

Discussion #19/21

GSI: Zack Stier

Date: October 17/20

1. $\iint_D x^2 y \, dA$ where D is the top half of the disk with center the origin and radius 5;

The region is $D = \{(r, \theta) \mid 0 \leq r \leq 5, 0 \leq \theta \leq \pi\}$. Then

$$\iint_D x^2 y \, dA = \int_0^\pi \int_0^5 (r \cos \theta)^2 r \sin \theta r \, dr \, d\theta = \left(\int_0^\pi \cos^2 \theta \sin \theta \, d\theta \right) \left(\int_0^5 r^4 \, dr \right) = \frac{1250}{3}.$$

2. $\iint_D e^{-x^2-y^2} \, dA$ where D is the region bounded by the semicircle $x = \sqrt{4-y^2}$ and the y -axis.

$$\iint_D e^{-x^2-y^2} \, dA = \int_{-\pi/2}^{\pi/2} \int_0^2 e^{-r^2} r \, dr \, d\theta = \pi \left(-\frac{1}{2} e^{-r^2} \Big|_0^2 \right) = \frac{\pi}{2} (1 - e^{-4}).$$

3. Evaluate $\iint_D (y^2 + 3x) \, dA$, where D is the region in the fourth quadrant between $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

The two circles are $r = 1$ and $r = 2$, and the fourth quadrant is $\theta \in [\frac{3\pi}{2}, 2\pi]$. Substituting $x = r \cos \theta$, $y = r \sin \theta$, and $dA = r \, dr \, d\theta$, we get

$$\begin{aligned} & \int_{\frac{3\pi}{2}}^{2\pi} \int_1^2 (r^2 \sin^2 \theta + 3r \cos \theta) r \, dr \, d\theta = \int_{\frac{3\pi}{2}}^{2\pi} \int_1^2 (r^3 \sin^2 \theta + 3r^2 \cos \theta) \, dr \, d\theta \\ &= \int_{\frac{3\pi}{2}}^{2\pi} \left[\frac{1}{4} r^4 \sin^2 \theta + r^3 \cos \theta \right]_1^2 \, d\theta = \int_{\frac{3\pi}{2}}^{2\pi} \left(\frac{15}{4} \sin^2 \theta + 7 \cos \theta \right) \, d\theta = \left[\frac{15}{8} \theta - \frac{15}{16} \sin(2\theta) + 7 \sin \theta \right]_{\frac{3\pi}{2}}^{2\pi} \\ &= \left(\frac{15}{4} \pi \right) - \left(\frac{45}{16} \pi - 7 \right) = \frac{15}{16} \pi + 7 \end{aligned}$$

4. Evaluate the following integral:

$$\int_0^3 \int_{-\sqrt{9-x^2}}^0 e^{x^2+y^2} \, dy \, dx$$

We have $x^2 + y^2 = r^2$, so the integrand becomes $r e^{r^2} \, dr \, d\theta$ (where the extra r comes from the change of coordinates). The region described by this function is the part of the circle with radius 3 centered at the origin in the fourth quadrant; this is described by $r \leq 3$ and $\frac{3\pi}{2} \leq \theta \leq 2\pi$. Thus the integral is

$$\int_{\frac{3\pi}{2}}^{2\pi} \int_0^3 r e^{r^2} \, dr \, d\theta = \int_{\frac{3\pi}{2}}^{2\pi} = \int_{\frac{3\pi}{2}}^{2\pi} \left[\frac{1}{2} e^{r^2} \right]_0^3 \, d\theta = \frac{1}{2} \int_{\frac{3\pi}{2}}^{2\pi} (e^9 - 1) \, d\theta = \frac{1}{2} [(e^9 - 1)\theta]_{\frac{3\pi}{2}}^{2\pi} = \frac{1}{4} (e^9 - 1)\pi.$$

5. Parameterize the following surfaces in an appropriate way (if they are not already parametrized) and compute their normal vectors and area.

(a) The portion of the elliptic paraboloid $z = x^2 + y^2$ lying over the unit disk.

