

Discussion #17

GSI: Zack Stier

Date: October 13

1. $\iint_D x \cos y dA$ where D is bounded by $y = 0, y = x^2, x = 1$;

$$\int_0^1 \int_0^{x^2} x \cos y dy dx = \int_0^1 x \sin y \Big|_0^{x^2} dx = \int_0^1 x \sin x^2 dx = -\frac{1}{2} \cos(x^2) \Big|_0^1 = \frac{1}{2}(1 - \cos 1).$$

2. $\iint_D 2x - y dA$ where D is bounded by the circle with center at the origin and radius 2.

$$\int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} 2x - y dy dx = \int_{-2}^2 2xy - \frac{y^2}{2} \Big|_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} dx = \int_{-2}^2 4x\sqrt{4-x^2} dx = 0 \text{ since } 4x\sqrt{4-x^2} \text{ is an odd function.}$$

3. Find the volume of the solid under the surface $z = xy$ and above the triangle with vertices $(1,1), (4,1), (1,2)$.

After finding the equations bounding this triangle, we set up the integral and solve. The bounding lines are $x = 1, y = 1, x + 3y = 7$ so the volume is

$$\int_1^2 \int_1^{7-3y} xy dx dy = \int_1^2 \frac{1}{2} x^2 y \Big|_1^{7-3y} dy = \frac{1}{2} \int_1^2 48y - 42y^2 + 9y^3 dy = \frac{31}{8}$$

4. Find the volume enclosed by $z = x^2, y = x^2$ and the planes $z = 0$ and $y = 4$.

The set up is $\int_{-2}^2 \int_{x^2}^4 x^2 dy dx = \int_{-2}^2 4x^2 - x^4 dx = \frac{128}{15}$.

5. Find the volume of the solid by subtracting two volumes. The solid is enclosed by $y = 1 - x^2, y = x^2 - 1$, and the planes $x + y + z = 2, 2x + 2y - z + 10 = 0$.

The region of integration is bounded by the curves $y = 1 - x^2, y = x^2 - 1$ which intersect at $x = \pm 1$ with $1 - x^2 \geq x^2 - 1$ on $[-1, 1]$. Within this region, $z = 2x + 2y + 10$ is above $z = 2 - x - y$ so we have

$$\begin{aligned} V &= \int_{-1}^1 \int_{x^2-1}^{1-x^2} 2x + 2xy + 10 dy dx - \int_{-1}^1 \int_{x^2-1}^{1-x^2} 2 - x - y dy dx = \int_{-1}^1 \int_{x^2-1}^{1-x^2} 3x + 3y + 8 dy dx \\ &= \int_{-1}^1 3xy + \frac{3}{2}y^2 + 8y \Big|_{x^2-1}^{1-x^2} dx = \int_{-1}^1 -6x^3 - 16x^2 + 6x + 16 dx = \frac{64}{3}. \end{aligned}$$

All problems courtesy of Carlos Esparza.