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Icosahedral super golden gates

p is the matrix corresponding to i + (¢ — 1)j + vk
o l+itj+k
T 2+ @)i+j+k
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Icosahedral super golden gates

p is the matrix corresponding to i + (¢ — 1)j + vk

o 1+i+j+k

T (24 @)i+j+Ek

Let S := {p, 0,7} be the icosahedral super golden gates.
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Icosahedral super golden gates

p is the matrix corresponding to i + (¢ — 1)j + vk

o l+itj+k

T 2+@)i+j+k

Let S := {p, 0,7} be the icosahedral super golden gates.
(p,0) =2 As (hence icosahedral), and T' := (S) is dense in PU(2).
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[cosahedral super golden gates, cont.

Fix P := 7+ 5¢. Notice that N(p) = N(¢) = 4 while N(7) = P.
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[cosahedral super golden gates, cont.

Fix P := 7+ 5¢. Notice that N(p) = N(¢) = 4 while N(7) = P.
This makes factoring in I' easy:
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[cosahedral super golden gates, cont.

Fix P := 7+ 5¢. Notice that N(p) = N(¢) = 4 while N(7) = P.
This makes factoring in I" easy: we access elements

I's~y=agra1---1am

as lifts ¥ € H(Z[p]) where P 7 (as a scalar); a,, is detectable as
corresponding to the unique @ € As for which P | N(yar).
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[cosahedral super golden gates, cont.

Fix P := 7+ 5¢. Notice that N(p) = N(¢) = 4 while N(7) = P.
This makes factoring in I" easy: we access elements

I's~y=agra1---1am

as lifts ¥ € H(Z[p]) where P 7 (as a scalar); a,, is detectable as
corresponding to the unique @ € As for which P | N(yar).
Thus, factoring in I' is O(m).
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Short paths in X4

Recall the LPS Ramanujan graphs XP9.

Theorem (Carvalho Pinto—Petit '18)

There exists a factorization of any element of X?¢ into
(7/3 4 o(1)) log,(¢*) generators.
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Short paths in X4

Recall the LPS Ramanujan graphs XP9.

Theorem (Carvalho Pinto—Petit '18)

There exists a factorization of any element of X?¢ into
(7/3 4 o(1)) log,(¢*) generators.

The idea is to compute, given g € XP4, elements 1,7y, v2 € XP? where:
~v1 and o are diagonal; v has particularly short factorization; and
g =m772-
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Our main result

Theorem

There exists a factorization of any element sufficiently far from the
identity of PU(2) using 7-count at most (7/3 + o(1)) logsq(1/<?).
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Our main result

Theorem

There exists a factorization of any element sufficiently far from the
identity of PU(2) using 7-count at most (7/3 + o(1)) logsq(1/<?).

We are concerned with 7-count because for certain engineering
purposes, the As gates are simpler to construct while the 7 involution
is extremely costly. (Similar gate cost models are used with other
generators, in particular Clifford+7'.)

Blackman and Stier On the bes erators of PU(2) II 6 April 2022 6 /25



Some quick shorthand

Because every element of SU(2) takes the form

o= (% o)

for some «, 5 € C, we say that g = u(«, 8); and diagonals take the form

it
=7 )

for some 6 € R, whence we write § = u(6).

We also identify elements of PU(2) with their lifts to SU(2), as
appropriate.
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Technical substantiation

This result enables the finite-continuous analogy to go through.

Lemma (“tuning;” S. 21)

/ 2
Select absolute constants §,eyp > 0 and put C' = % + % (2—4'5) . Take

€0
71,72 € PU(2) and write them as v, = u(ay, B¢). If ||a1| — |az|| < € for
some ¢ < § and min{|a1|,|as|} < /1 — &5 then for

1

0, = §(argoz1 —argap + arg /1 — arg f32), 01 = u(61)
1

0o = §(argoz1 —argap — arg 1 + arg Ba), b2 = ()

we have the approximation 17202 to 71, satisfying

d(’}/l, 51’7252) < Ce.
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Diagonal elements

For given diagonal § = u(#) and e, we seek v € T with d(d,7) < € where

- To+ x11 T2+ x30
7= —X9 + T30 To— Tt

for xg, 1, 2, x5 € Z[p] satisfying
xf + 23 + 25 + a3 =P (1)
for some m € N (factorization of length m). Ross—Selinger deduce that
2o cosf + xysinf > P(1 — 262) (1)

is sufficient.
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Diagonal elements, cont.

Algebraic manipulation and Galois conjugates reduce (1) and (I) to
consideration of x; =: ¢ + dy and the following sufficient conditions:

(c+dp)sind < P21 —&2)
e+ dosy| < (02 P)"2
¢+ dp— P21 — &%) sinb| < P2 [cosf] V2 — e%.

