On the best generators of $\mathrm{PU}(2)$ II

Terrence Blackman ${ }^{1}$ Zachary Stier ${ }^{2}$

${ }^{1}$ Medgar Evers College
${ }^{2}$ UC Berkeley

Joint Mathematics Meetings
AMS Special Session on Quaternions
6 April 2022
Seattle, WA

Outline

- Setup: factorization with icosahedral super golden gates
- Inspiration: short paths in LPS Ramanujan graphs
- Diagonal factorization
- General factorization
- Analysis
- Sums of squares: hurdles in algorithmic algebraic number theory
- Examples

Icosahedral super golden gates

ρ is the matrix corresponding to $i+(\varphi-1) j+\varphi k$
$1+i+j+k$
τ
$(2+\varphi) i+j+k$

Icosahedral super golden gates

ρ is the matrix corresponding to $i+(\varphi-1) j+\varphi k$
$1+i+j+k$
$(2+\varphi) i+j+k$
Let $S:=\{\rho, \sigma, \tau\}$ be the icosahedral super golden gates.

Icosahedral super golden gates

ρ is the matrix corresponding to $i+(\varphi-1) j+\varphi k$
$1+i+j+k$
$(2+\varphi) i+j+k$
Let $S:=\{\rho, \sigma, \tau\}$ be the icosahedral super golden gates. $\langle\rho, \sigma\rangle \cong A_{5}$ (hence icosahedral), and $\Gamma:=\langle S\rangle$ is dense in $\mathrm{PU}(2)$.

Icosahedral super golden gates, cont.

Fix $\mathfrak{P}:=7+5 \varphi$. Notice that $\mathrm{N}(\rho)=\mathrm{N}(\sigma)=4$ while $\mathrm{N}(\tau)=\mathfrak{p}$.

Icosahedral super golden gates, cont.

Fix $\mathfrak{P}:=7+5 \varphi$. Notice that $N(\rho)=N(\sigma)=4$ while $N(\tau)=\mathfrak{P}$. This makes factoring in Γ easy:

Icosahedral super golden gates, cont.

Fix $\mathfrak{P}:=7+5 \varphi$. Notice that $\mathrm{N}(\rho)=\mathrm{N}(\sigma)=4$ while $\mathrm{N}(\tau)=\mathfrak{p}$. This makes factoring in Γ easy: we access elements

$$
\Gamma \ni \gamma=a_{0} \tau a_{1} \cdots \tau a_{m}
$$

as lifts $\widehat{\gamma} \in \mathbb{H}(\mathbb{Z}[\varphi])$ where $\mathfrak{P} \nmid \widehat{\gamma}$ (as a scalar); a_{m} is detectable as corresponding to the unique $\widehat{a} \in \widehat{A_{5}}$ for which $\mathfrak{P} \mid \mathrm{N}(\widehat{\gamma} \widehat{a} \tau)$.

Icosahedral super golden gates, cont.

Fix $\mathfrak{P}:=7+5 \varphi$. Notice that $\mathrm{N}(\rho)=\mathrm{N}(\sigma)=4$ while $\mathrm{N}(\tau)=\mathfrak{p}$. This makes factoring in Γ easy: we access elements

$$
\Gamma \ni \gamma=a_{0} \tau a_{1} \cdots \tau a_{m}
$$

as lifts $\widehat{\gamma} \in \mathbb{H}(\mathbb{Z}[\varphi])$ where $\mathfrak{P} \nmid \widehat{\gamma}$ (as a scalar); a_{m} is detectable as corresponding to the unique $\widehat{a} \in \widehat{A_{5}}$ for which $\mathfrak{P} \mid \mathrm{N}(\widehat{\gamma} \widehat{a} \tau)$. Thus, factoring in Γ is $O(m)$.

Short paths in $X^{p, q}$

Recall the LPS Ramanujan graphs $X^{p, q}$.

Theorem (Carvalho Pinto-Petit '18)

There exists a factorization of any element of $X^{p, q}$ into $(7 / 3+o(1)) \log _{p}\left(q^{3}\right)$ generators.

