

Discussion #24

GSI: Zack Stier

Date: October 31

1. Compute the following line integrals:

- (a) $\int_C y^2 dx + x^2 dy$ where C is the line segment from $(1, 0)$ to $(4, 1)$.
- (b) $\int_C x dx + y dy + z dz$ where C is the straight line connecting $(0, 0, 0)$ to $(1, 2, 3)$. Can you figure out what the integral will be when the endpoint of C is an arbitrary point (x_0, y_0, z_0) ?
- (c) $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x, y) = (y, 1)$ and C is the unit circle, traversed counterclockwise. Can you say something about the integral of $\vec{F}_2(x, y) = (y, 0)$ along the same curve without doing another computation?

2. Use Green's theorem to convert each of the following line integrals $\int_C \vec{F} \cdot d\vec{r}$ to double integrals. Then evaluate. All curves C are oriented counterclockwise.

- (a) C is the ellipse $x^2 + y^2/4 = 1$ and $\vec{F}(x, y) = \langle 2x - y, 3x + 2y \rangle$.
- (b) C is the circle $x^2 + y^2 = 1$ and $\vec{F}(x, y) = \frac{1}{3} \langle -y^3, x^3 \rangle$.
- (c) C is the triangle with vertices at $(0, 0)$, $(1, 0)$, $(0, 1)$ and $\vec{F}(x, y) = \langle x^2 y, e^{y^2} + x \rangle$.

3. Let C be a simple, positively oriented, closed curve in \mathbb{R}^2 . Using Green's theorem, check that $\int_C f(x) dx + g(y) dy = 0$ for arbitrary smooth functions f, g . Can you give an explanation without Green's theorem?
4. Consider the non-standard parameterization of the unit circle $x = \sin(t), y = \cos(t)$ with $0 \leq t \leq 2\pi$. Check that $\int_C x dy$ is not the area enclosed by C , as "promised" by Green's Theorem. What went wrong?
5. Consider the following about a special vector field.
 - (a) Let C be the square centered at the origin with side length 4, oriented counterclockwise. Compute $\int_C \frac{-y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy$. It will help to know that the vector field $\langle P, Q \rangle = \langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \rangle$ satisfies $P_y = Q_x$ everywhere except the origin but is not conservative because $\int_{\gamma} P dx + Q dy = 2\pi$ where γ is the unit circle, oriented counterclockwise.
 - (b) Let \vec{F} be the vector field in the previous part. Explain why, using Green's theorem, if C is a simple positively oriented curve contained in the upper half plane $y > 0$, then $\int_C \vec{F} \cdot d\vec{r} = 0$.