

Discussion #32/33

GSI: Zack Stier

Date: November 21/24

1. Evaluate the surface integral $\iint_S \vec{F} \cdot d\vec{S}$ for the given vector field \vec{F} and oriented surface S . For closed surfaces, use the positive (outward) orientation.
 - (a) $\vec{F}(x, y, z) = \langle ze^{xy}, -3ze^{xy}, xy \rangle$. S is the parallelogram $x = u + v, y = u - v, z = 1 + 2u + v, 0 \leq u \leq 2, 0 \leq v \leq 1$ oriented upwards.
 - (b) $\vec{F}(x, y, z) = \langle 0, y, -z \rangle$ and S consists of the paraboloid $y = x^2 + z^2, 0 \leq y \leq 1$, and the disk $x^2 + z^2 \leq 1, y = 1$.
 - (c) $\vec{F}(x, y, z) = \langle x^2, y^2, z^2 \rangle$ and S is the boundary of the solid half cylinder $0 \leq z \leq \sqrt{1 - y^2}, 0 \leq x \leq 2$.
2. Let S be the cylinder $x^2 + y^2 = 1, -1 \leq z \leq 1$, plus its top and bottom caps. Compute the flux of the vector field

$$\vec{F}(x, y, z) = \begin{pmatrix} -\sin \pi y \\ -\cos \pi x \\ xy \end{pmatrix}$$

both directly and by using the divergence theorem.

3. (a) Compute $\iint_S \vec{F} \cdot d\vec{S}$ where $\vec{F} = (x^2, 2z, -3y)$ and S is the portion of $y^2 + z^2 = 4$ between $x = 0$ and $x = 3 - z$.

(b) Compute $\iint_S (\nabla \times \vec{F}) \cdot d\vec{S}$ where $\vec{F} = (y, -x, yx^3)$ and S is the portion of the sphere of radius 4 with $z \geq 0$ and the upwards orientation.

(c) Compute $\iint_S \vec{F} \cdot d\vec{S}$ where $\vec{F} = (\sin(\pi x), zy^3, z^2 + 4x)$ where S is the surface of the box $-1 \leq x \leq 2, 0 \leq y \leq 1$, and $1 \leq z \leq 4$, oriented outwards.

4. Let $\vec{F}(x, y, z) = (x^2, yz, xz)$ and evaluate $\iint_S \nabla \times \vec{F} \cdot d\vec{S}$, where S is the unit sphere...

- by direct computation.
- using a symmetry argument.
- using the divergence theorem.
- using Stokes' theorem.