Short paths in $X^{p, q}$

Recall the LPS Ramanujan graphs $X^{p, q}$.

Theorem (Carvalho Pinto-Petit '18)

There exists a factorization of any element of $X^{p, q}$ into $(7 / 3+o(1)) \log _{p}\left(q^{3}\right)$ generators.

The idea is to compute, given $g \in X^{p, q}$, elements $\gamma_{1}, \gamma, \gamma_{2} \in X^{p, q}$ where: γ_{1} and γ_{2} are diagonal; γ has particularly short factorization; and $g=\gamma_{1} \gamma \gamma_{2}$.

Our main result

Theorem

There exists a factorization of any element sufficiently far from the identity of $\mathrm{PU}(2)$ using τ-count at most $(7 / 3+o(1)) \log _{59}\left(1 / \varepsilon^{3}\right)$.

Our main result

Theorem

There exists a factorization of any element sufficiently far from the identity of $\mathrm{PU}(2)$ using τ-count at most $(7 / 3+o(1)) \log _{59}\left(1 / \varepsilon^{3}\right)$.

We are concerned with τ-count because for certain engineering purposes, the A_{5} gates are simpler to construct while the τ involution is extremely costly. (Similar gate cost models are used with other generators, in particular Clifford $+T$.)

Some quick shorthand

Because every element of $\mathrm{SU}(2)$ takes the form

$$
g=\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)
$$

for some $\alpha, \beta \in \mathbb{C}$, we say that $g=u(\alpha, \beta)$; and diagonals take the form

$$
\delta=\left(\begin{array}{ll}
e^{i \theta} & \\
& e^{-i \theta}
\end{array}\right)
$$

for some $\theta \in \mathbb{R}$, whence we write $\delta=u(\theta)$.

We also identify elements of $\mathrm{PU}(2)$ with their lifts to $\mathrm{SU}(2)$, as appropriate.

Technical substantiation

This result enables the finite-continuous analogy to go through.
Lemma ("tuning;" S. '21)
Select absolute constants $\delta, \varepsilon_{0}>0$ and put $C=\sqrt{\frac{1}{2}+\frac{1}{2}\left(\frac{2+\delta}{\varepsilon_{0}}\right)^{2}}$. Take $\gamma_{1}, \gamma_{2} \in \mathrm{PU}(2)$ and write them as $\gamma_{\ell}=u\left(\alpha_{\ell}, \beta_{\ell}\right)$. If $\| \alpha_{1}\left|-\left|\alpha_{2}\right|\right|<\varepsilon$ for some $\varepsilon<\delta$ and $\min \left\{\left|\alpha_{1}\right|,\left|\alpha_{2}\right|\right\}<\sqrt{1-\varepsilon_{0}^{2}}$ then for

$$
\begin{array}{ll}
\theta_{1}=\frac{1}{2}\left(\arg \alpha_{1}-\arg \alpha_{2}+\arg \beta_{1}-\arg \beta_{2}\right), & \delta_{1}=u\left(\theta_{1}\right) \\
\theta_{2}=\frac{1}{2}\left(\arg \alpha_{1}-\arg \alpha_{2}-\arg \beta_{1}+\arg \beta_{2}\right), & \delta_{2}=u\left(\theta_{2}\right)
\end{array}
$$

we have the approximation $\delta_{1} \gamma_{2} \delta_{2}$ to γ_{1}, satisfying

$$
d\left(\gamma_{1}, \delta_{1} \gamma_{2} \delta_{2}\right)<C \varepsilon
$$

Diagonal elements

For given diagonal $\delta=u(\theta)$ and ε, we seek $\gamma \in \Gamma$ with $d(\delta, \gamma)<\varepsilon$ where

$$
\gamma=\left(\begin{array}{rr}
x_{0}+x_{1} i & x_{2}+x_{3} i \\
-x_{2}+x_{3} i & x_{0}-x_{1} i
\end{array}\right)
$$

for $x_{0}, x_{1}, x_{2}, x_{3} \in \mathbb{Z}[\varphi]$ satisfying

$$
x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\mathfrak{p}^{m}
$$

for some $m \in \mathbb{N}$ (factorization of length m). Ross-Selinger deduce that

$$
x_{0} \cos \theta+x_{1} \sin \theta \geqslant \mathfrak{p}^{m / 2}\left(1-2 \varepsilon^{2}\right)
$$

is sufficient.

