COS598H Final Presentation: Stability Analysis in Swarms

Zachary Stier

May 3, 2019

Zac	hary	Stier

Stability Analysis in Swarms

в May 3, 2019 1 / 20

3

DQC

< D > < D

- $\ast\,$ Motivation: simulating flocks
- * Gazi and Passino's model
- * Global convergence
- * Agentwise convergence

3

DQC

イロト イヨト イヨト イヨト

It would be nice to have a realistic model of how organisms flock

200

イロト イヨト イヨト イヨト

It would be nice to have a realistic model of how organisms flock It would also be nice to understand mathematics of such models

Sac

イロト スポト メヨト メヨト

It would be nice to have a realistic model of how organisms flock It would also be nice to understand mathematics of such models Unfortunately...

Sac

That simulation is based on Craig Reynolds' 1986 ${\bf boids}$ model

200

That simulation is based on Craig Reynolds' 1986 **boids** model (*boid* is short for *bird-oid object*)

Sac

That simulation is based on Craig Reynolds' 1986 **boids** model (*boid* is short for *bird-oid object*) Three conditions enforced on individuals:

Ja C

<ロト (四) (三) (三) (三) (三)

That simulation is based on Craig Reynolds' 1986 ${\bf boids}$ model

(*boid* is short for *bird-oid object*)

Three conditions enforced on individuals:

(a) **alignment*** – tendency to align parallel to avg. of proximal boids

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 亘 − つへで

That simulation is based on Craig Reynolds' 1986 boids model

(*boid* is short for *bird-oid object*)

Three conditions enforced on individuals:

- (a) $alignment^*$ tendency to align parallel to avg. of proximal boids
- (b) **separation** tendency to avoid collision
- (c) **cohesion** tendency to avoid divergence

Background: modeling flocks (boids)

IMAGE SOURCE: C. REYNOLDS

Zachary S	ti	\mathbf{er}
-----------	----	---------------

Stability Analysis in Swarms

æ

DQC

We'll see here a model that implements separation and cohesion We'll then prove some results about it Model due to Gazi & Passino, "Stability Analysis in Swarms," 2003

200

<ロト (四) (三) (三) (三) (三)

M agents, indexed by $i \in [M]$, with positions $\mathbf{x}^i \in \mathbf{R}^n$ \mathbf{x}^i is implicitly $\mathbf{x}^i(t)$; the time-parameter is suppressed for convenience All agents always know all others' positions, velocities with no delay Agents are governed by the first-derivative relation

$$\dot{\mathbf{x}}^i = \sum_{j=1,\neq i}^M g(\mathbf{x}^i - \mathbf{x}^j)$$

where $g: \mathbf{R}^n \to \mathbf{R}^n$ implements pairwise separation/cohesion

◆□▶ ◆□▶ ★∃▶ ★∃▶ → 亘 − つへで

We will consider the artificial social potential function

$$g(\mathbf{x}) := -\left(a - b \exp\left(-\frac{\|\mathbf{x}\|^2}{c}\right)\right) \mathbf{x}$$

200

Define the **center** in the obvious way:

$$\bar{\mathbf{x}} := \frac{1}{M} \sum_{i=1}^{M} \mathbf{x}^{i}$$

and the ith **offset** as

$$\mathbf{e}^i := \mathbf{x}^i - \bar{\mathbf{x}}$$

Lemma 1 $\bar{\mathbf{x}}$ is stationary.

T7		G
1.20	bart	Stion
Lac.	man y	Durer

Stability Analysis in Swarms

May 3, 2019 9 / 20

3

5900

1

・ロト ・回ト ・ヨト

Lemma 1

 $\bar{\mathbf{x}}$ is stationary.

Proof.

$$\dot{\mathbf{x}} = \frac{1}{M} \sum_{i=1}^{M} \dot{\mathbf{x}}^{i} = -\frac{1}{M} \sum_{i=1}^{M} \sum_{j=1,\neq i}^{M} \mathbf{v}_{ij} g_{1}(\mathbf{v}_{ij}) = 0$$
where $\mathbf{v}_{ij} := \mathbf{x}^{i} - \mathbf{x}^{j}$ and $g_{1}(\mathbf{v}) := \frac{\langle g(\mathbf{v}), \mathbf{v} \rangle}{\||\mathbf{v}\|^{2}}$.

