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1.
∫∫

D x2y dA where D is the top half of the disk with center the origin and radius 5;

The region is D = {(r, θ) | 0 ≤ r ≤ 5, 0 ≤ θ ≤ π}. Then∫∫
D

x2y dA =
∫ π

0

∫ 5

0
(r cos θ)2r sin θr dr dθ =

(∫ π

0
cos2 θ sin θ dθ

)(∫ 5

0
r4 dr

)
=

1250
3

.

2.
∫∫

D e−x2−y2
dA where D is the region bounded by the semicircle x =

√
4 − y2 and the

y-axis.

∫∫
D

e−x2−y2
dA =

∫ π/2

−π/2

∫ 2

0
e−r2

r dr dθ = π

(
−1

2
e−r2 |20

)
=

π

2
(1 − e−4).

3. Evaluate
∫∫

D
(y2 + 3x)dA, where D is the region in the fourth quadrant between x2 +

y2 = 1 and x2 + y2 = 4.
The two circles are r = 1 and r = 2, and the fourth quadrant is θ ∈ [ 3π

2 , 2π]. Substituting
x = r cos θ, y = r sin θ, and dA = r dr dθ, we get∫ 2π

3π
2

∫ 2

1
(r2 sin2 θ + 3r cos θ)r dr dθ =

∫ 2π

3π
2

∫ 2

1
(r3 sin2 θ + 3r2 cos θ)dr dθ

=
∫ 2π

3π
2

[
1
4

r4 sin2 θ + r3 cos θ

]2

1
dθ =

∫ 2π

3π
2

(
15
4

sin2 θ + 7 cos θ

)
dθ =

[
15
8

θ − 15
16

sin(2θ) + 7 sin θ

]2π

3π
2

=

(
15
4

π

)
−

(
45
16

π − 7
)
=

15
16

π + 7

4. Evaluate the following integral:∫ 3

0

∫ 0

−
√

9−x2
ex2+y2

dy dx

We have x2 + y2 = r2, so the integrand becomes rer2
dr dθ (where the extra r comes from

the change of coordinates). The region described by this function is the part of the circle
with radius 3 centered at the origin in the fourth quadrant; this is described by r ≤ 3
and 3π

2 ≤ θ ≤ 2π. Thus the integral is∫ 2π

3π
2

∫ 3

0
rer2

dr dθ =
∫ 2π

3π
2

=
∫ 2π

3π
2

[
1
2

er2
]3

0
dθ =

1
2

∫ 2π

3π
2

(e9 − 1)dθ =
1
2
[
(e9 − 1)θ

]2π
3π
2
=

1
4
(
e9 − 1

)
π.
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5. Parameterize the following surfaces in an appropriate way (if they are not already
parametrized) and compute their normal vectors and area.

(a) The portion of the elliptic paraboloid z = x2 + y2 lying over the unit disk.
This surface is the graph of f (x, y) = x2 + y2, so we know that

N⃗ = ⟨1, 0, fx⟩ × ⟨0, 1, fy⟩ = ⟨− fx,− fy, 1⟩ = ⟨−2x,−2y, 1⟩.

The area is computed by the following integral over the unit disk D, which we
compute in polar coordinates and using the substitution u = 1 + 4r2

∫
D
|N⃗|dA =

∫
D

√
1 + 4x2 + 4y2 dA =

∫ 2π

0

∫ 1

0

√
1 + 4r2 r dr dϕ

= 2π
∫ 5

1

√
u

1
8

du =
π

6

(
53/2 − 1

)

(b) The part of the surface z = xy that lies within the cylinder x2 + y2 = 1.
This is the graph of f (x, y) = xy, so

N⃗ = ⟨− fx,− fy, 1⟩ = ⟨y, x, 1⟩.

Restricting the surface to the part inside the cylinder corresponds to restricting the
domain of f to the unit disk D. The area of the surface is given by

A =
∫∫

D

√
1 + x2 + y2 dA =

∫ 2π

0

∫ 1

0

√
r2 + 1r dr dθ =

2π

3

(
2
√

2 − 1
)

(The computation of the integral is analogous to problem 5a).

(c) The portion of z = 2x2 + 2y2 − 7 that lies inside the cylinder x2 + y2 = 4. We will do

this as a polar integral. The integrand is

√(
∂z
∂x

)2
+

(
∂z
∂x

)2
+ 1 =

√
(4x)2 + (4y)2 + 1 =√

16(x2 + y2) + 1 =
√

16r2 + 1. Thus the integral is

∫ 2π

0

∫ 2

0
r
√

16r2 + 1 dr dθ =
∫ 2π

0
dθ

∫ 2

0
r
√

16r2 + 1 dr = 2π

[
1
48

(16r2 + 1)3/2
]2

0
=

π

24
(653/2 − 1).

(d) The surface area of the portion of z = 2 −
√

x2 + y2 above z = 0.
We will again do this as a polar integral. The surface meets z = 0 when r =√

x2 + y2 = 2. We have ∂z
∂x = −x√

x2+y2
and ∂z

∂y = −y√
x2+y2

. Therefore the integrand is√
x2

x2+y2 +
y2

x2+y2 + 1 =
√

2. We thus have

∫ 2π

0

∫ 2

0

√
2 dr dθ =

∫ 2π

0
dθ

∫ 2

0

√
2 dr = 4

√
2π.
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6. Rewrite the integral ∫ 1

0

∫ 1

√
x

∫ 1−y

0
f (x, y, z)dzdy dx

as the equivalent iterated integral in the five other orders.

∫ 1

0

∫ 1

√
x

∫ 1−y

0
f (x, y, z)dz dy dx =

∫ 1

0

∫ y2

0

∫ 1−y

0
f (x, y, z)dz dx dy

=
∫ 1

0

∫ 1−z

0

∫ y2

0
f (x, y, z)dx dy dz

=
∫ 1

0

∫ 1−y

0

∫ y2

0
f (x, y, z)dx dz dy

=
∫ 1

0

∫ 1−
√

x

0

∫ 1−z

√
x

f (x, y, z)dy dz dx

=
∫ 1

0

∫ (1−z)2

0

∫ 1−z

√
x

f (x, y, z)dy dx dz

Problems 1, 2, 5(a), 5(b), and 6 courtesy of Carlos Esparza. Problems 3, 4, 5(c), and 5(d)
courtesy of Peter Rowley.
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