Diagonal elements, cont.

Algebraic manipulation and Galois conjugates reduce (\dagger) and (\ddagger) to consideration of $x_{1}=: c+d \varphi$ and the following sufficient conditions:

$$
\begin{aligned}
(c+d \varphi) \sin \theta & \leqslant \mathfrak{p}^{m / 2}\left(1-\varepsilon^{2}\right) \\
\left|c+d \sigma_{ \pm} \varphi\right| & \leqslant\left(\sigma_{ \pm} \mathfrak{P}\right)^{m / 2} \\
\left|c+d \varphi-\mathfrak{p}^{m / 2}\left(1-\varepsilon^{2}\right) \sin \theta\right| & \leqslant \mathfrak{P}^{m / 2}|\cos \theta| \sqrt{2-\varepsilon^{2}} \varepsilon .
\end{aligned}
$$

Lenstra's algorithm finds all such points efficiently.

Diagonal elements, cont.

Generically, the solution set is grid points contained in a long, thin, tilted rectangle:

Figure: Feasible set for $\theta=\pi / 8, m=6$, and $\varepsilon=1 / 10^{3}$.

Diagonal elements, cont.

Then, we seek seek $x_{0}=: a+b \varphi$ from

$$
\begin{aligned}
\left|a+b \sigma_{ \pm} \varphi\right| & \leqslant\left(\sigma_{ \pm} \mathfrak{P}\right)^{m / 2} \sqrt{1-\left(\sigma_{ \pm} x_{1}\right)^{2}} \\
(a+b \varphi) \cos \theta & \leqslant \mathfrak{P}^{m / 2}\left(1-x_{1} \sin \theta\right) \\
(a+b \varphi) \cos \theta & \geqslant \mathfrak{P}^{m / 2}\left(1-\varepsilon^{2}-x_{1} \sin \theta\right)
\end{aligned}
$$

again using Lenstra's algorithm.

Diagonal elements, cont.

Then, we seek seek $x_{0}=: a+b \varphi$ from

$$
\begin{aligned}
\left|a+b \sigma_{ \pm} \varphi\right| & \leqslant\left(\sigma_{ \pm} \mathfrak{P}\right)^{m / 2} \sqrt{1-\left(\sigma_{ \pm} x_{1}\right)^{2}} \\
(a+b \varphi) \cos \theta & \leqslant \mathfrak{P}^{m / 2}\left(1-x_{1} \sin \theta\right) \\
(a+b \varphi) \cos \theta & \geqslant \mathfrak{P}^{m / 2}\left(1-\varepsilon^{2}-x_{1} \sin \theta\right)
\end{aligned}
$$

again using Lenstra's algorithm.

We complete the search, having found candidates x_{0} and x_{1}, by writing $\mathbb{P}^{m}-x_{0}^{2}-x_{1}^{2}$ as a sum of two squares $x_{2}^{2}+x_{3}^{2}$ in $\mathbb{Z}[\varphi]$.

Diagonal elements, cont.

Then, we seek seek $x_{0}=: a+b \varphi$ from

$$
\begin{aligned}
\left|a+b \sigma_{ \pm} \varphi\right| & \leqslant\left(\sigma_{ \pm} \mathfrak{P}\right)^{m / 2} \sqrt{1-\left(\sigma_{ \pm} x_{1}\right)^{2}} \\
(a+b \varphi) \cos \theta & \leqslant \mathfrak{P}^{m / 2}\left(1-x_{1} \sin \theta\right) \\
(a+b \varphi) \cos \theta & \geqslant \mathfrak{p}^{m / 2}\left(1-\varepsilon^{2}-x_{1} \sin \theta\right)
\end{aligned}
$$

again using Lenstra's algorithm.

