

Math 53, Fall 2025, Section 104, Quiz 3

Name: _____

Student ID: _____

Time limit: 20 minutes.

- *Please keep your work only on the two printed pages.*
- *An answer without any work shown will get no credit.*

If a problem asks for a specific answer (rather than an explanation), box your result. You do not need to simplify expressions such as $2(x - 1) + x$, but you should evaluate trigonometric functions of simple angles such as multiples of $\frac{\pi}{4}$ and $\frac{\pi}{6}$.

1. (5 points each, part (b) is extra credit) For each region R , write the area integral $\iint_R dA$ as two equivalent double integrals: one in terms of $dx dy$ and one in terms of $dy dx$. You *do not* need to evaluate the integrals. Answers with variables out of scope (as in $\int_x^1 \int_1^0 dx dy$) will receive little or no credit. (*Hint: drawing the regions will help!*)

- (a) R is the triangle with vertices $(6, 7)$, $(7, 7)$, and $(7, 8)$.
- (b) *Your answer to this one cannot be a sum of integrals.* R is the triangle with vertices $(0, 0)$, $(2, 2)$, $(-2, 2)$.

2. (5 points each) Evaluate each of the following integrals.

$$(a) \int_3^6 \int_5^7 \left(\frac{1}{x} + xy\right) dy dx. \quad (b) \int_{-1}^0 \int_y^{y^2} y dx dy.$$

3. (10 points) Use Lagrange multipliers to find the distance between the point $(1, 2, -2)$ and the nearest point on the surface $x^2 + y^2 + z^2 = 16$, as well as the location of that point (or points). **Extra credit: find a solution that doesn't use derivatives at all.**