

Discussion #5

GSI: Zack Stier

Date: September 12

1. For each of the following functions, find their first derivatives, i.e. $f_x(x, y)$ and $f_y(x, y)$, and also compute $f_x(1, 1)$ and $f_y(1, 1)$.

(a) $f(x, y) = x^4 + 5xy^3$

(b) $f(x, y) = \frac{x}{y}$

(c) $f(x, y) = x \sin(x + y) + y^2$

2. Calculate the first derivatives, i.e. f_x , f_y , and f_z , for the function

$$f(x, y, z) = \cos(x^2 + 2y) - e^{4x-z^4y} + y^3$$

3. Find the tangent planes to the graphs of each of the following functions at an arbitrary point $(x_0, y_0, f(x_0, y_0))$.

(a) $f(x, y) = x^2 + 2xy + y^2$

(b) $f(x, y) = e^{xy}$.

(c) $f(x, y) = \sin x$.

4. (a) Find $\frac{dz}{dt}$ for $z = xy^3 - x^2y$, $x = t^2 + 1$, $y = t^2 - 1$.
(b) Find $\frac{dw}{dt}$ if $w = f(x, y, z) = xe^{y/z}$, if $x = t^2$, $y = 1 - t$, and $z = 1 + 2t$.
(c) $w = xy + yz + zx$, $x = r \cos \theta$, $y = r \sin \theta$, $z = r\theta$, find the derivatives $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$ when $r = 2$ and $\theta = \frac{\pi}{2}$
5. (a) Use implicit differentiation to find $\frac{dy}{dx}$ for $y \cos x = x^2 + y^2$
(b) Use implicit differentiation to find $\frac{\partial z}{\partial y}$ and $\frac{\partial z}{\partial x}$ for the equation $e^z = xyz$.