

Discussion #24

GSI: Zack Stier

Date: October 31

1. Compute the following line integrals:

(a) $\int_C y^2 dx + x^2 dy$ where C is the line segment from $(1, 0)$ to $(4, 1)$.
 We can parametrize C by $x = 1 + 3t, y = t, 0 \leq t \leq 1$. Hence

$$\int_C y^2 dx + x^2 dy = \int_0^1 t^2 \cdot 3 dt + (1 + 3t)^2 dt = \int_0^1 12t^2 + 6t + 1 dt = 4 + 3 + 1 = 8.$$

(b) $\int_C x dx + y dy + z dz$ where C is the straight line connecting $(0, 0, 0)$ to $(1, 2, 3)$. Can you figure out what the integral will be when the endpoint of C is an arbitrary point (x_0, y_0, z_0) ?

We can parametrize this path by $x = t, y = 2t, z = 3t, 0 \leq t \leq 1$ obtaining

$$\int_C x dx + y dy + z dz = \int_0^1 t dt + 2t \cdot 2 dt + 3t \cdot 3 dt = \int_0^1 14t dt = 7.$$

For the general case we can use the parametrization $x = x_0 t, y = y_0 t, z = z_0 t, 0 \leq t \leq 1$ and redoing the calculation above shows that

$$\int_C x dx + y dy + z dz = \int_0^1 (x_0^2 + y_0^2 + z_0^2) t dt = \frac{1}{2} (x_0^2 + y_0^2 + z_0^2)$$

(c) $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x, y) = (y, 1)$ and C is the unit circle, traversed counterclockwise. Can you say something about the integral of $\vec{F}_2(x, y) = (y, 0)$ along the same curve without doing another computation?

We parametrize the circle by $\vec{r}(t) = \langle \cos t, \sin t \rangle, 0 \leq t \leq 2\pi$ and obtain using $\vec{r}'(t) = \langle -\sin t, \cos t \rangle$:

$$\int_C \vec{F} \cdot d\vec{r} = \int_0^{2\pi} -\sin^2 t + \cos t dt = -\frac{1}{2} 2\pi = -\pi$$

We don't need to compute $\int_C \vec{F}_2 \cdot d\vec{r}$ again explicitly because $\vec{F}_2(x, y) - \vec{F}(x, y) = \langle 0, 1 \rangle = \nabla f$ for $f(x, y) = y$ is a conservative vector field. Hence $\int_C \vec{F}_2 \cdot d\vec{r} = \int_C \vec{F} \cdot d\vec{r} + \int_C \nabla f \cdot d\vec{r} = \pi + f(1, 0) - f(1, 0) = \pi$.

2. Use Green's theorem to convert each of the following line integrals $\int_C \vec{F} \cdot d\vec{r}$ to double integrals. Then evaluate. All curves C are oriented counterclockwise.

(a) C is the ellipse $x^2 + y^2/4 = 1$ and $\vec{F}(x, y) = \langle 2x - y, 3x + 2y \rangle$.

We have $\int_C \vec{F} \cdot d\vec{r} = \iint_D Q_x - P_y = \iint_D 4 \, dx \, dy = 4 \cdot \text{area}(D) = 8\pi$. Here and in all further solutions in this section, D is the region enclosed by C .

(b) C is the circle $x^2 + y^2 = 1$ and $\vec{F}(x, y) = \frac{1}{3} \langle -y^3, x^3 \rangle$.

By Green's theorem, the line integral equals $\iint_{x^2+y^2 \leq 1} x^2 + y^2 \, dx \, dy$. This integral is simplest in polar coordinates, where it becomes $\int_0^1 \int_0^{2\pi} r^3 d\theta dr = \pi/2$.

(c) C is the triangle with vertices at $(0, 0), (1, 0), (0, 1)$ and $\vec{F}(x, y) = \langle x^2 y, e^{y^2} + x \rangle$.

By Green's theorem, the line integral equals $\iint_D 1 - x^2 \, dx \, dy$. Firstly, $\iint_D dx \, dy = 1/2$. Next,

$$\iint_D x^2 \, dx \, dy = \int_0^1 \int_0^{1-y} x^2 \, dx \, dy = 1/12,$$

so altogether, the integral is $1/2 - 1/12 = 5/12$.

3. Let C be a simple, positively oriented, closed curve in \mathbb{R}^2 . Using Green's theorem, check that $\int_C f(x) \, dx + g(y) \, dy = 0$ for arbitrary smooth functions f, g . Can you give an explanation without Green's theorem?

The line integral is zero by Green's theorem since $Q_x - P_y = 0$ in this situation. Without Green's theorem, let $\vec{r}(t) = \langle x(t), y(t) \rangle$ be a parameterization of C , with $0 \leq t \leq T$. Then, $\int_C f(x) \, dx = \int_0^T f(x(t)) x'(t) dt$. With the substitution $u = x(t)$, we see that this integral is zero, since $x(0) = x(T)$. The same is true for the other half of the integral. (Alternatively, note that $\langle f(x), g(y) \rangle$ is conservative, since you may integrate each component separately to find a potential.)

4. Consider the non-standard parameterization of the unit circle $x = \sin(t), y = \cos(t)$ with $0 \leq t \leq 2\pi$. Check that $\int_C x \, dy$ is not the area enclosed by C , as "promised" by Green's Theorem. What went wrong?

We have $\int_C x \, dy = \int_0^{2\pi} -\sin^2(t) dt = -\pi$ but the area enclosed by C is π . The problem is that this parameterization of the unit circle is oriented clockwise and Green's theorem requires a counterclockwise orientation. Reversing the direction of a path negates a line integral over that path.

5. Consider the following about a special vector field.

(a) Let C be the square centered at the origin with side length 4, oriented counterclockwise. Compute $\int_C \frac{-y}{x^2+y^2} \, dx + \frac{x}{x^2+y^2} \, dy$. It will help to know that the vector field $\langle P, Q \rangle = \langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \rangle$ satisfies $P_y = Q_x$ everywhere except the origin but is not conservative because $\int_\gamma P \, dx + Q \, dy = 2\pi$ where γ is the unit circle, oriented counterclockwise.

If D is the region between C and γ , then $\iint_D Q_x - P_y \, dx \, dy = 0$ since the integrand is zero, so $0 = \int_C \frac{-y}{x^2+y^2} \, dx + \frac{x}{x^2+y^2} \, dy - \int_\gamma \frac{-y}{x^2+y^2} \, dx + \frac{x}{x^2+y^2} \, dy$, so we find that the desired integral is 2π .

(b) Let \vec{F} be the vector field in the previous part. Explain why, using Green's theorem, if C is a simple positively oriented curve contained in the upper half plane $y > 0$, then $\int_C \vec{F} \cdot d\vec{r} = 0$.

Since C is a simple curve in the upper half plane, it bounds a region in the upper half plane, where the vector field is defined (since $(x, y) \neq (0, 0)$). Using the fact that $Q_x = P_y$ for this vector field, Green's theorem tells us that $\int_C \vec{F} \cdot d\vec{r} = 0$. In fact, the hypothesis that C is simple is not needed.

All problems courtesy of Carlos Esparza.