
Fall 2025 Math 53, Sections 104/106

Discussion #14/15
GSI: Zack Stier
Date: October 3/6

1. Answer the following true-or-false questions.

(a) Any continuous function on the domain {(x, y) ∈ R2 : x2 + y2 < 1} will attain a
maximum.
False: f (x, y) = x is a counterexample.

(b) If xyex = λy and xyex = λx, then we can conclude that x = y.
False: It is true that λx = λy, but the case λ = 0 poses a problem. For example, if
x = 0, y = 1, λ = 0, then both equations are satisfied.

(c) If f (x, y) is differentiable and attains a maximum at (a, b) in the region {(x, y) ∈
R2 : |x|+ |y| ≤ 1}, then fx(a, b) = fy(a, b) = 0.
False: This is true if (a, b) is in the interior of the region, but not necessarily if
|a|+ |b| = 1.

(d) It is possible that a function f (x, y) can have no extrema along a level curve g(x, y) =
0.
True: for example f (x, y) = x and g(x, y) = y = 0.

2. Use Lagrange multipliers to solve the following problems.

(a) Find the extreme values of the function f (x, y) = 2x + y + 2z subject to the con-
straint that x2 + y2 + z2 = 1.
We solve the Lagrange multiplier equation: ⟨2, 1, 2⟩ = λ⟨2x, 2y, 2z⟩. Note that λ
cannot be zero in this equation, so the equalities 2 = 2λx, 1 = 2λy, 2 = 2λz are
equivalent to x = z = 2y. Substituting this into the constraint yields 4y2 + y2 +
4y2 = 1, so y = ±1/3. The max and min values occur at (2/3, 1/3, 2/3) and
(−2/3,−1/3,−2/3), respectively, with function values ±3.

(b) Find the extreme values of the function f (x, y) = y2ex on the domain
{(x, y) ∈ R2 : x2 + y2 ≤ 1}.
The gradient of this function is (y2ex, 2yex), which is zero along the x-axis y = 0.
Here the function value of 0 is a minimum, since f (x, y) ≥ 0 everywhere. On the
boundary we have the Lagrange multiplier equation: y2ex = 2λx and 2yex = 2λy.
We may assume y ̸= 0 as we have already considered this case, and then we get
2y = x/y, so y2 = 2x. Together with the equation x2 + y2 = 1, we obtain 2 − x2 =
2x, so x = ±

√
2− 1. We only need the ”+” solution because the ”-” one lies outside

of the unit disk. We know y2 = 2x = 2(
√

2 − 1) and therefore the maximum value
of f on the unit disk is

f
(√

2 − 1,±
√

2(
√

2 − 1)
)
= 2(

√
2 − 1)e

√
2−1
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(c) Use Lagrange multipliers to find the closest point(s) on the parabola y = x2 to the
point (0, 1). How could one solve this problem without using any multivariate
calculus?
We maximize the function f (x, y) = x2 +(y− 1)2 subject to the constraint g(x, y) =
y − x2 = 0. We obtain the system of equations

2x = −2λx
2(y − 1) = λ.

Substituting the second equation into the first, we find 2x = −2(2(y − 1))x, so
either x = 0 or y = 1/2. In the first case, the point (0, 0) is distance 1 from (0, 1).
In the second case, (± 1√

2
, 1/2) is distance

√
1/2 + 1/4 =

√
3/4 < 1 from the point

(0, 1). These two points are the closest. (This problem could also be solved by
minimizing the function

√
t2 + (t2 − 1)2.)

(d) You have 24 square inches of cardboard and want to build a box (in the shape of a
rectangular prism). Show that a 2” × 2” × 2” cube encloses the largest volume.
If x, y, z are the side lengths of the solid, then we have a constraint xy + yz + zx =
12 and want to optimize the function f (x, y, z) = xyz. A maximum value must
exist since the volume goes to zero if any of the side lengths do. We have yz =
λ(y + z) and xz = λ(x + z) and xy = λ(x + y). Multiplying the first equation
by x and the second by y and equating, we get xλ(y + z) = xyz = yλ(x + z).
All quantities are positive, so we may simplify to get x(y + z) = y(x + z), which
simplifies to x = y. Arguing similarly with the third equation, we find that all side
lengths are equal.

(e) Find the largest possible volume of a rectangular prism with edges parallel to the
coordinate axes and all vertices lying on the ellipsoid

x2

a2 +
y2

b2 +
z2

c2 = 1

(where a, b, c > 0.)
Let x, y, and z each be half of the side length pointing along the coordinate axes.
Then the volume of the prism is f (x, y, z) = 8xyz. We want to maximize this subject
to the constraint g = 1, where g(x, y, z) = x2/a2 + y2/b2 + z2/c2. Our Lagrange
multiplier equation ∇ f = λ∇g becomes

