
Fall 2025 Math 53, Sections 104/106

Discussion #2/3
GSI: Zack Stier
Date: September 5/8

1. Write equations in polar coordinates to describe the following curves. Make sure to
include the range for θ.

(a) The curve xy = 1 for x > 0.
Substitute in x = r cos(θ), y = r sin(θ) to deduce that

r2 cos(θ) sin(θ) = 1.

Solving for r,

r =

√
1

cos(θ) sin(θ)
.

The curve is the quadrant x > 0, y > 0 so we choose the range 0 < θ < π/2.

(b) The parabola x = y2.
Substitute in x = r cos(θ), y = r sin(θ) to deduce that

r cos(θ) = r2 sin2(θ).

Solving for r,

r =
cos(θ)
sin2(θ)

.

We can choose the range 0 < θ < π to obtain the parabola.

(c) The line x = 1.
Substitute in x = r cos(θ) to deduce that

r cos(θ) = 1.

Solving for r,

r =
1

cos(θ)
.

We choose the range −π/2 < θ < π/2.

2. Consider the polar curve r = 2 cos θ for 0 ⩽ θ ⩽ 2π. Verify that it describes a circle
centered at (1, 0) with radius 1. How many times does it wrap around?

We have x = cos(2θ)+ 1 and y = sin(2θ). The distance from (1, 0) is
√

cos2(2θ) + sin2(2θ) =

1. It wraps around twice: it achieves distance two when |cos θ| = 1, i.e. θ = ±π.

3. (a) Find the area enclosed by the curve x = t2 − 2t, y =
√

t and the y-axis.
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(b) Find the area enclosed by the x-axis and the curve x = t3 + 1, y = 2t − t2.

(a) The curve touches the y-axis exactly when x = 0, i.e. when t = 0, 2. Notice that we
can write the curve as the graph of x as a function of y, i.e. f (y) = x. Eliminating
the parameter, we obtain t = y2, f (y) = x = y4 − 2y2. Since x ⩽ 0 for all t ∈ [0, 2],
the area enclosed is exactly the area under the curve of the graph of f , i.e. the
integral of f . The interval of integration is y ∈

[
0,
√

2
]
, so the area is

−
∫ √

2

0
f (y)dy =

8
15

√
2.

Note that we had to add the sign to make the area make sense (be positive).

(b) Notice that y = 2t − t2 intersects that x-axis at t = 0 and t = 2. The corresponding
values of x are 1 and 9 so the area in question is

∫ 9

1
ydx =

∫ 2

0
(2t − t2)(3t2)dt = 3

[
t4

2
− t5

5

]2

0
=

24
5

.

4. Find the area of the region that lies inside r = 3 cos θ and outside r = 1 + cos θ.

First we find where these two curves intersect. Notice that if 3 cos θ = 1 + cos θ ⇔
cos θ = 1/2 so θ = −π/3, π/3. Then by symmetry, the area is

2
∫ π/3

0

1
2
[(3 cos θ)2 − (1 + cos θ)2]dθ =

∫ π/3

0
8 cos2 θ − 2 cos θ − 1

=
∫ π/3

0
3 + 4 cos 2θ − 2 cos θdθ

= π.

5. Find the length of each curve:

(a) r = 2 cos θ, 0 ≤ θ ≤ π.

(b) r = θ2, 0 ≤ θ ≤ 2π.

(a) Applying the polar formula we have

L =
∫ π

0

√
r2 + (dr/dθ)2dθ =

∫ π

0

√
4 cos2 θ + 4 sin2 θdθ = 2π.

(b) Applying the polar formula we have

L =
∫ 2π

0

√
θ4 + 4θ2dθ =

∫ 2π

0
θ
√

θ2 + 4dθ =
1
3
(θ2 + 4)3/2

∣∣∣2π

0
=

8
3
[(π2 + 1)3/2 − 1].
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6. (a) If u⃗ and v⃗ are unit vectors in R3 and u ◦ v = −1, what is the angle between u⃗ and
v⃗?
From the formula u⃗ ◦ v⃗ = |u⃗| · |⃗v| cos θ, it follows that cos θ = −1, so θ = π.

