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x Motivation: simulating flocks

x Gazi and Passino’s model
x Global convergence

% Agentwise convergence
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It would be nice to have a realistic model of how organisms flock
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It would be nice to have a realistic model of how organisms flock

It would also be nice to understand mathematics of such models
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It would be nice to have a realistic model of how organisms flock
Unfortunately. ..

It would also be nice to understand mathematics of such models
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That simulation is based on Craig Reynolds’ 1986 boids model
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That simulation is based on Craig Reynolds’ 1986 boids model
(boid is short for bird-oid object)
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That simulation is based on Craig Reynolds’ 1986 boids model
(boid is short for bird-oid object)

Three conditions enforced on individuals:
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That simulation is based on Craig Reynolds’ 1986 boids model
(boid is short for bird-oid object)

Three conditions enforced on individuals:

(a) alignment* — tendency to align parallel to avg. of proximal boids
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Background: modeling flocks (boids)

That simulation is based on Craig Reynolds’ 1986 boids model
(boid is short for bird-oid object)
Three conditions enforced on individuals:

(a) alignment* — tendency to align parallel to avg. of proximal boids
(b) separation — tendency to avoid collision

(¢) cohesion — tendency to avoid divergence
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a) alignment* b) separation ) cohesion

IMAGE SOURCE: C. REYNOLDS
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We'll see here a model that implements separation and cohesion
We’ll then prove some results about it

Model due to Gazi & Passino, “Stability Analysis in Swarms,” 2003
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A model for global (b) & (c)

M agents, indexed by i € [M], with positions x! € R"

x’ is implicitly x(¢); the time-parameter is suppressed for convenience
All agents always know all others’ positions, velocities with no delay
Agents are governed by the first-derivative relation

M

=Y g(x'—x))

j=1#i

where g : R” — R" implements pairwise separation/cohesion
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We will consider the artificial social potential function

9(x) ==

(orn()-
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Define the center in the obvious way:

1M
. i
= LY x
i=1
and the ith offset as . .
el =x"-x
X is stationary. l
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Given

&= f(x)

for f: R® — R™, consider V € C'(R" — R) locally PSD on U C R"
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Given

&= f(z)

(1)

for f: R® — R™, consider V € C'(R" — R) locally PSD on U C R"
If VV - g is NSD then the sol'n to (1) is asymptotically stable in U

«O>» «F>r «=r» «=)» = o>



Given

&= f(z) (1)
for f: R® — R™, consider V € C'(R" — R) locally PSD on U C R"

If VV - g is NSD then the sol'n to (1) is asymptotically stable in U
V is a Lyapunov function candidate (LFC)
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Attraction and repulsion balance at

0= \/clng
a
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Attraction and repulsion balance at

0= \/clné
a

every other agent.

A free agent at time ¢ is an agent at distance more than § from
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Attraction and repulsion balance at
[ b
d:=1/cln—
a
A free agent at time ¢ is an agent at distance more than § from
every other agent.
instantaneous motion towards X.

Free agent i at time ¢ that is also farther than ¢ from X has
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Free agents

Free agent ¢ at time ¢ that is also farther than § from X has
instantaneous motion towards X.

Proof.

Manipulation of def. of X gives
. v
.7 ) 3
X'=—aMe'+b Z 'exp <_Tj> Vij
J=1#i
Using LFC V; := 1||€?||?, bound
- 02 2 pleill 3 vl
Vi < —aMllel? + bl D exp (—1I0) vy
j=L#i

cont. on next slide
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Free agents

Free agent ¢ at time ¢ that is also farther than ¢ from X has
instantaneous motion towards X.

Proof.

Using ||v;;]| > ¢ to bound the exponential term, we have

. ) . 52 .
Vi <~ = (01 = 1) (allel] = s5exp (-2 ) ) el

where the second term is NSD by choice of 6 and assumption that
|le'|| > ¢; the inequality simplifies to

V; < —alle!||* = —2aV;.

i.e. we see that X is in a direction such that ||e’| decreases. [ |

[} =1 =
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What can we say about convergence of agents in the swarm?
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What can we say about convergence of agents in the swarm?
We cannot say that each agent converges to x

«O>» «F>r «=r» «=)» = o>



Instead, define

What can we say about convergence of agents in the swarm?
We cannot say that each agent converges to x
and

~

b
Ine

€= ¢
a2
=

1 In (2 max V;(0)
a a

1€[M] )
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What can we say about convergence of agents in the swarm?
We cannot say that each agent converges to X
Instead, define

=l /e
a2
and
—~ Ine
b= —— 4

1 In (2 max Vi(O))
a a 1€[M]

Each agent in the swarm will lie inside B.(X) by time Z.
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Convergence?

Each agent in the swarm will lie inside B.(X) by time Z.

Proof.
Fix any ¢ € [M]. Recall:

M 2
| - .
i <ot bl 3 exp (1795

oLt ¢
The linear-exponential term obtains its maximum /< at ||vill = /5
so V; <0 if
; b(M -1
jei > 22D 2 e

alM 2e

cont. on next slide
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Convergence?

Each agent in the swarm will lie inside B.(X) by time 7.

Proof.

Note that %6’ =¢, i.e. & <e. Therefore x’ will not converge to
anywhere outside B/ (X) C B:(X).
To compute finite-time convergence, recall:

Vi < —2aV; = Vi(t) < V;(0)e 2

so ||ef|| = & by time

; —iln =
ti < 2a 2V;(0

which simplifies to the expression for 7.

v
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Despite issues with repulsion and mutual convergence, we can still
characterize the asymptotic convergence of the swarm
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Despite issues with repulsion and mutual convergence, we can still
characterize the asymptotic convergence of the swarm

Let € be the invariant set of equilibrium points, i.e. states X with =0
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Despite issues with repulsion and mutual convergence, we can still
characterize the asymptotic convergence of the swarm

Let € be the invariant set of equilibrium points, i.e. states X with =0

The swarm converges, as t — oo, to a value in (2.

i.e. the swarm converges to a constant state
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Convergence!

The swarm converges, as t — oo, to a value in (. I

Proof.

Consider the LFC (also an artificial potential function)

Z Z (a||v”||2+bce p( v ”“2))

=1 j=i+1
Since VyiJ(X) = —x*, at all times t:
M .
=-> I¥I’<o
i=1
By LaSalle’s invariance principle, X — {X : J(X) = 0}. [
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* V. Gazi and K. M. Passino. “Stability Analysis of Swarms.” In
IEEE Transactions on Automatic Control 48.4 (2003).

x C. Reynolds. “Flocks, Herds, and Schools: A Distributed
Behavioral Model.” In Computer Graphics 21.4 (1987).
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