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Modular Arithmetic

Modular arithmetic involves performing operations on integers modulo n.

Two integers are equivalent modulo n if they differ by a multiple of n.

172 − 8× 25 ≡ (mod 10)
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Modular Arithmetic

Modular arithmetic involves performing operations on integers modulo n.
Two integers are equivalent modulo n if they differ by a multiple of n.

172 − 8× 25 ≡ 9 (mod 10)
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Modular Arithmetic

Problem (2015 PUMaC NT A1)

What is the 22nd positive integer n such that 22n ends in a 2? (when
written in base 10)

Solution: The powers of 22, modulo 10, are 2, 4, 8, 6, 2, . . . . Thus the
last digit is a 2 when n is 1, 5, 9, etc. The 22nd term in this sequence is
85 .

See also: 2011 NT A3, 2013 NT A2, 2014 NT A2, 2015 NT B1, 2016 NT
A4, 2016 NT A7, 2016 NT A8, 2017 NT A6, 2018 NT A1, 2018 NT A5,
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

If a1 and a1 are coprime and

n ≡ b1 (mod a1)

n ≡ b2 (mod a2)

then there is a unique b with

n ≡ b (mod a1a2).

Remark: If c1 = c2 = 0 then c = 0.
Remark: This fact is also true with a1, . . . , ak and b1, . . . , bk .
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Chinese Remainder Theorem

Problem (2012 PUMaC NT A1)

Albert has a bag of candies that he want to share with his friends. At first,
he splits the candies evenly amongst 20 friends and himself and he finds
that there are five left over. Ante arrives, and they redistribute the candies
evenly again among the 22 people. This time, there are three left over. If
the bag contains over 500 candies, what is the fewest possible number of
candies?

Solution: Let x be the answer. It is the case that

x ≡ 3 (mod 21)

x ≡ 5 (mod 22)

=⇒ x ≡ 47 (mod 21× 22)

so x = 509 .
See also: 2010 NT A7
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Powers Modulo a Prime

Consider the powers of 3 mod 7. We have

31 ≡ 3 32 ≡ 2 33 ≡ 6 34 ≡ 4 35 ≡ 5 36 ≡ 1 (mod 7)

Before we consider when we arrive at every nonzero value modulo a prime,
let us first note when powers of a number are equivalent to 1 modulo
another number.

Definition

Let n be a positive integer. Then ϕ(n) is the number of integers at most n
which are relatively prime to n.

See also: 2010 NT A4, 2013 NT A4
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Euler’s Theorem

Theorem (Euler’s Theorem)

For coprime a, b we have aϕ(b) ≡ 1 (mod b).

Proof: Say k1, . . . , kϕ(b) are the values less than b relatively prime to b.
Then

k1 × k2 × . . .× kϕ(b) ≡ ak1 × ak2 × . . .× akϕ(b) (mod b)

k1 × k2 × . . .× kϕ(b) ≡ aϕ(b)(k1 × k2 × . . .× kϕ(b)) (mod b)

1 ≡ aϕ(b) (mod b).
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Fermat’s Little Theorem

Theorem (Fermat’s Little Theorem)

For any prime p and positive integer a not a multiple of p, ap−1 ≡ 1
(mod p).

Proof: ϕ(p) = p − 1, so we use Euler’s Theorem.
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Fermat’s Little Theorem

Problem (PUMaC 2015 NT A4)

What is the smallest positive integer n such that 20 ≡ n15 (mod 29)?

Solution: Let a be the answer. 29 - a, so a28 ≡ 1 (mod 29).

Then,
a14 ≡ ±1, so a15 ≡ ±a. Therefore a ≡ −20, 20 (mod 29). The first
candidate is a = 9, which does not work (by computation). The next
candidate is a = 20 , which does work (by computation).
See also: 2011 NT A1, 2012 NT A7, 2015 NT A5, 2016 NT A6, 2017 T10
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Primitive Roots

Now that we know that the number of terms we see in powers modulo a
prime is p − 1, we might ask whether there must exist a term whose
powers make up every nonzero modulus? We can prove this in two parts.

Definition

The order of a (mod p) is the smallest o such that ao ≡ 1 (mod p).

Note that the order must divide ϕ(p).

Theorem

The number of values modulo p which have order o is at most ϕ(o).

Proof: Note that these are all solutions to xo ≡ 1 (mod p). We can factor
the solutions from this, showing that there are at most o solutions. Then
at most ϕ(o) solutions, because if there is one solution, then any power of
this not coprime with o will also be a solution, but won’t have order o.
See also: 2015 NT A7
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Primitive Roots

Theorem

For all positive integers n we have

n =
∑
d |n

ϕ(d)

Proof: There are ϕ(d) values whose gcd with n is n/d , and each value
corresponds to one of these. By combining these, we see that there are
exactly ϕ(d) values of order d for all d |n, and thus there are ϕ(p − 1)
primitive roots for any prime p.
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Quadratic Residues

A quadratic residue modulo n is a value which is equivalent to a square
number modulo n.
The quadratic residues modulo 7 are 0, 1, 2, 4 (these are the only things
equivalent to one of 12, 32, . . . , 72).
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Quadratic Residues

Problem (2012 PUMaC NT A2)

How many ways can 22012 be expressed as the sum of four (not necessarily
distinct) positive squares?

