Fall 2025 Math 53, Sections 104/106
Discussion #14/15

GSI: Zack Stier
Date: October 3/6

1. Answer the following true-or-false questions.

(a)

(b)

(©)

(d)

Any continuous function on the domain {(x,y) € R? : x2 + y*> < 1} will attain a
maximum.

False: f(x,y) = x is a counterexample.

If xye* = Ay and xye® = Ax, then we can conclude that x = y.

False: It is true that Ax = Ay, but the case A = 0 poses a problem. For example, if
x =0,y =1,A =0, then both equations are satisfied.

If f(x,y) is differentiable and attains a maximum at (a,b) in the region {(x,y) €
R? : [x| + [y| <1}, then fi(a,b) = fy(a,b) = 0.

False: This is true if (a4,b) is in the interior of the region, but not necessarily if
la] 4+ |b| = 1.

Itis possible that a function f(x, y) can have no extrema along a level curve g(x,y) =
0.

True: for example f(x,y) = xand g(x,y) =y = 0.

2. Use Lagrange multipliers to solve the following problems.

(a)

(b)

Find the extreme values of the function f(x,y) = 2x + y + 2z subject to the con-
straint that x2 + y? +z2 = 1.

We solve the Lagrange multiplier equation: (2,1,2) = A(2x,2y,2z). Note that A
cannot be zero in this equation, so the equalities 2 = 2Ax,1 = 2Ay,2 = 2Az are
equivalent to x = z = 2y. Substituting this into the constraint yields 4y + y> +
4y> = 1,s0y = 41/3. The max and min values occur at (2/3,1/3,2/3) and
(—=2/3,—-1/3,—2/3), respectively, with function values £3.

Find the extreme values of the function f(x,y) = y*¢* on the domain

{(x,y) e R? : x> +y> < 1}

The gradient of this function is (y2e*,2ye*), which is zero along the x-axis y = 0.
Here the function value of 0 is a minimum, since f(x,y) > 0 everywhere. On the
boundary we have the Lagrange multiplier equation: y?e* = 2Ax and 2ye® = 2Ay.
We may assume y # 0 as we have already considered this case, and then we get
2y = x/y, so y?> = 2x. Together with the equation x> 4+ y? = 1, we obtain 2 — x> =
2x,50x = +v/2 —1. We only need the ”+” solution because the ”-” one lies outside
of the unit disk. We know y? = 2x = 2(1/2 — 1) and therefore the maximum value
of f on the unit disk is

f<\@ - Lim> =2(V2-1)eY*!



(©)

(d)

(e)

Use Lagrange multipliers to find the closest point(s) on the parabola y = x2 to the
point (0,1). How could one solve this problem without using any multivariate
calculus?

We maximize the function f(x,y) = x*+ (y — 1)? subject to the constraint g(x,y) =
y — x?> = 0. We obtain the system of equations

2x = —2Ax
2(y—1) = A,
Substituting the second equation into the first, we find 2x = —2(2(y — 1))x, so

either x = 0 or y = 1/2. In the first case, the point (0,0) is distance 1 from (0,1).
In the second case, (j:%, 1/2) is distance v/1/2+1/4 = 1/3/4 < 1 from the point

(0,1). These two points are the closest. (This problem could also be solved by
minimizing the function /#? + (> — 1)2.)

You have 24 square inches of cardboard and want to build a box (in the shape of a
rectangular prism). Show that a 2” x 2” x 2” cube encloses the largest volume.

If x, y, z are the side lengths of the solid, then we have a constraint xy + yz + zx =
12 and want to optimize the function f(x,y,z) = xyz. A maximum value must
exist since the volume goes to zero if any of the side lengths do. We have yz =
Aly+z) and xz = A(x +z) and xy = A(x +y). Multiplying the first equation
by x and the second by y and equating, we get xA(y + z) = xyz = yA(x + z).
All quantities are positive, so we may simplify to get x(y + z) = y(x + z), which
simplifies to x = y. Arguing similarly with the third equation, we find that all side
lengths are equal.

Find the largest possible volume of a rectangular prism with edges parallel to the
coordinate axes and all vertices lying on the ellipsoid
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(where a,b,c > 0.)

