

Discussion #27

GSI: Zack Stier

Date: November 10

1. If $\nabla \times \vec{F} = 0$, show that \vec{F} is conservative.
2. For each of the following vector fields \vec{F} , compute its curl and divergence. State whether each vector field is irrotational, incompressible, or neither.
 - (a) $\vec{F} = x\vec{i} + y\vec{j} + z\vec{k}$
 - (b) $\vec{F} = \langle y^2, z^3, x^4 \rangle$
 - (c) $\vec{F} = \langle y^2x, e^z, z^2 \rangle$
 - (d) $\vec{F} = \nabla f$, where $f(x, y, z) = 2xye^{yz}$
3. Let $\vec{F} = \langle P, Q, R \rangle$ and $\vec{G} = \langle P', Q', R' \rangle$ be vector fields on \mathbb{R}^3 , and let $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ and $g : \mathbb{R}^3 \rightarrow \mathbb{R}$ be functions on \mathbb{R}^3 . Assume all of these are infinitely differentiable. Prove each of the following vector identities.
 - (a) $\nabla \cdot (f\vec{F}) = f(\nabla \cdot \vec{F}) + \vec{F} \cdot (\nabla f)$
 - (b) $\nabla \times (f\vec{F}) = f(\nabla \times \vec{F}) + (\nabla f) \times \vec{F}$
 - (c) $\nabla \cdot (\vec{F} \times \vec{G}) = \vec{G} \cdot (\nabla \times \vec{F}) - \vec{F} \cdot (\nabla \times \vec{G})$
 - (d) $\nabla \cdot (\nabla f \times \nabla g) = 0$
 - (e) $\nabla \times (\nabla \times \vec{F}) = \nabla(\nabla \cdot \vec{F}) - \nabla^2 \vec{F}$

4. **(Challenge)** Suppose you are given a pair of (infinitely differentiable) vector fields \vec{E} and \vec{B} in \mathbb{R}^3 in \mathbb{R}^3 , and consider each vector field as additionally varying with respect to a variable t (in addition to the variables x , y , and z for \mathbb{R}^3). Suppose furthermore that these vector fields satisfy the “Maxwell equations in a vacuum:”

$$\begin{aligned}\nabla \cdot \vec{E} &= 0 & \nabla \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \\ \nabla \cdot \vec{B} &= 0 & \nabla \times \vec{B} &= \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}\end{aligned}$$

for some constant $c^2 > 0$. Prove that these vector fields satisfy the “wave equations”

$$\nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} \quad \nabla^2 \vec{B} = \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2}.$$

Here $\nabla^2 \vec{E}$ is the vector Laplacian

$$\nabla^2 \vec{E} = \frac{\partial^2 \vec{E}}{\partial x^2} + \frac{\partial^2 \vec{E}}{\partial y^2} + \frac{\partial^2 \vec{E}}{\partial z^2},$$

and $\nabla^2 \vec{B}$ is defined similarly (with \vec{E} replaced by \vec{B}).

By completing this exercise, you are showing that the fundamental laws of electrodynamics suggest the possibility of electromagnetic waves, i.e. light. *Fiat lux!*