
U†KGU

)†(U†KGU
))

=∥∥U†KGU
∥∥2

HS. In particular, when U is the change of basis matrix to
{

ψj
}

j∈[#V]
,∥∥U†KGU

∥∥2
HS = 1

#V ∑
i,j∈[#V]

∣∣〈ψi, KGψj
〉∣∣2 > 1

#V ∑
j∈[#V]

∣∣〈ψj, KGψj
〉∣∣2 = QVar(K).

(b) We have ψ>j AGKGψj − ψ>j KGAGψj = (λjψj)
>KGψj − ψ>j KG(λjψj) = 0 for all

j ∈ [n].

(c) The hypothesis implies that for all j, ψ>j K′Gψj = 0 so ψ>j (KG + K′G)ψj = ψ>j KGψj.
�

By boundedness of C, in

1
T

∫ T

0
∑

j6M

(it)j

j!
C j(W)dt
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the sum and the integral commute. Hence it equals

∑
j6M

(iT)j

(j + 1)!
C j(W) (2)

which is an M-term approximation to 1
T

∫ T
0 exp(itC)(W)dt. However, only the j = 0

term in (2) survives taking QVar, by Lemma 12(b,c), i.e.

QVar(W) = QVar

(
1
T

∫ T

0
∑

j6M

(it)j

j!
C j(W)dt

)
. (3)

We will use the bound QVar(K) 6 ‖K‖2
HS and subsequently Proposition 11 to bound

the quantum variance.
Recall that the sequence of graphs are all β-spectral expanders (BSC says that there

exists some such β > 0).

Lemma 10
For all W with 〈w, 1〉 = 0,∥∥∥∥ 1

T

∫ T

0
exp(itC)(W)dt

∥∥∥∥
H
6 2

√
2
T

1
4
√
(q + 1)β

‖W‖H.

Proof. WLOG let ‖W‖H = 1. (If ‖W‖H = 0 then the result is trivial, and otherwise all
computations are homogeneous in scalars.)

For a Borel set E ⊂ R, let µE be the spectral projector associated to E which takes
as input any self-adjoint operator on (not in) H. In particular, if E1 := [−δ, δ] and
E2 := R r E1, then putting Wj := µEj(C)W, we get W = W1 + W2 and 〈W1, W2〉H = 0
so that ‖W1‖2

H + ‖W2‖2
H = 1, in particular

∥∥Wj
∥∥
H 6 1. Then, we readily compute∥∥∥∥ 1

T

∫ T

0
exp(itC)W2 dt

∥∥∥∥
H
6

1
T

∣∣∣∣∫ T

0
exp(itδ)dt

∣∣∣∣ = |exp(iδT)− 1|
δT

6
2

δT

where, thinking of the operators as coming from the discrete spectrum, we have that
W2 is the weighted sum of “eigenvectors” of C which appear in W, and exp(itC)
stretches the λ-eigenspace by exp(itλ); the eigenspaces are pairwise orthogonal, and
have initial `2-sum (H-norm) of 1, so we sum these but then bound by the most ex-
treme case, that is, λ = δ. This accounts for the first inequality; the rest is just calculus.

We note now that ker C ∩ H0 = CIV , i.e. W ∈ (ker C)⊥. W1 must also be diag-
onal, since the spectral projector will preserve C’s 0 eigenspace and its complement.
Again because of the projector’s action, ‖C(W1)‖H 6 δ. We aim to upper bound
‖W1‖H = ‖w1‖2, supposing W1’s diagonal is specified by w1 ∈ CV . The key is to note
that ‖C(W1)‖2

H = w†
1Lw1 > (q + 1)β‖w1‖2

2, where L is the unnormalized Laplacian
of G, which we assumed to be a β-spectral expander. Hence ‖w1‖2 6

δ√
(q+1)β

. In

evaluating the norm of the integral, we note the unitarity of exp(itC) and so bound
the integrand by these constants (independent of t) to obtain∥∥∥∥ 1

T

∫ T

0
exp(itC)W1 dt

∥∥∥∥
H
6

δ√
(q + 1)β

.
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Finally, apply the triangle inequality:∥∥∥∥ 1
T

∫ T

0
exp(itC)W dt

∥∥∥∥
H
6

δ√
(q + 1)β

+
2

δT

and select δ to minimize the right-hand side, obtaining the claimed result. �

Let T = T(ε) satisfy, from Lemma 10,∥∥∥∥ 1
T

∫ T

0
exp(itC)(W)dt

∥∥∥∥
H
6 ε‖W‖H. (4)

Let M = M(ε) satisfy, from C’s boundedness,∥∥∥∥∥exp(itC)− ∑
j6M

(it)j

j!
C j

∥∥∥∥∥
H→H

6 ε (5)

on t ∈ [0, T]. Applying the triangle inequality to ‖·‖H, (4) and (5),∥∥∥∥∥ 1
T

∫ T

0
∑

j6M

(it)j

j!
C j(W)dt

∥∥∥∥∥
H

6 2ε‖W‖H. (6)

In light of Lemma 9(a), we want to relate ‖·‖HS and ‖·‖H.

Proposition 11
Suppose K ∈ H is supported at up to distance k, that is, if d(x̃, ỹ) > k then
K(x̃, ỹ) = 0. If k < r(G), then ‖K‖HS = ‖K‖H. In general,

‖K‖2
HS 6 ‖K‖

2
H + v(k)2‖K‖2

∞
#{x ∈ V : r(x) 6 k}

#V
.