Lenstra’s algorithm finds all such points efficiently.

Blackman and Stier
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Diagonal elements, cont.

Generically, the solution set is grid points contained in a long, thin,
tilted rectangle:

6401 B

560 B

300 320 340 360 380 400 420 440

Figure: Feasible set for § = 7/s, m = 6, and € = 1/10%.
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Diagonal elements, cont.

Then, we seek seek xg =: a + by from

la+bosp| < (0£P)"* /1= (0421)?
(a + bp)cos < P"/*(1 — 1 sin 6)
(a+ bp)cos = P"/*(1 — &2 — 21 sinb)

again using Lenstra’s algorithm.

Blackman and Stier On the best tors of PU(2) II 6 April 2022



Diagonal elements, cont.

Then, we seek seek xg =: a + by from

la+bosp| < (0£P)"* /1= (0421)?
(a + bp)cos < P"/*(1 — 1 sin 6)
(a+ bp)cos = P"/*(1 — &2 — 21 sinb)

again using Lenstra’s algorithm.

We complete the search, having found candidates zo and z1, by writing
P — 23 — 22 as a sum of two squares 73 + 72 in Z[y].
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Diagonal elements, cont.

Then, we seek seek xg =: a + by from

la+bosp| < (0£P)"* /1= (0421)?
(a + bp)cos < P"/*(1 — 1 sin 6)
(a+ bp)cos = P"/*(1 — &2 — 21 sinb)

again using Lenstra’s algorithm.

We complete the search, having found candidates zo and z1, by writing
P — 23 — 22 as a sum of two squares 73 + 72 in Z[y].

The factorization length, if we start from m = 1, will be exactly the m
on which we halt.
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General elements

For given element g = u(«, 5) and ¢, we seek v € I with d(g,v) < &
where

. To +x1t X9 + x31
—X9 + T30 To— X1t

for xg, x1, 2, x3 € Z]p] satisfying
x4+ 23+ 23+ =P (%)

for some m € N (factorization of length m). All we need to apply

x%—ﬁ ~ |al.

tuning is have
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General elements, cont.

This transforms into
\mg a2 ]a|2Dm‘ < ela| D™
Studying Galois conjugates of (x) give the added condition

oi(af +21) < (02 P)™
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General elements, cont.

This transforms into
\xg - ]a|2Dm‘ < elal ™.
Studying Galois conjugates of (x) give the added condition
oi(af +21) < (02 P)™

Viewing x3 + 27 as the element a + by € Z[p] (a rank-two lattice) we
apply Lenstra’s algorithm to

a+bp— o "] < cla] Pm
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General elements, cont.

Arriving at a candidate pair (a,b), we find the squares xg and x1, and

then use the same sum-of-squares algorithm to find xs and x3
satisfying (x).

Blackman and Stier On the best

rators of PU(2) I 6 April 2022 15 / 25



General elements, cont.

Arriving at a candidate pair (a,b), we find the squares xg and x1, and
then use the same sum-of-squares algorithm to find xs and x3
satisfying (x).

We perform this task for each m, starting with m = 1, until a valid
quadruple is found.
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General elements, cont.

Arriving at a candidate pair (a,b), we find the squares xg and x1, and
then use the same sum-of-squares algorithm to find xs and x3
satisfying (x).

We perform this task for each m, starting with m = 1, until a valid
quadruple is found.

Then, we compute the phases for the tuning lemma and compute the
corresponding diagonal approximations.
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Analysis

The algorithm for diagonals is fundamentally the same as
Ross—Selinger’s, so we defer that analysis to their paper. The runtime
is O(polylog(1/c)) and the factorization length is (1 + o(1)) log(1/e3).
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Analysis

The algorithm for diagonals is fundamentally the same as
Ross—Selinger’s, so we defer that analysis to their paper. The runtime
is O(polylog(1/c)) and the factorization length is (1 + o(1)) log(1/e3).

For the general algorithm, we expect to halt when the planar region
has area O(poly log(1/c)). As the area is exactly %597“5, we expect to

halt when m =~ logsg(1/e).
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Analysis

The algorithm for diagonals is fundamentally the same as
Ross—Selinger’s, so we defer that analysis to their paper. The runtime
is O(polylog(1/c)) and the factorization length is (1 + o(1)) log(1/e3).

