
Fall 2025 Math 53, Sections 104/106

Discussion #9
GSI: Zack Stier
Date: September 22

1. Do directional derivatives commute? i.e., for unit vectors u and v, and twice-partially-
differentiable f (with any number of inputs; you can assume 2), is it the case that
DvDu f = DuDv f ? Either prove it or provide a counterexample.

We can just directly evaluate the left-hand side. Say u = (u1, u2) and v = (v1, v2). Then
Du f = u1 fx + u2 fy so DvDu f = v1(u1 fxx + u2 fxy) + v2(u1 fxy + u2 fyy) = u1v1 fxx +
u2v2 fyy + (u1v2 + u2v1) fxy, so if we swap the roles of u and v we get the same outcome.

2. Suppose the following are true:

D〈
1√
2

, 1√
2

〉 f = ex(sin y + cos y)

D〈
1√
2

,− 1√
2

〉 f = ex(− sin y + cos y).

Find ∇ f .

Call the directions u and v. Then u + v =
√

2i and u − v =
√

2j. Since we want Di f and
Dj f , the answer is 〈√

2ex cos y,
√

2ex sin y
〉

.

3. Compute the following tangent planes:

(a) f (x, y, z) = d, for f (x, y, z) = ax + by + cz, at any point (x0, y0, z0). (Do this one
with partial derivatives. Could you have done this another way?)

(b) xy2z3 = 8 at (2, 2, 1);

(c) x + y + z = exyz at (0, 0, 1).

(d) Show that the equation of the tangent plane to the ellipsoid x2/a2 + y2/b2 + z2/c2 =
1 at the point (x0, y0, z0) can be written as

xx0

a2 +
yy0

b2 +
zz0

c2 = 1.

(a) ∇ f = ⟨a, b, c⟩, so from the formula the tangent plane is a(x − x0) + b(y − y0) +
c(z − z0) = d, which is exactly the original plane. Of course, the plane is tangent to
itself!

(b) Let F(x, y, z) = xy2z3. Then ∇F(x, y, z) = ⟨y2z3, 2xyz3, 3xy2z2⟩ so ∇F(2, 2, 1) =
⟨4, 8, 24⟩. Hence, the tangent plane is 4(x − 2) + 8(y − 2) + 24(z − 1) = 0.
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(c) Let F(x, y, z) = x + y + z − exyz. Then ∇F(x, y, z) = ⟨1 − yzexyz, 1 − xzexyz, 1 −
xyexyz⟩ so ∇F(0, 0, 1) = ⟨1, 1, 1⟩. Hence, the tangent plane is (x − 0) + (y − 0) +
(z − 1) = 0.

(d) ∇F(x0, y0, z0) = ⟨2x0/a2, 2y0/b2, 2z0/c2⟩. Then the tangent plane is

2x0

a2 (x − x0) +
2y0

b2 (y − y0) +
2z0

c2 (z − z0) = 0.

Rearranging, we obtain

2x0

a2 x +
2y0

b2 y +
2z0

c2 z = 2
(

x2
0

a2 +
y2

0
b2 +

z2
0

c2

)
= 2.

Dividing by 2 gives the desired result.

4. (This one is pretty tricky) Consider the spheres
(

x − 1√
2

)2
+ y2 + z2 = 1 and

(
x + 1√

2

)2
+

y2 + z2 = 1. For each point of their intersection, find the angle between the tangent
plane to each sphere.

What we can immediately do is compute the tangent plane to each point (x0, y0, z0)
of intersection. It’s just a matter of computing the respective tangent planes: for the
first circle, 2

(
x0 − 1√

2

)
(x − x0) + 2y0(y − y0) + 2z0(z − z0) = ax0,y0,z0 for some number

ax0,y0,z0 . Similarly, for the second circle, 2
(

x0 +
1√
2

)
(x − x0) + 2y0(y − y0) + 2z0(z −

z0) = bx0,y0,z0 for some number bx0,y0,z0 . The angle is given by the angle between the
normal vectors, which have dot product x2

0 − 1
2 + y2

0 + z2
0. So we need to know the value

of x2
0 + y2

0 + z2
0. We can now take the sum of the two defining equations at the mutual

point (x0, y0, z0), to get 2(x2
0 + y2

0 + z2
0)+ 1 = 2, or x2

0 + y2
0 + z2

0 = 1
2 . Thus the dot product

is always 0, i.e. the angle is always 90◦!

Problems 2 and 4 courtesy of Galen Liang. Problems 3(b–d) courtesy of Carlos Esparza.
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