

Discussion #23

GSI: Zack Stier

Date: October 24

1. For each of the following vector fields \vec{F} , either prove that \vec{F} is conservative by finding a function f such that $\nabla f = \vec{F}$, or prove that f is not conservative.

(a) $\vec{F}(x, y) = x \vec{i} + y \vec{j}$

This is conservative. To see this, write $\vec{F} = \nabla f$, and try to guess f . We get $f_x = x$ and $f_y = y$. Hence f_x has antiderivative $\frac{1}{2}x^2$ and f_y has antiderivative $\frac{1}{2}y^2$. These are not the same but we can add them and since each variable only appears in one of the antiderivatives, $f(x, y) = \frac{1}{2}(x^2 + y^2)$ satisfies for conditions.

(b) $\vec{F}(x, y) = x \vec{i} + x \vec{j}$

This is not conservative. If it were, we could write $\vec{F} = \nabla f$ for some $f(x, y)$. We would then have $f_x = x$ and $f_y = x$. But then we could compute

$$f_{xy} = 0 \neq 1 = f_{yx},$$

contradicting Clairaut's theorem.

(c) $\vec{F}(x, y, z) = yz \vec{i} + xz \vec{j} + xy \vec{k}$

This is conservative. To see that, we need to find an f such that $f_x = yz$, $f_y = xz$ and $f_z = xy$. But integrating each of these produces $xyz + C$ as a possible antiderivative, hence $f(x, y, z) = xyz$ is a potential for \vec{F} .

(d) $\vec{F} = xz \vec{i} + yz \vec{j} + xy \vec{k}$

This is not conservative. If we write $\vec{F} = \nabla f$, then we compute $f_{xz} = x$, but $f_{zx} = y$, contradicting Clairaut's theorem.

2. Compute the following line integrals:

(a) $\int_C x \, ds$ where C is the graph of $f(x) = \frac{1}{2}x^2$ going from $x = 0$ to $x = 2$.

We can parametrize the graph using $x = t$, $y = f(t) = \frac{1}{2}t^2$, $0 \leq t \leq 2$. Using this we get $\sqrt{x'(t)^2 + y'(t)^2} = \sqrt{1+t^2}$. Now we compute, using the substitution $u = 1+t^2$, $du = 2t \, dt$

$$\int_C x \, ds = \int_0^2 t \sqrt{1+t^2} \, dt = \frac{1}{2} \int_1^5 \sqrt{u} \, du = \frac{1}{2} \frac{2}{3} (5^{3/2} - 1^{3/2}) = \frac{5\sqrt{5} - 1}{3}$$

(b) $\int_C xy^4 \, ds$ where C is the right half of the unit circle.

We know that C can be parametrized by $x = \cos t$, $y = \sin t$, $-\pi/2 \leq t \leq \pi/2$.

Now using the definition of line integrals and $\sqrt{x'(t)^2 + y'(t)^2} = \sqrt{\sin^2 t + \cos^2 t}$ we obtain

$$\int_C xy^4 \, ds = \int_{-\pi/2}^{\pi/2} \cos t \sin^4 t \, dt = \int_{-1}^1 u^4 \, du = \frac{2}{5}$$

(c) $\int_C x^2 y \, ds$ in 3D where C is given by $x = \cos t, y = \sin t, z = t, 0 \leq t \leq \pi/2$.

First compute $\sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} = \sqrt{\sin^2 t + \cos^2 t + 1^2} = \sqrt{2}$. Now we can just compute

$$\int_C x^2 y \, ds = \int_0^{\pi/2} \cos^2 t \sin t \sqrt{2} \, dt = \sqrt{2} \int_0^1 u^2 \, du = \frac{\sqrt{2}}{3}$$

3. Compute the following line integrals:

(a) $\int_C y^2 \, dx + x^2 \, dy$ where C is the line segment from $(1, 0)$ to $(4, 1)$.

We can parametrize C by $x = 1 + 3t, y = t, 0 \leq t \leq 1$. Hence

$$\int_C y^2 \, dx + x^2 \, dy = \int_0^1 t^2 \cdot 3 \, dt + (1 + 3t)^2 \, dt = \int_0^1 12t^2 + 6t + 1 \, dt = 4 + 3 + 1 = 8$$

(b) $\int_C x \, dx + y \, dy + z \, dz$ where C is the straight line connecting $(0, 0, 0)$ to $(1, 2, 3)$. Can you figure out what the integral will be when the endpoint of C is an arbitrary point (x_0, y_0, z_0) ?

We can parametrize this path by $x = t, y = 2t, z = 3t, 0 \leq t \leq 1$ obtaining

$$\int_C x \, dx + y \, dy + z \, dz = \int_0^1 t \, dt + 2t \cdot 2 \, dt + 3t \cdot 3 \, dt = \int_0^1 14t \, dt = 7$$

For the general case we can use the parametrization $x = x_0 t, y = y_0 t, z = z_0 t, 0 \leq t \leq 1$ and redoing the calculation above shows that

$$\int_C x \, dx + y \, dy + z \, dz = \int_0^1 (x_0^2 + y_0^2 + z_0^2) t \, dt = \frac{1}{2} (x_0^2 + y_0^2 + z_0^2)$$

(c) $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x, y) = (y, 1)$ and C is the unit circle, traversed counterclockwise. Can you say something about the integral of $\vec{F}_2(x, y) = (y, 0)$ along the same curve without doing another computation?

We parametrize the circle by $\vec{r}(t) = \langle \cos t, \sin t \rangle, 0 \leq t \leq 2\pi$ and obtain using $\vec{r}'(t) = \langle -\sin t, \cos t \rangle$:

$$\int_C \vec{F} \cdot d\vec{r} = \int_0^{2\pi} -\sin^2 t + \cos t \, dt = -\frac{1}{2} 2\pi = -\pi$$

We don't need to compute $\int_C \vec{F}_2 \cdot d\vec{r}$ again explicitly because $\vec{F}_2(x, y) - \vec{F}(x, y) = \langle 0, 1 \rangle = \nabla f$ for $f(x, y) = y$ is a conservative vector field. Hence $\int_C \vec{F}_2 \cdot d\vec{r} = \int_C \vec{F} \cdot d\vec{r} + \int_C \nabla f \cdot d\vec{r} = \pi + f(1, 0) - f(1, 0) = \pi$.

All problems courtesy of Carlos Esparza.