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1. If ∇× F⃗ = 0, show that F⃗ is conservative.

F⃗ has components ⟨P, Q, R⟩ and 0 = ∇× F =
〈

Ry − Qz, Pz − Rx, Qx − Py
〉
, so taking

each of the three scalar equations from the vector equations and differentiating in x,
y, and z, respectively, and using Clairaut’s theorem, recovers the conservative vector
condition.

2. For each of the following vector fields F⃗, compute its curl and divergence. State whether
each vector field is irrotational, incompressible, or neither.

(a) F⃗ = x⃗i + y⃗j + z⃗k
We have

∇ · F⃗ =
∂

∂x
x +

∂

∂y
y +

∂

∂z
z = 1 + 1 + 1 = 3

and

∇× F⃗ =

(
∂

∂y
z − ∂

∂z
y
)⃗

i +
(

∂

∂z
x − ∂

∂x
z
)⃗

j +
(

∂

∂x
y − ∂

∂y
x
)⃗

k = 0⃗.

Because ∇× F⃗ = 0⃗, we see that F⃗ is irrotational.
(b) F⃗ = ⟨y2, z3, x4⟩

We have
∇ · F⃗ =

∂

∂x
y2 +

∂

∂y
z3 +

∂

∂z
x3 = 0 + 0 + 0 = 0

and

∇× F⃗ =

(
∂

∂y
x4 − ∂

∂z
z3
)⃗

i +
(

∂

∂z
y2 − ∂

∂x
x4
)⃗

j +
(

∂

∂x
z3 − ∂

∂y
y2
)⃗

k

= −3z2⃗i − 4x3⃗ j − 2y⃗k.

Because ∇ · F⃗ = 0, we see that F⃗ is incompressible.
(c) F⃗ = ⟨y2x, ez, z2⟩

We have
∇ · F⃗ =

∂

∂x
y2x +

∂

∂y
ez +

∂

∂z
z2 = y2 + 2z

and

∇× F⃗ =

(
∂

∂y
z2 − ∂

∂z
ez
)⃗

i +
(

∂

∂z
y2x − ∂

∂x
z2
)⃗

j +
(

∂

∂x
ez − ∂

∂y
y2x
)⃗

k

= −ez⃗i − 2yx⃗k.

This vector field is neither irrotational nor incompressible (as ∇ · F⃗ and ∇× F⃗ are
both nonzero).
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(d) F⃗ = ∇ f , where f (x, y, z) = 2xyeyz

We have

∇· F⃗ =
∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2 = 0+(4xzeyz + 2xyz2eyz)+ 2xy3eyz = (4xz+ 2xyz2 + 2xy3)eyz

and

∇× F⃗ =

(
∂2 f

∂y∂z
− ∂2 f

∂z∂y

)⃗
i +
(

∂2 f
∂z∂x

− ∂2 f
∂x∂y

)⃗
j +
(

∂2 f
∂x∂y

− ∂2 f
∂y∂x

)⃗
k = 0⃗

by Clairaut’s theorem.

3. Let F⃗ = ⟨P, Q, R⟩ and G⃗ = ⟨P′, Q′, R′⟩ be vector fields on R3, and let f : R3 → R and
g : R3 → R be functions on R3. Assume all of these are infinitely differentiable. Prove
each of the following vector identities.

(a) ∇ · ( f F⃗) = f (∇ · F⃗) + F⃗ · (∇ f )

∇ · ( f F⃗) = ( f P)x + ( f Q)y + ( f R)z

= ( fxP + f Px) + ( fyQ + f Qy) + ( fzR + f Rz)

= ( f Px + f Qy + f Rz) + ( fxP + fyQ + fzR)

= f (∇ · F⃗) + F⃗ · (∇ f ).

(b) ∇× ( f F⃗) = f (∇× F⃗) + (∇ f )× F⃗
It’s easiest to verify this component-by component. For the i⃗ component, we have

(∇× ( f F⃗)) · i⃗ = ( f R)y − ( f Q)z

= fyR + f Ry − fzQ − f Qz

= f (Ry − Qz) + ( fyR − fzQ)

= f (∇× F⃗) · i⃗ + ((∇ f )× F⃗) · i⃗

= ( f (∇× F⃗) + (∇ f )× F⃗) · i⃗.