8yz =
2λx
a2 , 8xz =

2λy
b2 , 8xy =

2λz
c2

If λ = 0 then at least one of x, y, and z must be zero, giving a total volume of zero.
As this is clearly not maximal, we can ignore this case and assume λ ̸= 0. Mul-
tiplying the first equation by x/2λ gives x2/a2 = xyz/2λ. Let k = xyz/2λ; then
we are just saying x2/a2 = k. Similarly, we obtain y2/b2 = z2/c2 = k. Plugging
these into the equation for the ellipse gives 3k = 1, so k = 1/3. Thus x = ± 1√

3
a,

and since x is a length, we should get x = 1√
3

a. Similarly, we obtain y = 1√
3
b and

z = 1√
3
c.
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(f) Use Lagrange multipliers to find the closest points to the origin on the hyperbola
xy = 1.
We want to minimize f (x, y) = x2 + y2 subject to g(x, y) = 1, where g(x, y) = xy.
Setting ∇ f = λ∇y, we obtain 2x = λy and 2y = λx. If λ = 0, then x = y = 0,
but (0, 0) is not a point on the hyperbola, so we can ignore this case. So λ ̸= 0, and
we can write y = 2x/λ. Plugging this into xy = 1, we get 2x2/λ = 1, or λ = 2x2.
Taking this equation and plugging it into 2y = λx, we see 2y = 2x3, or y = x3.
Then 1 = xy = x4, so x = ±1. For x = 1 we solve xy = 1 to get y = 1; likewise,
for x = −1 we get y = −1. It is geometrically obvious that these correspond to
minima, so the closest points to the origin on xy = 1 are (1, 1) and (1,−1).

3. Here are some more Lagrange multiplier problems.

(a) Consider the functions f (x, y, z) = x + 4y + 4z, g(x, y, z) = x2 + 4y2 + 4z2.

i. g(x, y, z) = 2 parameterizes an ellipsoid. Find the maximum and minimum of
f on the ellipsoid given by g(x, y, z) = 2.
We use the Lagrange multiplier for this question.

∇ f = λ∇g
(1, 4, 4) = λ(2x, 8y, 8z)

First of all, λ ̸= 0. Then it is fairly obvious that to satisfy the equation, we must
have x = y = z. So we solve for g(x, x, x) = 9x2 = 2. This gives

x = y = z = ±
√

2
3

We plug in the points to find that

f

(√
2

3
,

√
2

3
,

√
2

3

)
= 3

√
2; f

(
−
√

2
3

,
−
√

2
3

,
−
√

2
3

)
= −3

√
2

Of which 3
√

2 is the maximum value of f on the ellipsoid, and −3
√

2 is the
minimum.

ii. What is the maximum and minimum of f among the points satisfying g(x, y, z) ⩽
2?
Since ∇ f ̸= 0, there is no critical points inside the ellipsoid, and so the maxi-
mum and minimum is the same as the ones in b., ±3

√
2.

(b) Consider the function f (x, y, z) = xy + xz + yz.

i. What is the maximum and minimum of f on the sphere g(x, y, z) =
1
2
(
x2 + y2 + z2) =

2.
To solve the problem, we need to use the Lagrange multiplier

∇ f = λ∇g
(y + z, x + z, x + y) = λ(x, y, z)

This gives me three equations:

λx = y + z; λy = x + z; λz = x + y
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Observe that if we add all three equations,

λ(x + y + z) = 2(x + y + z) (0.1)

Then λ = 2 or x + y + z = 0, which correspond to λ = −1 For λ1 = 2,
we can plug everything back in and see that x = y = z, then we must have

x = y = z = ± 2√
3

.

f
(

2√
3

,
2√
3

,
2√
3

)
= 4 f

(
− 2√

3
,− 2√

3
,− 2√

3

)
= 4

For λ2 = −1, we see that x + y + z = 0. However, fear not that you can not
solve for a point. Consider

(x + y + z)2 = x2 + y2 + z2 + 2xy + 2xz + 2yz = 4 + 2 f (x, y, z) = 0

Which means that f (x, y, z) = −2 on all points such that x + y + z = 0 and
x2 + y2 + z2 = 4. Then we see the maximum of f on the sphere is 4 while the
minimum is −2.

ii. What is the maximum and minimum of f inside the solid sphere including the
boundary g(x, y, z) ⩽ 2.
We need to find critical point of the function inside the sphere, so we set ∇ f =
(0, 0, 0), this gives me three equations:

y + z = 0 x + z = 0 x + y = 0

We observe that

(y + z)− (x + z)− (x + y) = −2x = 0

−(y + z) + (x + z)− (x + y) = −2y = 0

+(y + z)− (x + z) + (x + y) = −2z = 0

So f has only one critical point at (0, 0, 0), and f (0, 0, 0) = 0. But −2 < 0 < 4,
so the maximum and minimum is still the ones we found in a., 4 and −2.

4. Use Lagrange multipliers to solve the following problems.

(a) Maximize and minimize 3x − y − 3z subject to x + y − z = 1 and x2 + 2z2 = 1.
Let f = 3x − y − 3z, g = x + y − z, h = x2 + 2z2. Then ∇ f = (3,−1,−3), ∇g =
(1, 1,−1), and ∇h = (2x, 0, 4z). Our Lagrange multiplier equation ∇ f = λ∇g +
µ∇h splits into

3 = λ + 2µx, −1 = λ + 0, −3 = −λ + 4µz.

