

Discussion #27

GSI: Zack Stier

Date: November 10

1. If $\nabla \times \vec{F} = 0$, show that \vec{F} is conservative.

\vec{F} has components $\langle P, Q, R \rangle$ and $0 = \nabla \times F = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle$, so taking each of the three scalar equations from the vector equations and differentiating in x , y , and z , respectively, and using Clairaut's theorem, recovers the conservative vector condition.

2. For each of the following vector fields \vec{F} , compute its curl and divergence. State whether each vector field is irrotational, incompressible, or neither.

(a) $\vec{F} = x\vec{i} + y\vec{j} + z\vec{k}$

We have

$$\nabla \cdot \vec{F} = \frac{\partial}{\partial x}x + \frac{\partial}{\partial y}y + \frac{\partial}{\partial z}z = 1 + 1 + 1 = 3$$

and

$$\nabla \times \vec{F} = \left(\frac{\partial}{\partial y}z - \frac{\partial}{\partial z}y \right) \vec{i} + \left(\frac{\partial}{\partial z}x - \frac{\partial}{\partial x}z \right) \vec{j} + \left(\frac{\partial}{\partial x}y - \frac{\partial}{\partial y}x \right) \vec{k} = \vec{0}.$$

Because $\nabla \times \vec{F} = \vec{0}$, we see that \vec{F} is irrotational.

(b) $\vec{F} = \langle y^2, z^3, x^4 \rangle$

We have

$$\nabla \cdot \vec{F} = \frac{\partial}{\partial x}y^2 + \frac{\partial}{\partial y}z^3 + \frac{\partial}{\partial z}x^4 = 0 + 0 + 0 = 0$$

and

$$\begin{aligned} \nabla \times \vec{F} &= \left(\frac{\partial}{\partial y}x^4 - \frac{\partial}{\partial z}z^3 \right) \vec{i} + \left(\frac{\partial}{\partial z}y^2 - \frac{\partial}{\partial x}x^4 \right) \vec{j} + \left(\frac{\partial}{\partial x}z^3 - \frac{\partial}{\partial y}y^2 \right) \vec{k} \\ &= -3z^2\vec{i} - 4x^3\vec{j} - 2y\vec{k}. \end{aligned}$$

Because $\nabla \cdot \vec{F} = 0$, we see that \vec{F} is incompressible.

(c) $\vec{F} = \langle y^2x, e^z, z^2 \rangle$

We have

$$\nabla \cdot \vec{F} = \frac{\partial}{\partial x}y^2x + \frac{\partial}{\partial y}e^z + \frac{\partial}{\partial z}z^2 = y^2 + 2z$$

and

$$\begin{aligned} \nabla \times \vec{F} &= \left(\frac{\partial}{\partial y}z^2 - \frac{\partial}{\partial z}e^z \right) \vec{i} + \left(\frac{\partial}{\partial z}y^2x - \frac{\partial}{\partial x}z^2 \right) \vec{j} + \left(\frac{\partial}{\partial x}e^z - \frac{\partial}{\partial y}y^2x \right) \vec{k} \\ &= -e^z\vec{i} - 2yx\vec{k}. \end{aligned}$$

This vector field is neither irrotational nor incompressible (as $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$ are both nonzero).

(d) $\vec{F} = \nabla f$, where $f(x, y, z) = 2xye^{yz}$

We have

$$\nabla \cdot \vec{F} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0 + (4xze^{yz} + 2xyz^2e^{yz}) + 2xy^3e^{yz} = (4xz + 2xyz^2 + 2xy^3)e^{yz}$$

and

$$\nabla \times \vec{F} = \left(\frac{\partial^2 f}{\partial y \partial z} - \frac{\partial^2 f}{\partial z \partial y} \right) \vec{i} + \left(\frac{\partial^2 f}{\partial z \partial x} - \frac{\partial^2 f}{\partial x \partial z} \right) \vec{j} + \left(\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} \right) \vec{k} = \vec{0}$$

by Clairaut's theorem.

3. Let $\vec{F} = \langle P, Q, R \rangle$ and $\vec{G} = \langle P', Q', R' \rangle$ be vector fields on \mathbb{R}^3 , and let $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ and $g : \mathbb{R}^3 \rightarrow \mathbb{R}$ be functions on \mathbb{R}^3 . Assume all of these are infinitely differentiable. Prove each of the following vector identities.

(a) $\nabla \cdot (f\vec{F}) = f(\nabla \cdot \vec{F}) + \vec{F} \cdot (\nabla f)$

$$\begin{aligned} \nabla \cdot (f\vec{F}) &= (fP)_x + (fQ)_y + (fR)_z \\ &= (f_x P + f P_x) + (f_y Q + f Q_y) + (f_z R + f R_z) \\ &= (f P_x + f Q_y + f R_z) + (f_x P + f_y Q + f_z R) \\ &= f(\nabla \cdot \vec{F}) + \vec{F} \cdot (\nabla f). \end{aligned}$$

(b) $\nabla \times (f\vec{F}) = f(\nabla \times \vec{F}) + (\nabla f) \times \vec{F}$

It's easiest to verify this component-by component. For the \vec{i} component, we have

$$\begin{aligned} (\nabla \times (f\vec{F})) \cdot \vec{i} &= (fR)_y - (fQ)_z \\ &= f_y R + f R_y - f_z Q - f Q_z \\ &= f(R_y - Q_z) + (f_y R - f_z Q) \\ &= f(\nabla \times \vec{F}) \cdot \vec{i} + ((\nabla f) \times \vec{F}) \cdot \vec{i} \\ &= (f(\nabla \times \vec{F}) + (\nabla f) \times \vec{F}) \cdot \vec{i}. \end{aligned}$$

A similar computation shows that the identity holds for the \vec{j} and \vec{k} components, proving the the identity.

