

Discussion #9

GSI: Zack Stier

Date: September 22

1. Do directional derivatives commute? i.e., for unit vectors \mathbf{u} and \mathbf{v} , and twice-partially-differentiable f (with any number of inputs; you can assume 2), is it the case that $D_{\mathbf{v}}D_{\mathbf{u}}f = D_{\mathbf{u}}D_{\mathbf{v}}f$? Either prove it or provide a counterexample.

We can just directly evaluate the left-hand side. Say $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. Then $D_{\mathbf{u}}f = u_1 f_x + u_2 f_y$ so $D_{\mathbf{v}}D_{\mathbf{u}}f = v_1(u_1 f_{xx} + u_2 f_{xy}) + v_2(u_1 f_{xy} + u_2 f_{yy}) = u_1 v_1 f_{xx} + u_2 v_2 f_{yy} + (u_1 v_2 + u_2 v_1) f_{xy}$, so if we swap the roles of \mathbf{u} and \mathbf{v} we get the same outcome.

2. Suppose the following are true:

$$D_{\left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle} f = e^x (\sin y + \cos y)$$

$$D_{\left\langle \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right\rangle} f = e^x (-\sin y + \cos y).$$

Find ∇f .

Call the directions \mathbf{u} and \mathbf{v} . Then $\mathbf{u} + \mathbf{v} = \sqrt{2}\mathbf{i}$ and $\mathbf{u} - \mathbf{v} = \sqrt{2}\mathbf{j}$. Since we want $D_{\mathbf{i}}f$ and $D_{\mathbf{j}}f$, the answer is

$$\left\langle \sqrt{2}e^x \cos y, \sqrt{2}e^x \sin y \right\rangle.$$

3. Compute the following tangent planes:

- $f(x, y, z) = d$, for $f(x, y, z) = ax + by + cz$, at any point (x_0, y_0, z_0) . (Do this one with partial derivatives. Could you have done this another way?)
- $xy^2z^3 = 8$ at $(2, 2, 1)$;
- $x + y + z = e^{xyz}$ at $(0, 0, 1)$.
- Show that the equation of the tangent plane to the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$ at the point (x_0, y_0, z_0) can be written as

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} + \frac{zz_0}{c^2} = 1.$$

- $\nabla f = \langle a, b, c \rangle$, so from the formula the tangent plane is $a(x - x_0) + b(y - y_0) + c(z - z_0) = d$, which is exactly the original plane. Of course, the plane is tangent to itself!
- Let $F(x, y, z) = xy^2z^3$. Then $\nabla F(x, y, z) = \langle y^2z^3, 2xyz^3, 3xy^2z^2 \rangle$ so $\nabla F(2, 2, 1) = \langle 4, 8, 24 \rangle$. Hence, the tangent plane is $4(x - 2) + 8(y - 2) + 24(z - 1) = 0$.

(c) Let $F(x, y, z) = x + y + z - e^{xyz}$. Then $\nabla F(x, y, z) = \langle 1 - yze^{xyz}, 1 - xze^{xyz}, 1 - xye^{xyz} \rangle$ so $\nabla F(0, 0, 1) = \langle 1, 1, 1 \rangle$. Hence, the tangent plane is $(x - 0) + (y - 0) + (z - 1) = 0$.

(d) $\nabla F(x_0, y_0, z_0) = \langle 2x_0/a^2, 2y_0/b^2, 2z_0/c^2 \rangle$. Then the tangent plane is

$$\frac{2x_0}{a^2}(x - x_0) + \frac{2y_0}{b^2}(y - y_0) + \frac{2z_0}{c^2}(z - z_0) = 0.$$

Rearranging, we obtain

$$\frac{2x_0}{a^2}x + \frac{2y_0}{b^2}y + \frac{2z_0}{c^2}z = 2\left(\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} + \frac{z_0^2}{c^2}\right) = 2.$$

Dividing by 2 gives the desired result.

4. (This one is pretty tricky) Consider the spheres $\left(x - \frac{1}{\sqrt{2}}\right)^2 + y^2 + z^2 = 1$ and $\left(x + \frac{1}{\sqrt{2}}\right)^2 + y^2 + z^2 = 1$. For each point of their intersection, find the angle between the tangent plane to each sphere.

What we can immediately do is compute the tangent plane to each point (x_0, y_0, z_0) of intersection. It's just a matter of computing the respective tangent planes: for the first circle, $2\left(x_0 - \frac{1}{\sqrt{2}}\right)(x - x_0) + 2y_0(y - y_0) + 2z_0(z - z_0) = a_{x_0, y_0, z_0}$ for some number a_{x_0, y_0, z_0} . Similarly, for the second circle, $2\left(x_0 + \frac{1}{\sqrt{2}}\right)(x - x_0) + 2y_0(y - y_0) + 2z_0(z - z_0) = b_{x_0, y_0, z_0}$ for some number b_{x_0, y_0, z_0} . The angle is given by the angle between the normal vectors, which have dot product $x_0^2 - \frac{1}{2} + y_0^2 + z_0^2$. So we need to know the value of $x_0^2 + y_0^2 + z_0^2$. We can now take the sum of the two defining equations at the mutual point (x_0, y_0, z_0) , to get $2(x_0^2 + y_0^2 + z_0^2) + 1 = 2$, or $x_0^2 + y_0^2 + z_0^2 = \frac{1}{2}$. Thus the dot product is always 0, i.e. the angle is always 90° !

Problems 2 and 4 courtesy of Galen Liang. Problems 3(b-d) courtesy of Carlos Esparza.