Hence λ = −1, and we can plug this in to the other equations to see µ = 2/x =
−1/z, so x = −2z. Plugging this into x2 + 2z2 = 1 gives 6z2 = 1 so z = ±1/

√
6,

x = ∓2/
√

6 (so x has the opposite sign of z). Plugging this into x + y − z = 1
shows y = 1 + 3z and so (x, y, z) is either

(−2/
√

6, 1 + 3/
√

6, 1/
√

6)
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or
(2/

√
6, 1 − 3/

√
6,−1/

√
6).

Computing 3x − y − 3z for each shows that the former gives a minimum (−1 −
2
√

6) and the latter gives a minimum (1 + 2
√

6).

(b) Maximize and minimize z subject to x2 + y2 = z2 and x + y + z = 24. This has no
maximum or minimum. How do we see this? We show that when z is large (how
large exactly we’re about to see) then the system

x2 + y2 = z2

x + y + z = 24

has a solution (x, y). To check this we solve for y in the second equation and plug
back into the first, obtaining

x2 + (24 − x − z)2 = z2

which simplifies to
x2 + (z − 24)x + (288 − 24z) = 0

This is a quadratic equation and we know that they have solutions when the dis-
criminant is greater or equal to zero. Here the discriminant is

(z − 24)2 + 4(288 − 24z) = z2 + 48z − 576

This describes a parabola that’s ”open from above” so when z is very large or very
negative the discriminant will be positive, meaning that there are x, y such that
(x, y, z) satisfies our constraints. So f (x, y, z) can be arbitrarily large and arbitrarily
small given our constraints.

5. Here are some challenge problems.

(a) Using the method of Lagrange multipliers, prove the following inequality: if x1, . . . , xn
are positive real numbers, then

n
1/x1 + · · ·+ 1/xn

≤ n
√

x1 . . . xn

with equality if and only if x1 = x2 = · · · = xn. The left-hand side is called the
harmonic mean of the numbers x1, . . . , xn and the right-hand side is called their geo-
metric mean, and this result is known as the GM–HM inequality.
We maximize the function f (x1, . . . , xn) =

n
1/x1+···+1/xn

≤ n
√

x1 . . . xn subject to the
constraint that g(x1, . . . , xn) := x1 . . . xn = C for a constant C. Note that maximiz-
ing f is equivalent to minimizing the function F(x1, . . . , xn) = 1

x1
+ · · ·+ 1

xn
. This

function must obtain a minimum on the hypersurface x1 . . . xn = C > 0 because
this quantity tends to infinity as min(x1, . . . , xn) → 0, so the minimum must oc-
cur at a point found by Lagrange multipliers (since the gradient of the constraint
function is nonzero on its level set.) For each k, we have

−1
x2

k
= λx1 . . . x̂k . . . xn.
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Where the hat over xk indicates that it is omitted from the product. Rearranging,

−1 = λx1 . . . x2
k . . . xn = Cλxk.

Now, λ must be nonzero for this to hold, in which case we find that x1 = · · · = xn
(= n

√
C), which we may check gives equality for the claimed inequality. By the

previous reasoning, this must correspond to a minimum for F, or a maximum for
f , so at any other point, the LHS is strictly smaller than the RHS.

(b) If x1, . . . , xn are real numbers, prove that

1
n

n

∑
i=1

xi ≤
√

1
n

n

∑
i=1

x2
i .

The left-hand side is called the arithmetic mean of the numbers x1, . . . , xn and the
right-hand side is called their quadratic mean, and this result is known as the QM–
AM inequality.

Let r =
√

∑i x2
i . Define functions f (y1, . . . , yn) = ∑i yi and g(y1, . . . , yn) = ∑n

i=1 y2
i .

To show our desired inequality, it suffices to show that the maximum value of f on
the sphere g(y1, . . . , yn) = r is at most

√
nr (because then f (x1, . . . , xn) ≤

√
nr, so

f (x1, . . . , xn)2 ≤ nr, which is exactly the inequality we are trying to show). So we
optimize f subject to the constraint g = r. To do this, we use Lagrange multipliers,
and so we set ∇ f (y1, . . . , yn) = λ∇g(y1, . . . , yn) for some scalar λ. Computing our
gradients and plugging them in, we get 1 = 2λyi for each i. Thus we must have
yi = 1/(2λ) for all i (since λ = 0 would lead to the equation 1 = 0, which can’t
hold). Plugging these into the equation g(y1, . . . , yn) = r, we obtain

r =
n

∑
i=1

1
4λ2 =

n
4λ2 ,

so λ = ± 1
2

√
n/r. It follows that yi = ±

√
r/n for all i, so

∑
i

yi = n · ±
√

r
n
= ±

√
nr.

The (global) maximum is clearly obtained when the sign here is +, so we see that
the maximum value of f on the sphere g = r is

√
nr, as needed.

Problem 3 courtesy of Galen Liang. All other problems courtesy of Carlos Esparza.
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