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1. Evaluate the surface integral
∫∫

S F⃗ · dS⃗ for the given vector field F⃗ and oriented surface
S. For closed surfaces, use the positive (outward) orientation.

(a) F⃗(x, y, z) = ⟨zexy,−3zexy, xy⟩. S is the parallelogram x = u + v, y = u − v, z =
1 + 2u + v, 0 ⩽ u ⩽ 2, 0 ⩽ v ⩽ 1 oriented upwards.
Let r⃗(u, v) = ⟨u+ v, u− v, 1+ 2u+ v⟩. Then r⃗u × r⃗v = ⟨3, 1,−2⟩. We get F⃗(⃗r(u, v)) =
⟨(1+ 2u+ v)eu2−v2

,−3(1+ 2u+ v)eu2−v2
, u2 − v2⟩. Since the z-component of r⃗u × r⃗v

is negative, we use −(⃗ru × r⃗v). Thus,∫∫
S

F⃗ · dS⃗ =
∫∫

D
F⃗ · (−(⃗ru × r⃗v))dA =

∫ 1

0

∫ 2

0
2(u2 − v2)du dv = 4.

(b) F⃗(x, y, z) = ⟨0, y,−z⟩ and S consists of the paraboloid y = x2 + z2, 0 ⩽ y ⩽ 1, and
the disk x2 + z2 ⩽ 1, y = 1.
Let S1 be the paraboloid and S2 be the disk. Since S is closed, we use the outward
orientation. On S1 we have F⃗(⃗r(x, z)) = ⟨0, x2 + z2,−z⟩ and r⃗x × r⃗z = ⟨1, 2x, 0⟩ ×
⟨0, 2z, 1⟩ = ⟨2x,−1, 2z⟩. Then∫∫

S1

F⃗ · dS⃗ =
∫∫

x2+z2⩽1
(−(x2 + z2)− 2z2)dA = −

∫ 2π

0

∫ 1

0
(r2 + 2r2 sin2 θ)r dr dθ = −π

and on S2 we have F⃗(⃗r(x, z)) = ⟨0, 1,−z⟩ and r⃗z × r⃗x = ⟨0, 1, 0⟩. Then
∫∫

S2
F⃗ · dS⃗ =∫∫

x2+z2⩽1 dA = π.
This can also be done with the divergence theorem.

(c) F⃗(x, y, z) = ⟨x2, y2, z2⟩ and S is the boundary of the solid half cylinder 0 ⩽ z ⩽√
1 − y2, 0 ⩽ x ⩽ 2.

Here S has four surfaces. S1 is the portion of the cylinder, S2 is the bottom surfaces
(lies on xy-plane), S3 is the front half disk at x = 2 and S4 is the back half disk
at x = 0. On S1 we have r⃗(x, y) = ⟨x, y,

√
1 − y2⟩ so r⃗x = ⟨1, 0, 0⟩ and r⃗y =

⟨0, 1,−y(1 − y2)−1/2. Then∫∫
S1

F · dS⃗ =
∫ 2

0

∫ 1

−1
F⃗(⃗r(x, y)) · (⃗rx × r⃗y)dx dy =

∫ 2

0

∫ 1

−1
y3(1 − y2)−1/2 + (1 − y2)dy dx = 8/3.

On S2 we have z = 0 with downward orientation so
∫∫

S2
F⃗ ·dS⃗ =

∫ 2
0

∫ 1
−1 −z2 dy dx =

0. On S3, the surfaces is x = 2 for −1 ⩽ y ⩽ 1 and 0 ⩽ z ⩽
√

1 − y2 oriented in the

positive x-direction. Hence, r⃗y × rz = i⃗ so
∫∫

S3
F⃗ · dS⃗ =

∫ 1
−1

∫√1−y2

0 x2 dz dy =

1



4
∫ 1
−1

∫√1−y2

0 dz dy = 2π. On S4, the surfaces is x = 0 for −1 ⩽ y ⩽ 1 and
0 ⩽ z ⩽

√
1 − y2 oriented in the negative x-direction. Hence, r⃗z × ry = −⃗i so∫∫

S3
F⃗ · dS⃗ =

∫ 1
−1

∫√1−y2

0 x2 dz dy = 0
∫ 1
−1

∫√1−y2

0 dz dy = 0. Summing these we
get 2π + 8/3.
This can also be done using the divergence theorem.