Proof. For the first case, we know that

‖K‖2
HS =

1
#V ∑

x̃,ỹ∈Ṽ

∣∣∣∣∣∑
γ∈Γ

K(x̃, γỹ)

∣∣∣∣∣
2

. (7)

By the definition of r, if k < r(G) then ∑
γ∈Γ

K(x̃, γỹ) = K(x̃, γ0ỹ) for some γ0 ∈ Γ and

so K(x̃, γỹ) = 0 for γ ∈ Γ r γ0, i.e. since all but one term in the sum is 0,∣∣∣∣∣∑
γ∈Γ

K(x̃, γỹ)

∣∣∣∣∣
2

= |K(x̃, γ0ỹ)|2 = ∑
γ∈Γ
|K(x̃, γỹ)|2. (8)

Substituting (8) into (7) recovers ‖K‖2
H.

For the general case, if ρ(π(x̃)) > k then this work still holds. Collect such ver-
tices into Rc

k, i.e. Rk :=
{

x̃ ∈ Ṽ : r(π(x̃)) 6 k
}

(of course Rk is in bijection via π with
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{x ∈ V : r(x) 6 k}). Then,

‖K‖2
HS =

1
#V

 ∑
x̃∈Rc

k

∑
ỹ∈Ṽ

∑
γ∈Γ
|K(x̃, γỹ)|2 + ∑

x̃∈Rk

∑
ỹ∈Ṽ

∣∣∣∣∣∑
γ∈Γ

K(x̃, γỹ)

∣∣∣∣∣
2


6 ‖K‖2
H +

1
#V ∑

x̃∈Rk

(#Bk(x̃)‖K‖∞)
2 (9)

= ‖K‖2
H +

#Rk

#V
(v(k)‖K‖∞)

2, (10)

(9) by the triangle inequality and noting that K(x̃, γỹ) for such x̃ is nonzero only if γỹ
lies in Bk(x̃); and (10) since all balls in T have the same size v(k). �

In light of Proposition 11, we obtain, for any ε > 0 and appropriate M and T
depending on ε:

QVar(W) = QVar

(
1
T

∫ T

0
∑

j6M

(it)j

j!
C j(W)dt

)
restatement of (3)

6

∥∥∥∥∥ 1
T

∫ T

0
∑

j6M

(it)j

j!
C j(W)dt

∥∥∥∥∥
2

HS

by Lemma 9(a)

6

∥∥∥∥∥ 1
T

∫ T

0
∑

j6M

(it)j

j!
C j(W)dt

∥∥∥∥∥
2

H

+ v(M)2M
#{x ∈ V : r(x) 6 M}

#V
by Proposition 11

6 4ε2‖W‖2
H + v(M)2M

#{x ∈ V : r(x) 6 M}
#V

by (6)

6 4ε2 + v(M)2M
#{x ∈ V : r(x) 6 M}

#V
. by def’n ‖·‖HS and ‖W‖∞ 6 1

(11)

To be perfectly explicit about the convergence: given ε̃, we must identify n for which

QVar(Wm) < ε̃ for m > n. Let ε =
√

ε̃
8 . By BSC applied to r = M, there exists n such

that
#{x ∈ V : rn(x) 6 M}

#Vn
<

ε̃

2v(M)2M
.

By the reduction in §2, QED.

Remark 12. It is worth noting the only appearances of the properties we assume of
our graphs.

• Regularity is used in constructing the universal cover T.

• BSC is only used in the conclusion (but is teed up by Proposition 11).

• EXP is only used in Lemma 10.

• Mean-zero is also only used in Lemma 10, in appealing to the Rayleigh quotient.
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4 Making the bound explicit

This amounts to writing down an adequate M(ε) from (5), for use in (11). One can
check that (for instance) M = (2q + 3)T + logT

1
ε suffices, by Taylor’s theorem. Then,

picking

T(ε) =

(
2
√

2
ε 4
√
(q + 1)β

)2

=
8

ε2
√
(q + 1)β

in order to explicitly obtain M, if we have a handle on how #{x ∈ Vn : rn(x) 6 R}
grows in n we can select appropriate n.

5 Brief remarks on the other proofs

5.1 “Proof 2 (“ultra-short”)”

The objective in this proof is again to obtain an expression of the form (11), here by
multiplying the operator (in general not necessarily diagonal, though the proof above
is also done in the paper for general W) by carefully-constructed operators arising
from a decomposition of C (and the observation, along the lines of Proposition 9(c),
that if QVar(K + K′) = 0 then QVar(K) = QVar(K′), and then exploiting Proposition
11 and the structure of the relevant adjoint operators.

5.2 “Proof 4 (“nonbacktracking”)”

A two-part talk by Anantharaman on this proof can be found here and here. The
core idea, as in the main proof presented here, is to introduce “complications” (in the
case above, the integral of an exponential action). Here the quantum variance is con-
sidered for arcs in the tree, and in the quantum variance we modify W by multiplying
on either side by the nonbacktracking adjacency matrix. Then, we bound the quantum
variance by passing up to analysis on the tree, as before discarding a vanishing col-
lection of short cycles, and otherwise treating paths as pairs of start- and endpoints,
allowing us to treat operators on paths of any length as lying in the same Hilbert
space of operators. The nonbacktracking quantum variance is then connected back to
the undirected case.
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