A similar computation shows that the identity holds for the j⃗ and k⃗ components,
proving the the identity.

(c) ∇ · (F⃗ × G⃗) = G⃗ · (∇× F⃗)− F⃗ · (∇× G⃗)

∇ · (F⃗ × G⃗) = (QR′ − RQ′)x + (RP′ − PR′)y + (PQ′ − QP′)z

= QxR′ + QR′
x − RxQ′ − RQ′

x + RyP′ + RP′
y − PyR′ − PR′

y + PzQ′ + PQ′
z − QzP′ − QP′

z

= P′(Ry − Qz) + Q′(Pz − Rx) + R′(Qx − Py)− P(R′
y − Q′

z)− Q(P′
z − R′

x)− R(Q′
x − P′

y)

= G⃗ · (∇× F⃗)− F⃗ · (∇× G⃗).
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(d) ∇ · (∇ f ×∇g) = 0
This follows from the previous identity (taking F⃗ = ∇ f and G⃗ = ∇g) and the fact
that ∇× (∇ f ) = ∇× (∇g) = 0.

(e) ∇× (∇× F⃗) = ∇(∇ · F⃗)−∇2F⃗
We again work component-by-component. Note

∇× F⃗ = (Ry − Qz )⃗i + (Pz − Rx )⃗j + (Qx − Py )⃗k,

so (
∇× (∇× F⃗)

)
· i⃗ = (Qx − Py)y − (Pz − Rx)z

= Qxy − Pyy − Pzz + Rxz

= (Pxx + Qxy + Rxz)− (Pxx + Pyy + Pzz)

= (Px + Qy + Rz)x − (Pxx + Pyy + Pzz)

= (∇(∇ · F⃗)) · i⃗ − (∇2F⃗) · i⃗

=
(
∇(∇ · F⃗)−∇2F⃗

)
· i⃗.

Similar arguments show the identity also holds in the j⃗ and k⃗ components, proving
the identity.

4. (Challenge) Suppose you are given a pair of (infinitely differentiable) vector fields E⃗
and B⃗ in R3 in R3, and consider each vector field as additionally varying with respect
to a variable t (in addition to the variables x, y, and z for R3). Suppose furthermore that
these vector fields satisfy the “Maxwell equations in a vacuum:”

∇ · E⃗ = 0 ∇× E⃗ = −∂B⃗
∂t

∇ · B⃗ = 0 ∇× B⃗ =
1
c2

∂E⃗
∂t

for some constant c2 > 0. Prove that these vector fields satisfy the “wave equations”

∇2E⃗ =
1
c2

∂2E⃗
∂t2 ∇2B⃗ =

1
c2

∂2B⃗
∂t2 .

Here ∇2E⃗ is the vector Laplacian

∇2E⃗ =
∂2E⃗
∂x2 +

∂2E⃗
∂y2 +

∂2E⃗
∂z2 ,

and ∇2B⃗ is defined similarly (with E⃗ replaced by B⃗).

By completing this exercise, you are showing that the fundamental laws of electrody-
namics suggest the possibility of electromagnetic waves, i.e. light. Fiat lux!

The last problem from the above shows that

∇2E⃗ = ∇(∇ · E⃗)−∇× (∇× E⃗).
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Substituting in the equations for ∇ · E⃗ and ∇× E⃗ here gives

∇2E⃗ = 0 −∇×
(
−∂B⃗

∂t

)
= ∇× ∂B⃗

∂t
.

By Clairaut’s theorem, we can replace this with

∇2E⃗ =
∂

∂t

(
∇× B⃗

)
.

Substituting in the equation for ∇× B⃗ gives

∇2E⃗ =
∂

∂t

(
1
c2

∂E⃗
∂t

)
=

1
c2

∂2E⃗
∂t2 .

The proof of the wave equation for B⃗ is similar.

Problems 2–4 courtesy of Carlos Esparza.
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