We complete the search, having found candidates x_{0} and x_{1}, by writing $\mathfrak{P}^{m}-x_{0}^{2}-x_{1}^{2}$ as a sum of two squares $x_{2}^{2}+x_{3}^{2}$ in $\mathbb{Z}[\varphi]$.

The factorization length, if we start from $m=1$, will be exactly the m on which we halt.

General elements

For given element $g=u(\alpha, \beta)$ and ε, we seek $\gamma \in \Gamma$ with $d(g, \gamma)<\varepsilon$ where

$$
\gamma=\left(\begin{array}{rr}
x_{0}+x_{1} i & x_{2}+x_{3} i \\
-x_{2}+x_{3} i & x_{0}-x_{1} i
\end{array}\right)
$$

for $x_{0}, x_{1}, x_{2}, x_{3} \in \mathbb{Z}[\varphi]$ satisfying

$$
x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\mathfrak{p}^{m}
$$

for some $m \in \mathbb{N}$ (factorization of length m). All we need to apply tuning is have $\sqrt{\frac{x_{0}^{2}+x_{1}^{2}}{\mathfrak{p}^{m}}} \approx|\alpha|$.

General elements, cont.

This transforms into

$$
\left|x_{0}^{2}+x_{1}^{2}-|\alpha|^{2} \mathfrak{P}^{m}\right|<\varepsilon|\alpha| \mathfrak{P}^{m} .
$$

Studying Galois conjugates of (\star) give the added condition

$$
\sigma_{ \pm}\left(x_{0}^{2}+x_{1}^{2}\right) \leqslant\left(\sigma_{ \pm} \mathfrak{P}\right)^{m}
$$

General elements, cont.

This transforms into

$$
\left|x_{0}^{2}+x_{1}^{2}-|\alpha|^{2} \mathbb{P}^{m}\right|<\varepsilon|\alpha| \mathbb{P}^{m} .
$$

Studying Galois conjugates of (\star) give the added condition

$$
\sigma_{ \pm}\left(x_{0}^{2}+x_{1}^{2}\right) \leqslant\left(\sigma_{ \pm} \mathfrak{P}\right)^{m}
$$

Viewing $x_{0}^{2}+x_{1}^{2}$ as the element $a+b \varphi \in \mathbb{Z}[\varphi]$ (a rank-two lattice) we apply Lenstra's algorithm to

$$
\begin{gathered}
\left|a+b \varphi-|\alpha|^{2} \mathfrak{P}^{m}\right|<\varepsilon|\alpha| \mathfrak{P}^{m} \\
a+b \sigma_{ \pm \varphi} \leqslant\left(\sigma_{ \pm} \mathfrak{P}\right)^{m} \\
a+b \sigma_{ \pm} \varphi \geqslant 0
\end{gathered}
$$

General elements, cont.

Arriving at a candidate pair (a, b), we find the squares x_{0} and x_{1}, and then use the same sum-of-squares algorithm to find x_{2} and x_{3} satisfying (\star).

General elements, cont.

Arriving at a candidate pair (a, b), we find the squares x_{0} and x_{1}, and then use the same sum-of-squares algorithm to find x_{2} and x_{3} satisfying (\star).

We perform this task for each m, starting with $m=1$, until a valid quadruple is found.

General elements, cont.

Arriving at a candidate pair (a, b), we find the squares x_{0} and x_{1}, and then use the same sum-of-squares algorithm to find x_{2} and x_{3} satisfying (\star).

We perform this task for each m, starting with $m=1$, until a valid quadruple is found.

Then, we compute the phases for the tuning lemma and compute the corresponding diagonal approximations.

Analysis

The algorithm for diagonals is fundamentally the same as Ross-Selinger's, so we defer that analysis to their paper. The runtime is O (poly $\log (1 / \varepsilon))$ and the factorization length is $(1+o(1)) \log \left(1 / \varepsilon^{3}\right)$.

Analysis

The algorithm for diagonals is fundamentally the same as Ross-Selinger's, so we defer that analysis to their paper. The runtime is O (poly $\log (1 / \varepsilon))$ and the factorization length is $(1+o(1)) \log \left(1 / \varepsilon^{3}\right)$.