This surface is the graph of $f(x, y) = x^2 + y^2$, so we know that

$$\vec{N} = \langle 1, 0, f_x \rangle \times \langle 0, 1, f_y \rangle = \langle -f_x, -f_y, 1 \rangle = \langle -2x, -2y, 1 \rangle.$$

The area is computed by the following integral over the unit disk D , which we compute in polar coordinates and using the substitution $u = 1 + 4r^2$

$$\begin{aligned} \int_D |\vec{N}| dA &= \int_D \sqrt{1 + 4x^2 + 4y^2} dA = \int_0^{2\pi} \int_0^1 \sqrt{1 + 4r^2} r dr d\phi \\ &= 2\pi \int_1^5 \sqrt{u} \frac{1}{8} du = \frac{\pi}{6} (5^{3/2} - 1) \end{aligned}$$

(b) The part of the surface $z = xy$ that lies within the cylinder $x^2 + y^2 = 1$.

This is the graph of $f(x, y) = xy$, so

$$\vec{N} = \langle -f_x, -f_y, 1 \rangle = \langle y, x, 1 \rangle.$$

Restricting the surface to the part inside the cylinder corresponds to restricting the domain of f to the unit disk D . The area of the surface is given by

$$A = \iint_D \sqrt{1 + x^2 + y^2} dA = \int_0^{2\pi} \int_0^1 \sqrt{r^2 + 1} r dr d\theta = \frac{2\pi}{3} (2\sqrt{2} - 1)$$

(The computation of the integral is analogous to problem 5a).

(c) The portion of $z = 2x^2 + 2y^2 - 7$ that lies inside the cylinder $x^2 + y^2 = 4$. We will do

this as a polar integral. The integrand is $\sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} = \sqrt{(4x)^2 + (4y)^2 + 1} = \sqrt{16(x^2 + y^2) + 1} = \sqrt{16r^2 + 1}$. Thus the integral is

$$\int_0^{2\pi} \int_0^2 r \sqrt{16r^2 + 1} dr d\theta = \int_0^{2\pi} d\theta \int_0^2 r \sqrt{16r^2 + 1} dr = 2\pi \left[\frac{1}{48} (16r^2 + 1)^{3/2} \right]_0^2 = \frac{\pi}{24} (65^{3/2} - 1).$$

(d) The surface area of the portion of $z = 2 - \sqrt{x^2 + y^2}$ above $z = 0$.

We will again do this as a polar integral. The surface meets $z = 0$ when $r = \sqrt{x^2 + y^2} = 2$. We have $\frac{\partial z}{\partial x} = \frac{-x}{\sqrt{x^2 + y^2}}$ and $\frac{\partial z}{\partial y} = \frac{-y}{\sqrt{x^2 + y^2}}$. Therefore the integrand is

$$\sqrt{\frac{x^2}{x^2 + y^2} + \frac{y^2}{x^2 + y^2} + 1} = \sqrt{2}.$$

$$\int_0^{2\pi} \int_0^2 \sqrt{2} dr d\theta = \int_0^{2\pi} d\theta \int_0^2 \sqrt{2} dr = 4\sqrt{2}\pi.$$

6. Rewrite the integral

$$\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x, y, z) \, dz \, dy \, dx$$

as the equivalent iterated integral in the five other orders.

$$\begin{aligned} \int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x, y, z) \, dz \, dy \, dx &= \int_0^1 \int_0^{y^2} \int_0^{1-y} f(x, y, z) \, dz \, dx \, dy \\ &= \int_0^1 \int_0^{1-z} \int_0^{y^2} f(x, y, z) \, dx \, dy \, dz \\ &= \int_0^1 \int_0^{1-y} \int_0^{y^2} f(x, y, z) \, dx \, dz \, dy \\ &= \int_0^1 \int_0^{1-\sqrt{x}} \int_{\sqrt{x}}^{1-z} f(x, y, z) \, dy \, dz \, dx \\ &= \int_0^1 \int_0^{(1-z)^2} \int_{\sqrt{x}}^{1-z} f(x, y, z) \, dy \, dx \, dz \end{aligned}$$

Problems 1, 2, 5(a), 5(b), and 6 courtesy of Carlos Esparza. Problems 3, 4, 5(c), and 5(d) courtesy of Peter Rowley.