(c) $\nabla \cdot (\vec{F} \times \vec{G}) = \vec{G} \cdot (\nabla \times \vec{F}) - \vec{F} \cdot (\nabla \times \vec{G})$

$$\begin{aligned} \nabla \cdot (\vec{F} \times \vec{G}) &= (QR' - RQ')_x + (RP' - PR')_y + (PQ' - QP')_z \\ &= Q_x R' + QR'_x - R_x Q' - RQ'_x + R_y P' + RP'_y - P_y R' - PR'_y + P_z Q' + PQ'_z - Q_z P' - QP'_z \\ &= P'(R_y - Q_z) + Q'(P_z - R_x) + R'(Q_x - P_y) - P(R'_y - Q'_z) - Q(P'_z - R'_x) - R(Q'_x - P'_y) \\ &= \vec{G} \cdot (\nabla \times \vec{F}) - \vec{F} \cdot (\nabla \times \vec{G}). \end{aligned}$$

(d) $\nabla \cdot (\nabla f \times \nabla g) = 0$

This follows from the previous identity (taking $\vec{F} = \nabla f$ and $\vec{G} = \nabla g$) and the fact that $\nabla \times (\nabla f) = \nabla \times (\nabla g) = 0$.

(e) $\nabla \times (\nabla \times \vec{F}) = \nabla(\nabla \cdot \vec{F}) - \nabla^2 \vec{F}$

We again work component-by-component. Note

$$\nabla \times \vec{F} = (R_y - Q_z)\vec{i} + (P_z - R_x)\vec{j} + (Q_x - P_y)\vec{k},$$

so

$$\begin{aligned} (\nabla \times (\nabla \times \vec{F})) \cdot \vec{i} &= (Q_x - P_y)_y - (P_z - R_x)_z \\ &= Q_{xy} - P_{yy} - P_{zz} + R_{xz} \\ &= (P_{xx} + Q_{xy} + R_{xz}) - (P_{xx} + P_{yy} + P_{zz}) \\ &= (P_x + Q_y + R_z)_x - (P_{xx} + P_{yy} + P_{zz}) \\ &= (\nabla(\nabla \cdot \vec{F})) \cdot \vec{i} - (\nabla^2 \vec{F}) \cdot \vec{i} \\ &= (\nabla(\nabla \cdot \vec{F}) - \nabla^2 \vec{F}) \cdot \vec{i}. \end{aligned}$$

Similar arguments show the identity also holds in the \vec{j} and \vec{k} components, proving the identity.

4. **(Challenge)** Suppose you are given a pair of (infinitely differentiable) vector fields \vec{E} and \vec{B} in \mathbb{R}^3 in \mathbb{R}^3 , and consider each vector field as additionally varying with respect to a variable t (in addition to the variables x , y , and z for \mathbb{R}^3). Suppose furthermore that these vector fields satisfy the “Maxwell equations in a vacuum:”

$$\begin{aligned} \nabla \cdot \vec{E} &= 0 & \nabla \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \\ \nabla \cdot \vec{B} &= 0 & \nabla \times \vec{B} &= \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \end{aligned}$$

for some constant $c^2 > 0$. Prove that these vector fields satisfy the “wave equations”

$$\nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} \quad \nabla^2 \vec{B} = \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2}.$$

Here $\nabla^2 \vec{E}$ is the vector Laplacian

$$\nabla^2 \vec{E} = \frac{\partial^2 \vec{E}}{\partial x^2} + \frac{\partial^2 \vec{E}}{\partial y^2} + \frac{\partial^2 \vec{E}}{\partial z^2},$$

and $\nabla^2 \vec{B}$ is defined similarly (with \vec{E} replaced by \vec{B}).

By completing this exercise, you are showing that the fundamental laws of electrodynamics suggest the possibility of electromagnetic waves, i.e. light. *Fiat lux!*

The last problem from the above shows that

$$\nabla^2 \vec{E} = \nabla(\nabla \cdot \vec{E}) - \nabla \times (\nabla \times \vec{E}).$$

Substituting in the equations for $\nabla \cdot \vec{E}$ and $\nabla \times \vec{E}$ here gives

$$\nabla^2 \vec{E} = 0 - \nabla \times \left(-\frac{\partial \vec{B}}{\partial t} \right) = \nabla \times \frac{\partial \vec{B}}{\partial t}.$$

By Clairaut's theorem, we can replace this with

$$\nabla^2 \vec{E} = \frac{\partial}{\partial t} (\nabla \times \vec{B}).$$

Substituting in the equation for $\nabla \times \vec{B}$ gives

$$\nabla^2 \vec{E} = \frac{\partial}{\partial t} \left(\frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \right) = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2}.$$

The proof of the wave equation for \vec{B} is similar.

Problems 2–4 courtesy of Carlos Esparza.