2. Let S be the cylinder x2 + y2 = 1, −1 ⩽ z ⩽ 1, plus its top and bottom caps. Compute
the flux of the vector field

F⃗(x, y, z) =

− sin πy
− cos πx

xy


both directly and by using the divergence theorem.

The vector field is incompressible, so by the divergence theorem we immediately know
that the flux has to be zero. If we do a direct computation the sides of the cylinder
will have zero contribution because n⃗ ⊥ F⃗ there and the contribution from the top and
bottom caps will cancel.

3. (a) Compute
∫∫

S F⃗ · dS⃗ where F⃗ = (x2, 2z,−3y) and S is the portion of y2 + z2 = 4
between x = 0 and x = 3 − z.

(b) Compute
∫∫

S(∇× F⃗) ·dS⃗ where F⃗ = (y,−x, yx3) and S is the portion of the sphere
of radius 4 with z ≥ 0 and the upwards orientation.

(c) Compute
∫∫

S F⃗ · dS⃗ where F⃗ = (sin(πx), zy3, z2 + 4x) where S is the surface of the
box −1 ⩽ x ⩽ 2, 0 ⩽ y ⩽ 1, and 1 ⩽ z ⩽ 4, oriented outwards.

(a) Parametrize the surface by x = x, y = 2 cos θ, and z = 2 sin θ for 0 ⩽ θ ⩽ 2π,
0 ⩽ x ⩽ 3 − 2 cos θ. Then r⃗x = (1, 0, 0) and r⃗θ = (0, 2 cos θ,−2 sin θ). So r⃗x × r⃗θ =

−2 sin θ⃗ j − 2 cos θ⃗k. Our integral then becomes∫
S

F⃗ · dS⃗ =
∫ 2π

0

∫ 3−2 cos θ

0
(0, 2 cos θ,−2 sin θ) · (x2, 4 cos θ,−6 sin θ)dx dθ

=
∫ 2π

0

∫ 3−2 cos θ

0
4 sin θ cos θ dx dθ

=
∫ 2π

0
12 sin θ cos θ − 8 sin θ cos2 θ dθ = 0.

(b) We use Stokes’ theorem and then Green’s theorem. Note that the boundary circle
C is the circle of radius 4 centered at the origin in the xy-plane. Let D be the disk
of radius 4 enclosed by C in the xy-plane. Then∫∫

S
(∇× F⃗) · dS⃗ =

∫
C

F⃗ · d⃗r

=
∫

C
y dx − x dy

=
∫∫

D
−2 dA = −2 · (16π) = −32π.
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(c) We use the divergence theorem. Note that ∇ · F⃗ = π cos(πx) + 3y2z + 2z. So our
integral becomes∫∫

S
F⃗ · dS⃗ =

∫ 2

−1

∫ 1

0

∫ 4

1
(π cos(πx) + 3y2z + 2z)dz dy dx

=
∫ 2

−1

∫ 1

0
3π cos(πx) +

45
2

y2 + 15 dy dx

=
∫ 2

−1
3π cos(πx) +

15
2

+ 15 dx =
135
2

.

4. Let F⃗(x, y, z) = (x2, yz, xz) and evaluate
∫∫

S
∇× F⃗ · dS⃗, where S is the unit sphere. . .

• by direct computation.

• using a symmetry argument.

• using the divergence theorem.

• using Stokes’ theorem.

All problems courtesy of Carlos Esparza.
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