Let x, y, and z each be half of the side length pointing along the coordinate axes.
Then the volume of the prismis f(x,y,z) = 8xyz. We want to maximize this subject
to the constraint ¢ = 1, where ¢(x,y,z) = x2/a® + y*/b*> + z*/c*. Our Lagrange
multiplier equation V f = AV g becomes

2Ax 2Ay

2Az
QT/ 8xz = ?, 8xy = CT

8yz =
If A = 0 then at least one of x, y, and z must be zero, giving a total volume of zero.
As this is clearly not maximal, we can ignore this case and assume A # 0. Mul-
tiplying the first equation by x/2A gives x2/a* = xyz/2A. Let k = xyz/2A; then
we are just saying x?/a®> = k. Similarly, we obtain y*/b* = z?/c* = k. Plugging
these into the equation for the ellipse gives 3k = 1, so k = 1/3. Thus x = i%a,

and since x is a length, we should get x = %a. Similarly, we obtain y = %b and

= L1
z=5C



(f) Use Lagrange multipliers to find the closest points to the origin on the hyperbola
xy = 1.
We want to minimize f(x,y) = x> + y? subject to g(x,y) = 1, where g(x,y) = xy.
Setting Vf = AVy, we obtain 2x = Ay and 2y = Ax. If A = 0, thenx =y = 0,
but (0,0) is not a point on the hyperbola, so we can ignore this case. So A # 0, and
we can write y = 2x/A. Plugging this into xy = 1, we get 2x%2/A =1, 0r A = 2x2.
Taking this equation and plugging it into 2y = Ax, we see 2y = 2x3, or y = x°.
Then 1 = xy = x%,so x = £1. For x = 1 we solve xy = 1 to get y = 1; likewise,
for x = —1 we get y = —1. It is geometrically obvious that these correspond to
minima, so the closest points to the origin on xy = 1 are (1,1) and (1, —1).

3. Here are some more Lagrange multiplier problems.

(a) Consider the functions f(x,y,z) = x + 4y + 4z, g(x,y,z) = x> + 4y + 422,

i. g(x,y,z) = 2 parameterizes an ellipsoid. Find the maximum and minimum of
f on the ellipsoid given by g(x,y,z) = 2.
We use the Lagrange multiplier for this question.

Vf=AVg
(1,4,4) = A(2x,8y,8z2)

First of all, A # 0. Then it is fairly obvious that to satisfy the equation, we must
have x = y = z. So we solve for ¢(x, x,x) = 9x*> = 2. This gives

V2

We plug in the points to find that

Of which 3+/2 is the maximum value of f on the ellipsoid, and —3+v/2 is the
minimum.

ii. What is the maximum and minimum of f among the points satisfying ¢(x,y,z) <
2?
Since Vf # 0, there is no critical points inside the ellipsoid, and so the maxi-
mum and minimum is the same as the ones in b., +3+/2.

(b) Consider the function f(x,y,z) = xy + xz + yz.

(X +y2+2%) =

N[ —

i. Whatis the maximum and minimum of f on the sphere g(x,y,z) =

2.
To solve the problem, we need to use the Lagrange multiplier

Vf=AVg
(y+z,x+z,x+y)=Ax,y,z)

This gives me three equations:

Ax =y +z; Ay =x-+2z Az=x+y



Observe that if we add all three equations,

AMx4+y+z)=2(x+y+2z2) (0.1)

Then A = 2 or x +y +z = 0, which correspond to A = —1 For A; = 2,

we can plug everything back in and see that x = y = z, then we must have
X=y=z==F—.
! V3

f<2 2 2) 4 f<_2 2 _2> _4

V3 V33 V3 V3 3

For A, = —1, we see that x + y + z = 0. However, fear not that you can not
solve for a point. Consider

(x+y+z)2 =2 +y*+2%+2xy +2xz +2yz = 4+ 2f(x,y,2) =0

Which means that f(x,y,z) = —2 on all points such that x +y +z = 0 and
x? + y? + z2 = 4. Then we see the maximum of f on the sphere is 4 while the
minimum is —2.

ii. What is the maximum and minimum of f inside the solid sphere including the
boundary g(x,y,z) < 2.
We need to find critical point of the function inside the sphere, so we set Vf =
(0,0,0), this gives me three equations:

y+z=0 x+z=0 x+y=0
We observe that

(y+z)—(x+z)—(x+y)=—-2x=0

—(y+z)+(x+z)— (x+y)=—-2y=0

H(y+2) — (x+2)+ (x+y) =22 =0

So f has only one critical point at (0,0,0), and f(0,0,0) = 0. But =2 < 0 < 4,
so the maximum and minimum is still the ones we found in a., 4 and —2.

4. Use Lagrange multipliers to solve the following problems.

(a) Maximize and minimize 3x — y — 3z subject to x + y —z = 1 and x? +2z? = 1.
Let f=3x—y—3z,¢=x+y—2z h=2x>+2z% Then Vf = (3,—1,-3), Vg =
(1,1,—-1), and Vh = (2x,0,4z). Our Lagrange multiplier equation Vf = AVg +
uVh splits into

3=A+2pux, —1=A+0, -3 = —A+4puz.

