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Icosahedral super golden gates

ρ is the matrix corresponding to i+ (ϕ− 1)j + ϕk
σ 1 + i+ j + k
τ (2 + ϕ)i+ j + k

Let S := {ρ, σ, τ} be the icosahedral super golden gates.
〈ρ, σ〉 ∼= A5 (hence icosahedral), and Γ := 〈S〉 is dense in PU(2).
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Icosahedral super golden gates, cont.

Fix P := 7 + 5ϕ. Notice that N(ρ) = N(σ) = 4 while N(τ) = P.

This makes factoring in Γ easy: we access elements

Γ 3 γ = a0τa1 · · · τam

as lifts γ̂ ∈ H(Z[ϕ]) where P - γ̂ (as a scalar); am is detectable as

corresponding to the unique â ∈ Â5 for which P | N(γ̂âτ).
Thus, factoring in Γ is O(m).
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Short paths in Xp,q

Recall the LPS Ramanujan graphs Xp,q.

Theorem (Carvalho Pinto–Petit ’18)

There exists a factorization of any element of Xp,q into
(7/3 + o(1)) logp(q

3) generators.

The idea is to compute, given g ∈ Xp,q, elements γ1, γ, γ2 ∈ Xp,q where:
γ1 and γ2 are diagonal; γ has particularly short factorization; and
g = γ1γγ2.
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Our main result

Theorem

There exists a factorization of any element sufficiently far from the
identity of PU(2) using τ -count at most (7/3 + o(1)) log59(1/ε3).

We are concerned with τ -count because for certain engineering
purposes, the A5 gates are simpler to construct while the τ involution
is extremely costly. (Similar gate cost models are used with other
generators, in particular Clifford+T .)
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Some quick shorthand

Because every element of SU(2) takes the form

g =

(
α β

−β α

)
for some α, β ∈ C, we say that g = u(α, β); and diagonals take the form

δ =

(
eiθ

e−iθ

)
for some θ ∈ R, whence we write δ = u(θ).

We also identify elements of PU(2) with their lifts to SU(2), as
appropriate.
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Technical substantiation

This result enables the finite–continuous analogy to go through.

Lemma (“tuning;” S. ’21)

Select absolute constants δ, ε0 > 0 and put C =

√
1
2 + 1

2

(
2+δ
ε0

)2
. Take

γ1, γ2 ∈ PU(2) and write them as γ` = u(α`, β`). If ||α1| − |α2|| < ε for
some ε < δ and min{|α1| , |α2|} <

√
1− ε20 then for

θ1 =
1

2
(argα1 − argα2 + arg β1 − arg β2), δ1 = u(θ1)

θ2 =
1

2
(argα1 − argα2 − arg β1 + arg β2), δ2 = u(θ2)

we have the approximation δ1γ2δ2 to γ1, satisfying

d(γ1, δ1γ2δ2) < Cε.
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Diagonal elements

For given diagonal δ = u(θ) and ε, we seek γ ∈ Γ with d(δ, γ) < ε where

γ =

(
x0 + x1i x2 + x3i
−x2 + x3i x0 − x1i

)
for x0, x1, x2, x3 ∈ Z[ϕ] satisfying

x20 + x21 + x22 + x23 = Pm (†)

for some m ∈ N (factorization of length m). Ross–Selinger deduce that

x0 cos θ + x1 sin θ > P
m/2(1− 2ε2) (‡)

is sufficient.
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Diagonal elements, cont.

Algebraic manipulation and Galois conjugates reduce (†) and (‡) to
consideration of x1 =: c+ dϕ and the following sufficient conditions:

(c+ dϕ) sin θ 6 P
m/2(1− ε2)

|c+ dσ±ϕ| 6 (σ±P)
m/2∣∣∣c+ dϕ− P

m/2(1− ε2) sin θ
∣∣∣ 6 P

m/2 |cos θ|
√

2− ε2ε.

Lenstra’s algorithm finds all such points efficiently.
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Diagonal elements, cont.

Generically, the solution set is grid points contained in a long, thin,
tilted rectangle:

300 320 340 360 380 400 420 440

560

580

600

620

640

Figure: Feasible set for θ = π/8, m = 6, and ε = 1/103.
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Diagonal elements, cont.

Then, we seek seek x0 =: a+ bϕ from

|a+ bσ±ϕ| 6 (σ±P)
m/2
√

1− (σ±x1)2

(a+ bϕ) cos θ 6 P
m/2(1− x1 sin θ)

(a+ bϕ) cos θ > P
m/2(1− ε2 − x1 sin θ)

again using Lenstra’s algorithm.

We complete the search, having found candidates x0 and x1, by writing
Pm − x20 − x21 as a sum of two squares x22 + x23 in Z[ϕ].

The factorization length, if we start from m = 1, will be exactly the m
on which we halt.
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General elements

For given element g = u(α, β) and ε, we seek γ ∈ Γ with d(g, γ) < ε
where

γ =

(
x0 + x1i x2 + x3i
−x2 + x3i x0 − x1i

)
for x0, x1, x2, x3 ∈ Z[ϕ] satisfying

x20 + x21 + x22 + x23 = Pm (?)

for some m ∈ N (factorization of length m). All we need to apply

tuning is have
√

x20+x
2
1

Pm
≈ |α|.
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General elements, cont.

This transforms into∣∣∣x20 + x21 − |α|
2
Pm
∣∣∣ < ε |α|Pm.

Studying Galois conjugates of (?) give the added condition

σ±(x20 + x21) 6 (σ±P)m.

