

Discussion #23

GSI: Zack Stier

Date: October 24

1. For each of the following vector fields \vec{F} , either prove that \vec{F} is conservative by finding a function f such that $\nabla f = \vec{F}$, or prove that f is not conservative.

(a) $\vec{F}(x, y) = x\vec{i} + y\vec{j}$

(b) $\vec{F}(x, y) = x\vec{i} + x\vec{j}$

(c) $\vec{F}(x, y, z) = yz\vec{i} + xz\vec{j} + xy\vec{k}$

(d) $\vec{F} = xz\vec{i} + yz\vec{j} + xy\vec{k}$

2. Compute the following line integrals:

(a) $\int_C x \, ds$ where C is the graph of $f(x) = \frac{1}{2}x^2$ going from $x = 0$ to $x = 2$.

(b) $\int_C xy^4 \, ds$ where C is the right half of the unit circle.

(c) $\int_C x^2y \, ds$ in 3D where C is given by $x = \cos t, y = \sin t, z = t, 0 \leq t \leq \pi/2$.

3. Compute the following line integrals:

(a) $\int_C y^2 \, dx + x^2 \, dy$ where C is the line segment from $(1, 0)$ to $(4, 1)$.

(b) $\int_C x \, dx + y \, dy + z \, dz$ where C is the straight line connecting $(0, 0, 0)$ to $(1, 2, 3)$. Can you figure out what the integral will be when the endpoint of C is an arbitrary point (x_0, y_0, z_0) ?

(c) $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x, y) = (y, 1)$ and C is the unit circle, traversed counterclockwise. Can you say something about the integral of $\vec{F}_2(x, y) = (y, 0)$ along the same curve without doing another computation?

All problems courtesy of Carlos Esparza.