ъ

5900

10 / 20

イロト イヨト イヨト イヨト

Given

$$\dot{x} = f(x) \tag{1}$$

for $f: \mathbf{R}^n \to \mathbf{R}^n$, consider $V \in \mathcal{C}^1(\mathbf{R}^n \to \mathbf{R})$ locally PSD on $U \subset \mathbf{R}^n$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Given

$$\dot{x} = f(x) \tag{1}$$

for $f : \mathbf{R}^n \to \mathbf{R}^n$, consider $V \in \mathcal{C}^1(\mathbf{R}^n \to \mathbf{R})$ locally PSD on $U \subset \mathbf{R}^n$ If $\nabla V \cdot g$ is NSD then the sol'n to (1) is asymptotically stable in U

∃ <200</p>

11 / 20

イロト イポト イヨト イヨト

Given

$$\dot{x} = f(x) \tag{1}$$

for $f : \mathbf{R}^n \to \mathbf{R}^n$, consider $V \in \mathcal{C}^1(\mathbf{R}^n \to \mathbf{R})$ locally PSD on $U \subset \mathbf{R}^n$ If $\nabla V \cdot g$ is NSD then the sol'n to (1) is asymptotically stable in UV is a **Lyapunov function candidate** (LFC)

Sar

11 / 20

イロト イポト イヨト イヨト

Attraction and repulsion balance at

$$\delta := \sqrt{c \ln \frac{b}{a}}$$

▲ロト ▲□ト ▲ヨト ▲ヨト ニヨー のへで

Attraction and repulsion balance at

$$\delta := \sqrt{c \ln \frac{b}{a}}$$

Definition (free agent)

A free agent at time t is an agent at distance more than δ from every other agent.

3

DQC

イロト イボト イヨト イヨト

Attraction and repulsion balance at

$$\delta := \sqrt{c \ln \frac{b}{a}}$$

Definition (free agent)

A free agent at time t is an agent at distance more than δ from every other agent.

Lemma 2

Free agent *i* at time *t* that is also farther than δ from $\bar{\mathbf{x}}$ has instantaneous motion towards $\bar{\mathbf{x}}$.

Sar

Lemma 2

Free agent *i* at time *t* that is also farther than δ from $\bar{\mathbf{x}}$ has instantaneous motion towards $\bar{\mathbf{x}}$.

Proof.

Manipulation of def. of $\bar{\mathbf{x}}$ gives

$$\dot{\mathbf{x}}^{i} = -aM\mathbf{e}^{i} + b\sum_{j=1,\neq i}^{M} \exp\left(-\frac{\|\mathbf{v}_{ij}\|^{2}}{c}\right)\mathbf{v}_{ij}$$

Using LFC $V_i := \frac{1}{2} \|\mathbf{e}^i\|^2$, bound

$$\dot{V}_i \leqslant -aM \|\mathbf{e}^i\|^2 + b \|\mathbf{e}^i\| \sum_{j=1,\neq i}^M \exp\left(-\frac{\|\mathbf{v}_{ij}\|^2}{c}\right) \|\mathbf{v}_{ij}\|$$

cont. on next slide

Zachary Stier

Stability Analysis in Swarms

Lemma 2

Free agent *i* at time *t* that is also farther than δ from $\bar{\mathbf{x}}$ has instantaneous motion towards $\bar{\mathbf{x}}$.

Proof.

Using $\|\mathbf{v}_{ij}\| > \delta$ to bound the exponential term, we have

$$\dot{V}_i \leqslant -a \|\mathbf{e}^i\|^2 - (M-1) \left(a \|\mathbf{e}^i\| - b\delta \exp\left(-\frac{\delta^2}{c}\right)\right) \|\mathbf{e}^i\|$$

where the second term is NSD by choice of δ and assumption that $\|\mathbf{e}^i\| \ge \delta$; the inequality simplifies to

$$\dot{V}_i \leqslant -a \|\mathbf{e}^i\|^2 = -2aV_i.$$

i.e. we see that $\dot{\mathbf{x}}^i$ is in a direction such that $\|\mathbf{e}^i\|$ decreases.

What can we say about convergence of agents in the swarm?

イロト イヨト イヨト イヨト ヨー のくで

What can we say about convergence of agents in the swarm? We *cannot* say that each agent converges to $\bar{\mathbf{x}}$

イロト イヨト イヨト イヨト ヨー のくで

What can we say about convergence of agents in the swarm? We cannot say that each agent converges to $\bar{\mathbf{x}}$ Instead, define _

$$\varepsilon := \frac{b}{a} \sqrt{\frac{c}{2e}}$$

and

$$\widehat{t} := -\frac{\ln \varepsilon}{a} + \frac{1}{a} \ln \left(2 \max_{i \in [M]} V_i(0) \right)$$

What can we say about convergence of agents in the swarm? We *cannot* say that each agent converges to $\bar{\mathbf{x}}$ Instead, define

$$\varepsilon := \frac{b}{a} \sqrt{\frac{c}{2e}}$$

and

$$\widehat{t} := -\frac{\ln \varepsilon}{a} + \frac{1}{a} \ln \left(2 \max_{i \in [M]} V_i(0) \right)$$

Theorem 1

Each agent in the swarm will lie inside $B_{\varepsilon}(\bar{\mathbf{x}})$ by time \hat{t} .