For the general algorithm, we expect to halt when the planar region has area $\Theta($ poly $\log (1 / \varepsilon))$. As the area is exactly $\frac{2|\alpha|}{\sqrt{5}} 59^{m} \varepsilon$, we expect to halt when $m \approx \log _{59}(1 / \varepsilon)$.

Analysis

The algorithm for diagonals is fundamentally the same as Ross-Selinger's, so we defer that analysis to their paper. The runtime is O (poly $\log (1 / \varepsilon))$ and the factorization length is $(1+o(1)) \log \left(1 / \varepsilon^{3}\right)$.

For the general algorithm, we expect to halt when the planar region has area $\Theta($ poly $\log (1 / \varepsilon))$. As the area is exactly $\frac{2|\alpha|}{\sqrt{5}} 59^{m} \varepsilon$, we expect to halt when $m \approx \log _{59}(1 / \varepsilon)$. Thus the runtime remains O (poly $\left.\log (1 / \varepsilon)\right)$ and the total length is $(7 / 3+o(1)) \log \left(1 / \varepsilon^{3}\right)$, as claimed.

Analysis

The algorithm for diagonals is fundamentally the same as Ross-Selinger's, so we defer that analysis to their paper. The runtime is O (poly $\log (1 / \varepsilon))$ and the factorization length is $(1+o(1)) \log \left(1 / \varepsilon^{3}\right)$.

For the general algorithm, we expect to halt when the planar region has area $\Theta($ poly $\log (1 / \varepsilon))$. As the area is exactly $\frac{2|\alpha|}{\sqrt{5}} 59^{m} \varepsilon$, we expect to halt when $m \approx \log _{59}(1 / \varepsilon)$. Thus the runtime remains O (poly $\left.\log (1 / \varepsilon)\right)$ and the total length is $(7 / 3+o(1)) \log \left(1 / \varepsilon^{3}\right)$, as claimed.

The tuning lemma gives that precision is lossy only up to a constant prefactor.

Sums of squares

The main obstacle in pure algebraic number theory to overcome in this work is the task of computing $x, y \in \mathbb{Z}[\varphi]$, given (WLOG irreducible) $z \in \mathbb{Z}[\varphi]$, for which

$$
z=x^{2}+y^{2} .
$$

(Assume efficient integer factorization.)

Sums of squares

The main obstacle in pure algebraic number theory to overcome in this work is the task of computing $x, y \in \mathbb{Z}[\varphi]$, given (WLOG irreducible) $z \in \mathbb{Z}[\varphi]$, for which

$$
z=x^{2}+y^{2} .
$$

(Assume efficient integer factorization.)

Recall that for $p \in \mathbb{Z}$, this can be done by computing w for which $w^{2}+1 \equiv 0(\bmod p)$ and then finding $\operatorname{gcd}(p, w+i) \in \mathbb{Z}[i]$.

Sums of squares

The main obstacle in pure algebraic number theory to overcome in this work is the task of computing $x, y \in \mathbb{Z}[\varphi]$, given (WLOG irreducible) $z \in \mathbb{Z}[\varphi]$, for which

$$
z=x^{2}+y^{2} .
$$

(Assume efficient integer factorization.)

Recall that for $p \in \mathbb{Z}$, this can be done by computing w for which $w^{2}+1 \equiv 0(\bmod p)$ and then finding $\operatorname{gcd}(p, w+i) \in \mathbb{Z}[i]$. Crucially, \boldsymbol{p} is $1 \bmod 4$ and $\mathbb{Z}[i]$ is a Euclidean domain.

Sums of squares, cont.

We prove the following:
Theorem
$\mathbb{Q}(i, \varphi)$ is norm-Euclidean.

Sums of squares, cont.

We prove the following:

Theorem
 $\mathbb{Q}(i, \varphi)$ is norm-Euclidean.