For the general algorithm, we expect to halt when the planar region

has area O(poly log(1/c)). As the area is exactly %597“5, we expect to

halt when m = logsg(1/e). Thus the runtime remains O(poly log(1/))
and the total length is (7/3 4 o(1)) log(1/¢3), as claimed.
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Analysis

The algorithm for diagonals is fundamentally the same as
Ross—Selinger’s, so we defer that analysis to their paper. The runtime
is O(polylog(1/c)) and the factorization length is (1 + o(1)) log(1/e3).

For the general algorithm, we expect to halt when the planar region
has area O(poly log(1/c)). As the area is exactly %597“5, we expect to
halt when m = logsg(1/e). Thus the runtime remains O(poly log(1/))

and the total length is (7/3 4 o(1)) log(1/¢3), as claimed.

The tuning lemma gives that precision is lossy only up to a constant
prefactor.
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Sums of squares

The main obstacle in pure algebraic number theory to overcome in this

work is the task of computing z,y € Z[p], given (WLOG irreducible)
z € Z[p], for which

z:x2+y2.

(Assume efficient integer factorization.)
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Sums of squares

The main obstacle in pure algebraic number theory to overcome in this
work is the task of computing z,y € Z[p], given (WLOG irreducible)
z € Z[p], for which

z:x2+y2.

(Assume efficient integer factorization.)

Recall that for p € Z, this can be done by computing w for which
w? +1=0 (mod p) and then finding ged(p, w + i) € Z[i].
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Sums of squares

The main obstacle in pure algebraic number theory to overcome in this
work is the task of computing z,y € Z[p], given (WLOG irreducible)
z € Z[p], for which

z=2%+ y2.

(Assume efficient integer factorization.)

Recall that for p € Z, this can be done by computing w for which
w? +1=0 (mod p) and then finding ged(p, w + 1) € Z[i]. Crucially, p
is 1 mod 4 and Z[i] is a Euclidean domain.
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Sums of squares, cont.

We prove the following;:

Theorem
Q(i, ) is norm-Euclidean. J
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Sums of squares, cont.

We prove the following;:

Theorem

Q(i, ) is norm-Euclidean.

Corollary

Let u € Z[p] be irreducible and N(u) be either p or p?. By passing up
to Zli, ], if p=1,3,7,9,13,17 (mod 20) then either u or uy is a sum
of two squares.
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Our algorithm has been implemented in Python. Visit

https://math.berkeley.edu/~zstier/icosahedral to download the
code and for some documentation.
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https://math.berkeley.edu/~zstier/icosahedral

Examples

Recall the generators of the Clifford+7T gate set:

i (1 1 e'™/3
N ) I G

We demonstrate factorizations of both, to precision € = 1/101°.
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Example: T

T =~ (copop)T(poopoo)T(opopo)T(popopo)T(poop
opoopop)T(oopopoopop)T(p)T(cpoopopoop)
T(p)T(poopapaap)T(popopoo)r(aopapoap)
T(opopoo)T(opoopopoop)T(opopoopa)T(op
opo)1(poopopoopop)T(poopopoopo)T(opo)

This has 7-count 19, against predicted 16.9, and is accurate up to
1.28/1010 in d.
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Example: H

v = (poopopoapap)r(popopoapoa)r(apopoa)r(paopopoop)T(poop)r
(opoopop)T(cpopoopoo)T(popoopopoopo)T(poopopo)T(poopop)

Y1 = (opop)T(popoopopoopo)T(poopoa)T(poopopoopop)T(popopo)T(o
pop)T(copo)T(aopapa)T(opopaopa)T(opopoopop)T(poopapa)T(p
opoop)t(copo)T(copopoo)T(oo)T(opopoopoo)T(opopoopo)T(cop
opoopop)T(popoopopo)

Yo = (opopoop)T(copopoop)T(opopoopoo)T(opoopop)T(copopo)T(pop
oo)t(opoopop)T(popopoopop)T(popoopoo)T(poopo)T(popopoop
op)T(poap)T(poopopoop)r(poopo)T(popoapopoa)T(popoopopoo)
T(oopopoopo)T(op)T(p)

The overall 7-count is 45, against predicted 39.4, and ~y;y7y2 is accurate

up to 1-28/10%0 in d.
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Future directions

In the past decade the almost-guarantees have been reduced from
poly log to clog, while the ¢ = 1 case is provably NP-complete. Recent

work (including this) has reduced ¢ to as low as 7/3. How close can one
get to c =17
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Future directions

In the past decade the almost-guarantees have been reduced from

poly log to clog, while the ¢ = 1 case is provably NP-complete. Recent
work (including this) has reduced ¢ to as low as 7/3. How close can one
get to c =17

Maybe CNOTs plus universal single-qubit sets aren’t optimal for (say)
the two-qubit gates. What is? (This study is already underway, see e.g.
Evra—Parzanchevski’s work on PU(3).)
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