Zachary	Stier
---------	-------

Stability Analysis in Swarms

May 3, 2019 15 / 20

San

Theorem 1

Each agent in the swarm will lie inside $B_{\varepsilon}(\bar{\mathbf{x}})$ by time \hat{t} .

Proof.

Fix any $i \in [M]$. Recall:

$$\dot{V}_i \leqslant -aM \|\mathbf{e}^i\|^2 + b \|\mathbf{e}^i\| \sum_{j=1,\neq i}^M \exp\left(-\frac{\|\mathbf{v}_{ij}\|^2}{c}\right) \|\mathbf{v}_{ij}\|$$

The linear-exponential term obtains its maximum $\sqrt{\frac{c}{2e}}$ at $\|\mathbf{v}_{ij}\| = \sqrt{\frac{c}{2}}$ so $\dot{V}_i < 0$ if

$$\|\mathbf{e}^i\| > \frac{b(M-1)}{aM} \sqrt{\frac{c}{2e}} =: \varepsilon'$$

cont. on next slide

Zachary Stier

May 3, 2019 16 / 20

Theorem 1

Each agent in the swarm will lie inside $B_{\varepsilon}(\bar{\mathbf{x}})$ by time \hat{t} .

Proof.

Note that $\frac{M}{M-1}\varepsilon' = \varepsilon$, i.e. $\varepsilon' < \varepsilon$. Therefore \mathbf{x}^i will not converge to anywhere outside $B_{\varepsilon'}(\bar{\mathbf{x}}) \subset B_{\varepsilon}(\bar{\mathbf{x}})$. To compute finite-time convergence, recall:

$$\dot{V}_i \leqslant -2aV_i \implies V_i(t) \leqslant V_i(0)e^{-2at}$$

so $\|\mathbf{e}^i\| = \varepsilon$ by time

$$t_i \leqslant -\frac{1}{2a} \ln\left(\frac{\varepsilon^2}{2V_i(0)}\right)$$

which simplifies to the expression for \hat{t} .

Zachary Stier

May 3, 2019

æ

naa

17 / 20

・ロト ・回ト ・ヨト ・ヨト

Despite issues with repulsion and mutual convergence, we can still characterize the asymptotic convergence of the swarm

1

DQC

イロト イロト イヨト イヨト

Despite issues with repulsion and mutual convergence, we can still characterize the asymptotic convergence of the swarm Let Ω be the invariant set of equilibrium points, i.e. states $\vec{\mathbf{x}}$ with $\dot{\vec{\mathbf{x}}} = 0$

Despite issues with repulsion and mutual convergence, we can still characterize the asymptotic convergence of the swarm Let Ω be the invariant set of equilibrium points, i.e. states $\vec{\mathbf{x}}$ with $\vec{\mathbf{x}} = 0$

Theorem 2

The swarm converges, as $t \to \infty$, to a value in Ω .

i.e. the swarm converges to a constant state

San

Theorem 2

The swarm converges, as $t \to \infty$, to a value in Ω .

Proof.

Consider the LFC (also an artificial potential function)

$$J(\vec{\mathbf{x}}) = \frac{1}{2} \sum_{i=1}^{M-1} \sum_{j=i+1}^{M} \left(a \|\mathbf{v}_{ij}\|^2 + bc \exp\left(-\frac{\|\mathbf{v}_{ij}\|^2}{c}\right) \right)$$

Since $\nabla_{\mathbf{x}^i} J(\mathbf{\vec{x}}) = -\mathbf{\dot{x}}^i$, at all times t:

$$\dot{J}(\vec{\mathbf{x}}) = -\sum_{i=1}^{M} \|\dot{\mathbf{x}}^i\|^2 \leqslant 0$$

By LaSalle's invariance principle, $\vec{\mathbf{x}} \to {\{\vec{\mathbf{x}} : \dot{J}(\vec{\mathbf{x}}) = 0\}}$.

Zachary Stier

Stability Analysis in Swarms

May 3, 2019 19 / 20

- * V. Gazi and K. M. Passino. "Stability Analysis of Swarms." In IEEE Transactions on Automatic Control 48.4 (2003).
- * C. Reynolds. "Flocks, Herds, and Schools: A Distributed Behavioral Model." In *Computer Graphics* 21.4 (1987).

3

Sar

イロト イボト イヨト イヨト