Solution: Say a2 + b2 + c2 + d2 = 22012.

Looking modulo 4, a, b, c , and
d must all be all even or all odd, since the residues are 0 or 1, respectively.
However, looking modulo 8, 22012 ≡ 0, so they cannot be all odd.
Therefore, they are all even. We divide by 4 and repeat, finding
a2 + b2 + c2 + d2 = 4, so the answer is 1.
See also: 2012 NT A4, 2017 NT A5, 2017 NT A7, 2018 NT A6, 2018 T4
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Quadratic Residues

Definition

Let a be an integer and let p be an odd prime. Then the Legendre
symbol (a/p) is equal to:

• 0 if p | a,

• 1 if p - a and a ≡ b2 (mod p) for some b, and

• −1 otherwise.
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Calculating Quadratic Residues

In order to calculate Legendre symbols, it is useful to define some
equivalences:

Definition

If a is an integer and b = p1 × . . .× pk is an odd integer, then the Jacobi
symbol (a/b) is equal to (a/p1)× . . .× (a/pk).

We have the following equivalences:

• (a/b) = (a− kb/b)

• (ab/c) = (a/c)(b/c)

• (a/bc) = (a/b)(a/c)

From these, if we can determine (2/p) and (q/p) in terms of (p/q) when
p and q are primes, then we can determine the value of (p/q) for all
primes q.
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Quadratic Reciprocity

Theorem (Quadratic Reciprocity)

Say p and q are odd primes. Then (p/q) = (q/p) if either p or q are
equivalent to 1 (mod 4), and (p/q) = −(q/p) otherwise.

In order to prove this, we first want to see if we can rewrite our Legendre
symbol:

Theorem

For positive integers a and primes p, then (a/p) ≡ a(p−1)/2 (mod p).

Proof: If a is a multiple of p, this is trivial. Otherwise, write a as a power
of a primitive root, and note that the power is even if and only if a is a
quadratic residue.
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Gauss’ Criterion

Let’s define the even-remainder function e(a, p) as follows:

• Take the odd multiples of a less than ap: a, 3a, . . . , (p − 2)a.

• Find the remainders when these are divided by p, and call them
s1, s2, . . . , s(p−1)/2.

• Then we say that e(a, p) is the number of even values of si .

Theorem

For all positive integers a and primes p, we have (a/p) = (−1)e(a,p).

To show that this is true, we will use an argument similar to the one we
used before:

• Multiply each element of a set of numbers by a constant,

• Factor the original set out of the result modulo p.
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Proving Gauss’ Criterion

Proof: Consider the set where we replace even values si with p − si . Note
that then we have (p − 1)/2 odd values.

The values that were originally the same parity are distinct, and if two
values were originally different parity, then their difference modulo p is the
sum of two even multiples of a less than pa, so they cannot differ by a
multiple of p.
Then

1× 3× . . .× p − 2 ≡ a(p−1)/2(−1)e(a,p)(1× 3× . . .× p − 2) (mod p)

1 ≡ a(p−1)/2(−1)e(a,p) (mod p)

Since both of these are equivalent to either 1 or −1, we are done.
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Proving Quadratic Reciprocity

Let’s take another look at the statement:

Theorem (Quadratic Reciprocity)

Say p and q are odd primes. Then (p/q) = (q/p) if either p or q are
equivalent to 1 (mod 4), and (p/q) = −(q/p) otherwise.

Proof: We will prove that (p/q)(q/p) is 1 when one of these is 1 modulo
4, and −1 otherwise. Note that from Gauss’ Criterion, this product equals
(−1)e(p,q)+e(q,p).
There is a bijection between e(p, q) and pairs of positive odd (a, b) such
that a < q, b < p and 0 < ap − bq < p is even.
There is a bijection between e(q, p) and pairs of positive odd (a, b) such
that a < q, b < p and 0 < bq − ap < q is even. We can write this as
−p < ap − bq < 0.
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Proving Quadratic Reciprocity

Since there are no such values which give us 0, there is a bijection between
e(p, q) + e(q, p) and positive odd a < q, b < p such that
−p < ap − bq < q.

If (a, b) is a solution, then so is (q − 1− a, p − 1− b), and if a, b are both
equivalent to 3 modulo 4 then ((q − 1)/2, (p − 1)/2) is a solution. And
we’re done!
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