

Discussion #7

GSI: Zack Stier

Date: September 17

1. For each of the following, determine whether the limit exists.

(a) $f(x, y) = \alpha x + \beta y + \gamma$ and $(x, y) \rightarrow (a, b)$. (Try doing this one with $\varepsilon-\delta$.)

(b) $f(x, y) = xy \sin \frac{1}{x^2 + y^2}$ and $(x, y) \rightarrow (0, 0)$.

(c) $f(x, y) = \frac{(x-y)^2(x+y)}{(x-y)^4 + (x+y)^2}$ and $(x, y) \rightarrow (0, 0)$.

2. Find the best linear approximation to each of the following functions near the corresponding input values.

(a) $f(x, y) = y^2 - x$ near the input $(3, 0)$.

(b) $g(x, y) = e^x \cos y$ near the input $(5, \pi/2)$.

(c) $h(x, y, z) = xyz$ near the input $(3, 0, 2)$.

(d) $p(x, y, z, w) = x^2 + y^2 + z^2 + w^2$ near the input $(0, 1, 0, -1)$.

3. Compute the gradients of the following functions.

- (a) $f(\theta, \phi) = \cos \theta \cos \phi$.
- (b) $f(x, y) = \arctan(y/x)$.
- (c) $f(t, x, y) = \frac{1}{\sqrt{4\pi t}} \exp(-(x-y)^2/4t)$. (Express everything as multiples of $f(t, x, y)$.)

4. Consider $f(x, y) = e^{-r^4}$ where $r = \sqrt{x^2 + y^2}$. Compute its directional derivative at $(0, 0)$ w.r.t. the unit vectors in (polar) directions $\theta = 0, \pi/4, \pi/2$. What about any other angle?