Corollary

Let $u \in \mathbb{Z}[\varphi]$ be irreducible and $\mathrm{N}(u)$ be either p or p^{2}. By passing up to $\mathbb{Z}[i, \varphi]$, if $p \equiv 1,3,7,9,13,17(\bmod 20)$ then either u or $u \varphi$ is a sum of two squares.

Code

Our algorithm has been implemented in Python. Visit https://math.berkeley.edu/~zstier/icosahedral to download the code and for some documentation.

Examples

Recall the generators of the Clifford $+T$ gate set:

$$
H=\frac{i}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \quad T=\left(\begin{array}{ll}
e^{i \pi / 8} & \\
& e^{-i \pi / 8}
\end{array}\right)
$$

We demonstrate factorizations of both, to precision $\varepsilon=1 / 10^{10}$.

Example: T

$$
\begin{aligned}
T \approx & (\sigma \sigma \rho \sigma \rho) \tau(\rho \sigma \sigma \rho \sigma \sigma) \tau(\sigma \rho \sigma \rho \sigma) \tau(\rho \sigma \rho \sigma \rho \sigma) \tau(\rho \sigma \sigma \rho \\
& \sigma \rho \sigma \sigma \rho \sigma \rho) \tau(\sigma \sigma \rho \sigma \rho \sigma \sigma \rho \sigma \rho) \tau(\rho) \tau(\sigma \rho \sigma \sigma \rho \sigma \rho \sigma \sigma \rho) \\
& \tau(\rho) \tau(\rho \sigma \sigma \rho \sigma \rho \sigma \sigma \rho) \tau(\rho \sigma \rho \sigma \rho \sigma \sigma) \tau(\sigma \sigma \rho \sigma \rho \sigma \sigma \rho) \\
& \tau(\sigma \rho \sigma \rho \sigma \sigma) \tau(\sigma \rho \sigma \sigma \rho \sigma \rho \sigma \sigma \rho) \tau(\sigma \rho \sigma \rho \sigma \sigma \rho \sigma) \tau(\sigma \rho \\
& \sigma \rho \sigma) \tau(\rho \sigma \sigma \rho \sigma \rho \sigma \sigma \rho \sigma \rho) \tau(\rho \sigma \sigma \rho \sigma \rho \sigma \sigma \rho \sigma) \tau(\sigma \rho \sigma)
\end{aligned}
$$

This has τ-count 19, against predicted 16.9, and is accurate up to $1.28 / 10^{10}$ in d.

