

Discussion #2/3

GSI: Zack Stier

Date: September 5/8

1. Write equations in polar coordinates to describe the following curves. Make sure to include the range for θ .
 - (a) The curve $xy = 1$ for $x > 0$.
 - (b) The parabola $x = y^2$.
 - (c) The line $x = 1$.
2. Consider the polar curve $r = 2 \cos \theta$ for $0 \leq \theta \leq 2\pi$. Verify that it describes a circle centered at $(1, 0)$ with radius 1. How many times does it wrap around?
3. (a) Find the area enclosed by the curve $x = t^2 - 2t$, $y = \sqrt{t}$ and the y -axis.
(b) Find the area enclosed by the x -axis and the curve $x = t^3 + 1$, $y = 2t - t^2$.
4. Find the area of the region that lies inside $r = 3 \cos \theta$ and outside $r = 1 + \cos \theta$.

5. Find the length of each curve:

- $r = 2 \cos \theta, 0 \leq \theta \leq \pi.$
- $r = \theta^2, 0 \leq \theta \leq 2\pi.$

6. (a) If \vec{u} and \vec{v} are unit vectors in \mathbb{R}^3 and $u \circ v = -1$, what is the angle between \vec{u} and \vec{v} ?

(b) Find three nonzero vectors in \mathbb{R}^3 that are perpendicular to $\langle 1, 3, 2 \rangle$.

(c) Let P be a vertex on a cube. Let Q be an adjacent vertex and let R be the vertex opposite to P . Using dot products, find the angle between the vectors \overrightarrow{PQ} and \overrightarrow{PR} .

(d) If \vec{u} and \vec{v} are unit vectors in \mathbb{R}^3 , show that the vectors $\vec{u} + \vec{v}$ and $\vec{v} - \vec{v}$ are perpendicular.

(e) Find the vector projection of \vec{v} onto \vec{w} and the scalar projection of \vec{v} onto \vec{w} if $\vec{v} = \langle 2, 4 \rangle$, $\vec{w} = \langle 3, 1 \rangle$.

7. (a) Find the cross products $\vec{v} \times \vec{w}$ if $\vec{v} = \langle 2, 3, 1 \rangle$ and $\vec{w} = \langle -1, 2, 3 \rangle$.

(b) Let \vec{u} and \vec{v} be nonzero vectors with $\vec{u} \times \vec{v} = \vec{0}$. What can you say about the relationship between \vec{u} and \vec{v} ?

(c) Find the area of the triangle with two sides given by the vectors $\vec{v} = \langle 1, 2 \rangle$ and $\vec{w} = \langle -3, 4 \rangle$.