Hence A = —1, and we can plug this in to the other equations to see y = 2/x =
—1/z, 50 x = —2z. Plugging this into x? 4 2z%> = 1 gives 62> = 1s0z = +1//6,
x = F2//6 (so x has the opposite sign of z). Plugging this into x +y —z = 1
shows y =1+ 3z and so (x,y, z) is either

(—2/v6,1+3/v6,1/6)
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or

(2/V6,1—3/V6,-1/6).

Computing 3x — y — 3z for each shows that the former gives a minimum (-1 —
2+/6) and the latter gives a minimum (1 + 21/6).

(b) Maximize and minimize z subject to x> + y? = z? and x +y + z = 24. This has no
maximum or minimum. How do we see this? We show that when z is large (how
large exactly we’re about to see) then the system

2P =22

x+y+z=24

has a solution (x,y). To check this we solve for y in the second equation and plug
back into the first, obtaining

X2+ (24 —x — 2)? = 22

which simplifies to
X* + (z—24)x + (288 —24z) = 0

This is a quadratic equation and we know that they have solutions when the dis-
criminant is greater or equal to zero. Here the discriminant is

(z —24)% +4(288 — 24z) = z* + 48z — 576

This describes a parabola that’s “open from above” so when z is very large or very
negative the discriminant will be positive, meaning that there are x,y such that
(x,y,z) satisfies our constraints. So f(x,y,z) can be arbitrarily large and arbitrarily
small given our constraints.

5. Here are some challenge problems.

(a) Using the method of Lagrange multipliers, prove the following inequality: if x1,. .., x;
are positive real numbers, then

n
Py R VAT
with equality if and only if x; = x, = --- = x;,. The left-hand side is called the
harmonic mean of the numbers x, ..., x, and the right-hand side is called their geo-
metric mean, and this result is known as the GM-HM inequality.
We maximize the function f(x1,...,x,) = 1/x1+ni+l/xn < {/x1...x, subject to the
constraint that g(x1,...,%,) := x1...x, = C for a constant C. Note that maximiz-
ing f is equivalent to minimizing the function F(xy,...,x,) = x% +- 1+ xl—n This
function must obtain a minimum on the hypersurface x;...x, = C > 0 because
this quantity tends to infinity as min(xy,...,x,) — 0, so the minimum must oc-
cur at a point found by Lagrange multipliers (since the gradient of the constraint
function is nonzero on its level set.) For each k, we have

-1 .
— = Axp. N X
X

k



Where the hat over x; indicates that it is omitted from the product. Rearranging,
-1 = Axl...x%...xn = CAxy.

Now, A must be nonzero for this to hold, in which case we find that x; = --- = x,,
(= {/C), which we may check gives equality for the claimed inequality. By the
previous reasoning, this must correspond to a minimum for F, or a maximum for
f, so at any other point, the LHS is strictly smaller than the RHS.

(b) If x1,...,x, are real numbers, prove that
1 n

sziﬁ

i=1

N

X5,

|-

n
i=1

The left-hand side is called the arithmetic mean of the numbers x1,...,x, and the
right-hand side is called their quadratic mean, and this result is known as the QM-
AM inequality.

Let r = y/Y; x2. Define functions f(y1,...,yn) = Y;yiand g(y1, ..., yu) = Lieq v2.
To show our desired inequality, it suffices to show that the maximum value of f on
the sphere g(v1,...,y,) = ris at most \/nr (because then f(x1,...,x,) < \/nr, so
f(x1,...,x4)* < nr, which is exactly the inequality we are trying to show). So we
optimize f subject to the constraint ¢ = . To do this, we use Lagrange multipliers,
and soweset Vf(y1,...,yn) = AVQ(y1,...,yn) for some scalar A. Computing our
gradients and plugging them in, we get 1 = 2Ay; for each i. Thus we must have
yi = 1/(2A) for all i (since A = 0 would lead to the equation 1 = 0, which can’t
hold). Plugging these into the equation g(y1,...,yn) = r, we obtain

1 n

r=Lope T e

Mz

i=1

SOA = i%\/n/r. It follows that y; = +=+/r/n for all i, so

Z%In-i\/::j:\/ﬂ.
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The (global) maximum is clearly obtained when the sign here is +, so we see that
the maximum value of f on the sphere ¢ = r is \/nr, as needed.

Problem 3 courtesy of Galen Liang. All other problems courtesy of Carlos Esparza.