Example: H

$$
\begin{aligned}
\gamma= & (\rho \sigma \sigma \rho \sigma \rho \sigma \sigma \rho \sigma \rho) \tau(\rho \sigma \rho \sigma \rho \sigma \sigma \rho \sigma \sigma) \tau(\sigma \rho \sigma \rho \sigma \sigma) \tau(\rho \sigma \sigma \rho \sigma \rho \sigma \sigma \rho) \tau(\rho \sigma \sigma \rho) \tau \\
& (\sigma \rho \sigma \sigma \rho \sigma \rho) \tau(\sigma \rho \sigma \rho \sigma \sigma \rho \sigma \sigma) \tau(\rho \sigma \rho \sigma \sigma \rho \sigma \rho \sigma \sigma \rho \sigma) \tau(\rho \sigma \sigma \rho \sigma \rho \sigma) \tau(\rho \sigma \sigma \rho \sigma \rho) \\
\gamma_{1}= & (\sigma \rho \sigma \rho) \tau(\rho \sigma \rho \sigma \sigma \rho \sigma \rho \sigma \sigma \rho \sigma) \tau(\rho \sigma \sigma \rho \sigma \sigma) \tau(\rho \sigma \sigma \rho \sigma \rho \sigma \sigma \rho \sigma \rho) \tau(\rho \sigma \rho \sigma \rho \sigma) \tau(\sigma \\
& \rho \sigma \rho) \tau(\sigma \sigma \rho \sigma) \tau(\sigma \sigma \rho \sigma \rho \sigma) \tau(\sigma \rho \sigma \rho \sigma \sigma \rho \sigma) \tau(\sigma \rho \sigma \rho \sigma \sigma \rho \sigma \rho) \tau(\rho \sigma \sigma \rho \sigma \rho \sigma) \tau(\rho \\
& \sigma \rho \sigma \sigma \rho) \tau(\sigma \sigma \rho \sigma) \tau(\sigma \sigma \rho \sigma \rho \sigma \sigma) \tau(\sigma \sigma) \tau(\sigma \rho \sigma \rho \sigma \sigma \rho \sigma \sigma) \tau(\sigma \rho \sigma \rho \sigma \sigma \rho \sigma) \tau(\sigma \sigma \rho \\
& \sigma \rho \sigma \sigma \rho \sigma \rho) \tau(\rho \sigma \rho \sigma \sigma \rho \sigma \rho \sigma) \\
\gamma_{2}= & (\sigma \rho \sigma \rho \sigma \sigma \rho) \tau(\sigma \sigma \rho \sigma \rho \sigma \sigma \rho) \tau(\sigma \rho \sigma \rho \sigma \sigma \rho \sigma \sigma) \tau(\sigma \rho \sigma \sigma \rho \sigma \rho) \tau(\sigma \sigma \rho \sigma \rho \sigma) \tau(\rho \sigma \rho \\
& \sigma \sigma) \tau(\sigma \rho \sigma \sigma \rho \sigma \rho) \tau(\rho \sigma \rho \sigma \rho \sigma \sigma \rho \sigma \rho) \tau(\rho \sigma \rho \sigma \sigma \rho \sigma \sigma) \tau(\rho \sigma \sigma \rho \sigma) \tau(\rho \sigma \rho \sigma \rho \sigma \sigma \rho \\
& \sigma \rho) \tau(\rho \sigma \sigma \rho) \tau(\rho \sigma \sigma \rho \sigma \rho \sigma \sigma \rho) \tau(\rho \sigma \sigma \rho \sigma) \tau(\rho \sigma \rho \sigma \sigma \rho \sigma \rho \sigma \sigma) \tau(\rho \sigma \rho \sigma \sigma \rho \sigma \rho \sigma \sigma) \\
& \tau(\sigma \sigma \rho \sigma \rho \sigma \sigma \rho \sigma) \tau(\sigma \rho) \tau(\rho)
\end{aligned}
$$

The overall τ-count is 45, against predicted 39.4, and $\gamma_{1} \gamma \gamma_{2}$ is accurate up to $1.28 / 10^{10}$ in d.

Future directions

In the past decade the almost-guarantees have been reduced from poly \log to $c \log$, while the $c=1$ case is provably NP-complete. Recent work (including this) has reduced c to as low as $7 / 3$. How close can one get to $c=1$?

Future directions

In the past decade the almost-guarantees have been reduced from poly \log to $c \log$, while the $c=1$ case is provably NP-complete. Recent work (including this) has reduced c to as low as $7 / 3$. How close can one get to $c=1$?

Maybe CNOTs plus universal single-qubit sets aren't optimal for (say) the two-qubit gates. What is? (This study is already underway, see e.g. Evra-Parzanchevski's work on PU(3).)

Acknowledgements

Thank you to my coauthor Terrence Blackman; Peter Sarnak; and the organizers of this Special Session.

This work was supported by an NSF Graduate Research Fellowship, grants DGE-1752814/2146752.

References

The following references were cited directly in this presentation. Please see our paper for a full list of references.

- E. Carvalho Pinto and C. Petit, "Better path-finding algorithms in LPS Ramanujan graphs," Journal of Mathematical Cryptology 2018.
- S. Evra and O. Parzanchevski, "Ramanujan complexes and Golden Gates in PU(3)," arXiv:1810.04710.
- H. Lenstra, "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research 1983.
- O. Parzanchevski and P. Sarnak, "Super-Golden-Gates for PU(2)," Advances in Mathematics 2018.
- N. Ross and P. Selinger, "Optimal ancilla-free Clifford+T approximation of z-rotations," Quantum Information \mathcal{B} Computation 2016.
- Z. Stier, "Short paths in $\mathrm{PU}(2)$," Quantum Information ${ }^{8}$ Computation 2021.

