

Discussion #19/21

GSI: Zack Stier

Date: October 17/20

1. Evaluate $\iint_D x^2 y \, dA$ where D is the top half of the disk with center the origin and radius 5.
2. Evaluate $\iint_D e^{-x^2-y^2} \, dA$ where D is the region bounded by the semicircle $x = \sqrt{4-y^2}$ and the y -axis.
3. Evaluate $\iint_D (y^2 + 3x) \, dA$, where D is the region in the fourth quadrant between $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
4. Evaluate the following integral:

$$\int_0^3 \int_{-\sqrt{9-x^2}}^0 e^{x^2+y^2} \, dy \, dx$$

5. Parameterize the following surfaces in an appropriate way (if they are not already parametrized) and compute their normal vectors and area.

- (a) The portion of the elliptic paraboloid $z = x^2 + y^2$ lying over the unit disk.
- (b) The part of the surface $z = xy$ that lies within the cylinder $x^2 + y^2 = 1$.
- (c) The portion of $z = 2x^2 + 2y^2 - 7$ that lies inside the cylinder $x^2 + y^2 = 4$.
- (d) The surface area of the portion of $z = 2 - \sqrt{x^2 + y^2}$ above $z = 0$.

6. Rewrite the integral

$$\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x, y, z) \, dz \, dy \, dx$$

as the equivalent iterated integral in the five other orders.