Viewing x20 + x21 as the element a+ bϕ ∈ Z[ϕ] (a rank-two lattice) we
apply Lenstra’s algorithm to∣∣∣a+ bϕ− |α|2Pm

∣∣∣ < ε |α|Pm

a+ bσ±ϕ 6 (σ±P)m

a+ bσ±ϕ > 0.
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General elements, cont.

Arriving at a candidate pair (a, b), we find the squares x0 and x1, and
then use the same sum-of-squares algorithm to find x2 and x3
satisfying (?).

We perform this task for each m, starting with m = 1, until a valid
quadruple is found.

Then, we compute the phases for the tuning lemma and compute the
corresponding diagonal approximations.
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Analysis

The algorithm for diagonals is fundamentally the same as
Ross–Selinger’s, so we defer that analysis to their paper. The runtime
is O(poly log(1/ε)) and the factorization length is (1 + o(1)) log(1/ε3).

For the general algorithm, we expect to halt when the planar region
has area Θ(poly log(1/ε)). As the area is exactly 2|α|√

5
59mε, we expect to

halt when m ≈ log59(1/ε). Thus the runtime remains O(poly log(1/ε))
and the total length is (7/3 + o(1)) log(1/ε3), as claimed.

The tuning lemma gives that precision is lossy only up to a constant
prefactor.
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Sums of squares

The main obstacle in pure algebraic number theory to overcome in this
work is the task of computing x, y ∈ Z[ϕ], given (WLOG irreducible)
z ∈ Z[ϕ], for which

z = x2 + y2.

(Assume efficient integer factorization.)

Recall that for p ∈ Z, this can be done by computing w for which
w2 + 1 ≡ 0 (mod p) and then finding gcd(p, w + i) ∈ Z[i]. Crucially, p
is 1 mod 4 and Z[i] is a Euclidean domain.
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Sums of squares, cont.

We prove the following:

Theorem

Q(i, ϕ) is norm-Euclidean.

Corollary

Let u ∈ Z[ϕ] be irreducible and N(u) be either p or p2. By passing up
to Z[i, ϕ], if p ≡ 1, 3, 7, 9, 13, 17 (mod 20) then either u or uϕ is a sum
of two squares.
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Code

Our algorithm has been implemented in Python. Visit
https://math.berkeley.edu/~zstier/icosahedral to download the
code and for some documentation.
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Examples

Recall the generators of the Clifford+T gate set:

H =
i√
2

(
1 1
1 −1

)
T =

(
eiπ/8

e−iπ/8

)
.

We demonstrate factorizations of both, to precision ε = 1/1010.
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Example: T

T ≈ (σσρσρ)τ(ρσσρσσ)τ(σρσρσ)τ(ρσρσρσ)τ(ρσσρ

σρσσρσρ)τ(σσρσρσσρσρ)τ(ρ)τ(σρσσρσρσσρ)

τ(ρ)τ(ρσσρσρσσρ)τ(ρσρσρσσ)τ(σσρσρσσρ)

τ(σρσρσσ)τ(σρσσρσρσσρ)τ(σρσρσσρσ)τ(σρ

σρσ)τ(ρσσρσρσσρσρ)τ(ρσσρσρσσρσ)τ(σρσ)

This has τ -count 19, against predicted 16.9, and is accurate up to
1.28/1010 in d.
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Example: H

γ = (ρσσρσρσσρσρ)τ(ρσρσρσσρσσ)τ(σρσρσσ)τ(ρσσρσρσσρ)τ(ρσσρ)τ

(σρσσρσρ)τ(σρσρσσρσσ)τ(ρσρσσρσρσσρσ)τ(ρσσρσρσ)τ(ρσσρσρ)

γ1 = (σρσρ)τ(ρσρσσρσρσσρσ)τ(ρσσρσσ)τ(ρσσρσρσσρσρ)τ(ρσρσρσ)τ(σ

ρσρ)τ(σσρσ)τ(σσρσρσ)τ(σρσρσσρσ)τ(σρσρσσρσρ)τ(ρσσρσρσ)τ(ρ

σρσσρ)τ(σσρσ)τ(σσρσρσσ)τ(σσ)τ(σρσρσσρσσ)τ(σρσρσσρσ)τ(σσρ

σρσσρσρ)τ(ρσρσσρσρσ)

γ2 = (σρσρσσρ)τ(σσρσρσσρ)τ(σρσρσσρσσ)τ(σρσσρσρ)τ(σσρσρσ)τ(ρσρ

σσ)τ(σρσσρσρ)τ(ρσρσρσσρσρ)τ(ρσρσσρσσ)τ(ρσσρσ)τ(ρσρσρσσρ

σρ)τ(ρσσρ)τ(ρσσρσρσσρ)τ(ρσσρσ)τ(ρσρσσρσρσσ)τ(ρσρσσρσρσσ)

τ(σσρσρσσρσ)τ(σρ)τ(ρ)

The overall τ -count is 45, against predicted 39.4, and γ1γγ2 is accurate
up to 1.28/1010 in d.
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Future directions

In the past decade the almost-guarantees have been reduced from
poly log to c log, while the c = 1 case is provably NP-complete. Recent
work (including this) has reduced c to as low as 7/3. How close can one
get to c = 1?

Maybe CNOTs plus universal single-qubit sets aren’t optimal for (say)
the two-qubit gates. What is? (This study is already underway, see e.g.
Evra–Parzanchevski’s work on PU(3).)
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