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Outline

∗ Motivation: simulating flocks

∗ Gazi and Passino’s model

∗ Global convergence

∗ Agentwise convergence
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Background: modeling flocks

It would be nice to have a realistic model of how organisms flock

It would also be nice to understand mathematics of such models
Unfortunately. . .
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Background: modeling flocks (boids)

That simulation is based on Craig Reynolds’ 1986 boids model

(boid is short for bird-oid object)

Three conditions enforced on individuals:

(a) alignment* – tendency to align parallel to avg. of proximal boids

(b) separation – tendency to avoid collision

(c) cohesion – tendency to avoid divergence
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Background: modeling flocks (boids)

(a) alignment* (b) separation (c) cohesion

Image source: C. Reynolds
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A model for global (b) & (c)

We’ll see here a model that implements separation and cohesion
We’ll then prove some results about it
Model due to Gazi & Passino, “Stability Analysis in Swarms,” 2003
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A model for global (b) & (c)

M agents, indexed by i ∈ [M ], with positions xi ∈ Rn

xi is implicitly xi(t); the time-parameter is suppressed for convenience
All agents always know all others’ positions, velocities with no delay
Agents are governed by the first-derivative relation

ẋi =

M∑
j=1, 6=i

g(xi − xj)

where g : Rn → Rn implements pairwise separation/cohesion
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The artificial social potential function g

We will consider the artificial social potential function

g(x) := −
(
a− b exp

(
−‖x‖

2

c

))
x
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Our first result about this model

Define the center in the obvious way:

x̄ :=
1

M

M∑
i=1

xi

and the ith offset as
ei := xi − x̄

Lemma 1

x̄ is stationary.
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Our first result about this model

Lemma 1

x̄ is stationary.

Proof.

˙̄x =
1

M

M∑
i=1

ẋi = − 1

M

M∑
i=1

M∑
j=1, 6=i

vijg1(vij) = 0

where vij := xi − xj and g1(v) := 〈g(v),v〉
‖v‖2 . �
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Lyapunov function candidates

Given
ẋ = f(x) (1)

for f : Rn → Rn, consider V ∈ C1(Rn → R) locally PSD on U ⊂ Rn

If ∇V · g is NSD then the sol’n to (1) is asymptotically stable in U
V is a Lyapunov function candidate (LFC)

Zachary Stier Stability Analysis in Swarms May 3, 2019 11 / 20



Lyapunov function candidates

Given
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Free agents

Attraction and repulsion balance at

δ :=

√
c ln

b

a

Definition (free agent)

A free agent at time t is an agent at distance more than δ from
every other agent.

Lemma 2

Free agent i at time t that is also farther than δ from x̄ has
instantaneous motion towards x̄.
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Free agents

Lemma 2

Free agent i at time t that is also farther than δ from x̄ has
instantaneous motion towards x̄.

Proof.

Manipulation of def. of x̄ gives

ẋi = −aMei + b

M∑
j=1, 6=i

exp

(
−‖vij‖2

c

)
vij

Using LFC Vi := 1
2‖e

i‖2, bound

V̇i 6 −aM‖ei‖2 + b‖ei‖
M∑

j=1, 6=i

exp

(
−‖vij‖2

c

)
‖vij‖

cont. on next slide
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Free agents

Lemma 2

Free agent i at time t that is also farther than δ from x̄ has
instantaneous motion towards x̄.

Proof.

Using ‖vij‖ > δ to bound the exponential term, we have

V̇i 6 −a‖ei‖2 − (M − 1)

(
a‖ei‖ − bδ exp

(
−δ

2

c

))
‖ei‖

where the second term is NSD by choice of δ and assumption that
‖ei‖ > δ; the inequality simplifies to

V̇i 6 −a‖ei‖2 = −2aVi.

i.e. we see that ẋi is in a direction such that ‖ei‖ decreases. �
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Convergence?

What can we say about convergence of agents in the swarm?

We cannot say that each agent converges to x̄
Instead, define

ε :=
b

a

√
c

2e

and

t̂ := − ln ε

a
+

1

a
ln

(
2 max
i∈[M ]

Vi(0)

)

Theorem 1

Each agent in the swarm will lie inside Bε(x̄) by time t̂.
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Convergence?

Theorem 1

Each agent in the swarm will lie inside Bε(x̄) by time t̂.

Proof.

Fix any i ∈ [M ]. Recall:

V̇i 6 −aM‖ei‖2 + b‖ei‖
M∑

j=1, 6=i

exp

(
−‖vij‖2

c

)
‖vij‖

The linear-exponential term obtains its maximum
√

c
2e at ‖vij‖ =

√
c
2

so V̇i < 0 if

‖ei‖ > b(M − 1)

aM

√
c

2e
=: ε′

cont. on next slide
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Convergence?

Theorem 1

Each agent in the swarm will lie inside Bε(x̄) by time t̂.

Proof.

Note that M
M−1ε

′ = ε, i.e. ε′ < ε. Therefore xi will not converge to
anywhere outside Bε′(x̄) ⊂ Bε(x̄).
To compute finite-time convergence, recall:

V̇i 6 −2aVi =⇒ Vi(t) 6 Vi(0)e−2at

so ‖ei‖ = ε by time

ti 6 −
1

2a
ln

(
ε2

2Vi(0)

)
which simplifies to the expression for t̂. �
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Convergence!

Despite issues with repulsion and mutual convergence, we can still
characterize the asymptotic convergence of the swarm

Let Ω be the invariant set of equilibrium points, i.e. states ~x with ~̇x = 0

Theorem 2

The swarm converges, as t→∞, to a value in Ω.

i.e. the swarm converges to a constant state
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Convergence!

Theorem 2

The swarm converges, as t→∞, to a value in Ω.

Proof.

Consider the LFC (also an artificial potential function)

J(~x) =
1

2

M−1∑
i=1

M∑
j=i+1

(
a‖vij‖2 + bc exp

(
−‖vij‖2

c

))

Since ∇xiJ(~x) = −ẋi, at all times t:

J̇(~x) = −
M∑
i=1

‖ẋi‖2 6 0

By LaSalle’s invariance principle, ~x→ {~x : J̇(~x) = 0}. �
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