(b) Find three nonzero vectors in R3 that are perpendicular to ⟨1, 3, 2⟩.
A nonzero vector ⟨x, y, z⟩ will work if and only if x + 3y + 2z = 0. Specifically
⟨−1, 1,−1⟩ and ⟨2, 0,−1⟩, and ⟨3,−1, 0⟩ all work (alternatively, once one solution
is found, it may be scaled to find others).

(c) Let P be a vertex on a cube. Let Q be an adjacent vertex and let R be the vertex
opposite to P. Using dot products, find the angle between the vectors

−→
PQ and

−→
PR.

Without loss of generality, take the cubic to lie in the first octant, with edges along
the positive coordinate axes, and have edges of length 1, so that P = (0, 0, 0) and
Q = (1, 0, 0). Then R = (1, 1, 1) and

−→
PQ = ⟨1, 0, 0⟩. Similarly

−→
PR = ⟨1, 1, 1⟩, so

−→
PQ ◦ −→PR = 1 = |−→PQ| · |−→PR| cos(θ) =

√
3, so θ = arccos(1/

√
3)

(d) If u⃗ and v⃗ are unit vectors in R3, show that the vectors u⃗ + v⃗ and v⃗ − v⃗ are perpen-
dicular.
We have (u⃗ + v⃗) ◦ (u⃗ − v⃗) = |u⃗|2 − |⃗v|2 = 1 − 1 = 0.

(e) Find the vector projection of v⃗ onto w⃗ and the scalar projection of v⃗ onto w⃗ if v⃗ =
⟨2, 4⟩, w⃗ = ⟨3, 1⟩.
The vector projection is

v⃗ · w⃗
|w⃗|2 w⃗ =

2 · 3 + 4 · 1
32 + 12 ⟨3, 1⟩ = 10

10
⟨3, 1⟩ = ⟨3, 1⟩,

and the scalar projection is

v⃗ · w⃗
|w⃗| =

2 · 3 + 4 · 1√
32 + 12

=
10√
10

=
√

10.

7. (a) Find the cross products v⃗ × w⃗ if v⃗ = ⟨2, 3, 1⟩ and w⃗ = ⟨−1, 2, 3⟩.
We use the determinant formula:

v⃗ × w⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
2 3 1
−1 2 3

∣∣∣∣∣∣
=

∣∣∣∣3 1
2 3

∣∣∣∣i⃗ − ∣∣∣∣ 2 1
−1 3

∣∣∣∣ j⃗ + ∣∣∣∣ 2 3
−1 2

∣∣∣∣k⃗
= (32 − 1 · 2)⃗i − (2 · 3 − 1 · (−1))⃗j + (2 · 2 − 3 · (−1))⃗k

= 7⃗i − 8⃗j + 7⃗k.

(b) Let u⃗ and v⃗ be nonzero vectors with u⃗ × v⃗ = 0⃗. What can you say about the rela-
tionship between u⃗ and v⃗?
Let θ be the angle between the two vectors; then we have

0 = |u⃗ × v⃗| = |u⃗||⃗v| sin θ.

This can only happen if sin θ = 0, which implies that θ is an integer multiple of π.
Thus we may conclude that u⃗ and v⃗ are collinear.
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(c) Find the area of the triangle with two sides given by the vectors v⃗ = ⟨1, 2⟩ and
w⃗ = ⟨−3, 4⟩.
We view this triangle as sitting within the xy-plane in R3. Then the quantity |⃗v× w⃗|
gives the area of the parallelogram with two sides given by v⃗ and w⃗. We compute

v⃗ × w⃗ = ⟨0, 0, 1 · 4 − 2 · (−3)⟩ = 10⃗k,

where we are justified in ignoring the i⃗ and j⃗ components because we know that
v⃗ × w⃗ must be orthogonal to the xy-plane. So the area of this parallelogram is 10.
The area of the triangle is half that of the parallelogram, so we see that the desired
area is 5.

Problem 1 courtesy of Yuji Okitani. Problems 2 and 3(a) courtesy of Jason Zhao. Problems
3(b) and 4–7 courtesy of Carlos Esparza.
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