

Discussion #22

GSI: Zack Stier

Date: October 22

1. Describe the following surfaces (defined by Cartesian coordinates) in terms of spherical coordinates.

$$x = \sqrt{3}y.$$

$$z^2 = x^2 + y^2.$$

$$x^2 + y^2 + z^2/4 = 1.$$

2. Find the volume of the region bounded by the sphere $x^2 + y^2 + z^2 = 4$ and the plane $z = 1$.

3. Let R be the region lying above the cone $z^2 = x^2 + y^2$ and below the unit sphere. Compute

$$\iiint_R z^2 \, dV.$$

4. Find the absolute value of the Jacobian determinant for each of the following changes of coordinates.

(a) $x = au + bv$ and $y = cu + dv$.

(b) $x = u^2 - v^2$ and $y = 2uv$.

(c) $x = e^u \cos(v)$ and $y = e^u \sin(v)$.

(d) $x = \frac{u}{u^2+v^2}$ and $y = \frac{-v}{u^2+v^2}$. Note that this transformation is its own inverse, in the sense that we can solve $u = \frac{x}{x^2+y^2}$ and $v = \frac{-y}{x^2+y^2}$. Also check that $(x^2+y^2)(u^2+v^2) = 1$.

5. Here are some change of variable integration problems.

(a) Consider the following region \mathcal{R} in the plane: $3x^2 + 4xy + 3y^2 \leq 1$. Describe the transformed region using the change of variables $x = v - u$ and $y = u + v$, and find its area.

(b) Let D be the annulus $1 \leq x^2 + y^2 \leq 4$ and consider the integral

$$\iint_D \frac{1}{(x^2 + y^2)^2} e^{\frac{x}{x^2+y^2}} \, dx \, dy.$$

Perform the change of variables $x = \frac{u}{u^2+v^2}$, $y = \frac{-v}{u^2+v^2}$ to simplify the integral, but do not evaluate.

All problems courtesy of Carlos Esparza.