

Discussion #1

GSI: Zack Stier

Date: 9/3/2025

1. Find Cartesian equations $f(x, y) = 0$ for the following parametrized curves.

- (a) $x = \sqrt{t+1}$, $y = \frac{1}{t+1}$, for $t > -1$.
- (b) $x = 4 - 2t$, $y = 3 + 6t - 4t^2$.
- (c) $x = 2e^t$, $y = \cos(1 + e^{3t})$.

(a) We have

$$x^2 = t + 1 = \frac{1}{y},$$

so the Cartesian equation is $x^2 = 1/y$. Note that the constraint $t > -1$ means that $x > 0$ and $y > 0$.

(b) We can solve the x equation to see $t = 2 - \frac{1}{2}x$. We then plug this in to the y equation to get

$$\begin{aligned} y &= 3 + 6\left(2 - \frac{1}{2}x\right) - 4\left(2 - \frac{1}{2}x\right)^2 \\ &= 3 + 12 - 3x - 16 + 8x - x^2 \\ &= -1 + 5x - x^2, \end{aligned}$$

which is a Cartesian equation for the curve.

(c) Note that $e^t = x/2$, so

$$y = \cos(1 + (e^t)^3) = \cos(1 + x^3/8).$$

The outer sides of this give a Cartesian equation for the curve (which holds for $x > 0$, since e^t takes on all positive values).

2. Compute the slopes of the following curves at a point in time t . Find the points where the tangents are vertical and horizontal and compute the second derivative d^2y/dx^2 at the horizontal points.

- (a) $x = \cos t$, $y = \sin t$.
- (b) $x = t^2 - 1$, $y = t^3 - t$.
- (c) $x = e^t - 1$, $y = \sin t$.

(a) $x'(t) = -\sin t, y'(t) = \cos t$ so the slope is $\frac{dy}{dx} = -\frac{\cos t}{\sin t} = -\cot t$. The tangents are horizontal where $x'(t) = 0$, i.e. at $t = \pi/2 + k\pi$ and vertical where $y'(t) = 0$, i.e. at $k\pi, k \in \mathbb{Z}$. For the second derivative, we get

$$\frac{d^2y}{dx^2} = \frac{1}{x'(t)} \frac{d}{dt} \frac{dy}{dx} = \frac{-1}{\sin t} \left(\frac{1}{\tan^2 t \cos^2 t} \right) = \frac{-1}{\sin^3 t}$$

which is -1 at $t = \pi/2 + k\pi$ for even k and $+1$ for odd k .

(b) $x'(t) = 2t, y'(t) = 3t^2 - 1$ so the slope is $\frac{dy}{dx} = \frac{3t^2 - 1}{2t}$. The tangents are horizontal at $t = \pm 1/\sqrt{3}$ and vertical at $t = 0$. Note that the point $(0, 0)$ which corresponds to $t = \pm 1$ has two different tangents. The second derivative is

$$\frac{d^2y}{dx^2} = \frac{1}{2t} \frac{d}{dt} \frac{3t^2 - 1}{2t} = \frac{12t^2 - 2(3t^2 - 1)}{8t^3} = \frac{6t^2 + 2}{8t^3}$$

So at the horizontal points we get $\pm 3\sqrt{3}/2$.

(c) $x'(t) = e^t, y'(t) = \cos t$ so the slope is $\frac{dy}{dx} = e^{-t} \cos t$. The tangents are horizontal at $t = \pi/2 + k\pi, k \in \mathbb{Z}$ and never vertical. The second derivative is

$$\frac{d^2y}{dx^2} = e^{-t} \frac{d}{dt} e^{-t} \cos t = -e^{-2t} (\sin t + \cos t)$$

At the points with horizontal tangents we get $(-1)^{k+1} e^{-\pi-2\pi k}$.

3. Find the length of each curve.

(a) $x = 1 + 3t^2, y = 4 + 2t^3, 0 \leq t \leq 1$.
 (b) $x = e^t - t, y = 4e^{t/2}, 0 \leq t \leq 2$.
 (c) $x = e^t \cos t, y = e^t \sin t, 0 \leq t \leq \pi$.

(a) Applying the formula we have

$$\begin{aligned} L &= \int_0^1 \sqrt{(6t)^2 + (6t^2)^2} dt = \int_0^1 6t \sqrt{1+t^2} dt \\ &= [2(1+t^2)^{3/2}]_0^1 \\ &= 4\sqrt{2} - 2. \end{aligned}$$

(b) Applying the formula we have

$$L = \int_0^2 \sqrt{(e^t - 1)^2 + (2e^{t/2})^2} dt = \int_0^2 \sqrt{e^{2t} + 2e^t + 1} dt = \int_0^2 e^t + 1 dt = e^2 + 1.$$

(c) Applying the formula we have

$$\begin{aligned} L &= \int_0^\pi \sqrt{(e^t \cos t - e^t \sin t)^2 + (e^t \cos t + e^t \sin t)^2} dt = \int_0^\pi \sqrt{2e^{2t} \cos^2 t + 2e^{2t} \sin^2 t} dt \\ &= \int_0^\pi \sqrt{2} e^t dt \\ &= \sqrt{2}(e^\pi - 1). \end{aligned}$$

4. Convert the following from polar to Cartesian, or vice versa. What curve does it trace out?

- (a) $x + y = 1, 0 \leq y \leq 1$.
- (b) $r = -3, 0 \leq \theta \leq \pi$.

(a) $r \sin \theta = y = 1 - x = 1 - r \cos \theta$, so $r = \frac{1}{\sin \theta + \cos \theta}$ for $0 \leq \theta \leq \frac{\pi}{2}$. This is a line segment connecting $(1, 0)$ to $(0, 1)$; when we trace it in increasing θ it is oriented to the top-left.

(b) $x^2 + y^2 = 9$, in the lower half-plane (the semicircle $y = -\sqrt{9 - x^2}$).

5. Compute the slopes of the following curves. Find the points where the tangents are vertical and horizontal.

- (a) $r = 3 \cos \theta$;
- (b) $r = 1 - \sin \theta$;
- (c) $r = \sec \theta$;
- (d) $r = e^\theta$.

(a) $\frac{dy}{d\theta} = -3 \sin^2 \theta + 3 \cos^2 \theta$ and $\frac{dx}{d\theta} = -6 \sin \theta \cos \theta$ so the slope is $\frac{dy}{dx} = \frac{3 \cos(2\theta)}{-3 \sin(2\theta)} = -\tan(2\theta)$. The horizontal tangents are where $3 \cos(2\theta) = 0$ which occurs at $\pi/4 + k\pi/2, k \in \mathbb{Z}$ and the vertical tangents are where $-3 \sin(2\theta) = 0$ which occurs at $k\pi/2, k \in \mathbb{Z}$.

(b) $\frac{dy}{d\theta} = \cos \theta - \sin(2\theta)$ and $\frac{dx}{d\theta} = -\sin \theta - \cos(2\theta)$ so the slope is $\frac{dy}{dx} = \frac{\cos \theta - \sin(2\theta)}{-\sin \theta - \cos(2\theta)}$. The horizontal tangents are where $\cos \theta(1 - 2 \sin \theta) = 0$ which occurs at $\theta = \pi/2 + k\pi, k \in \mathbb{Z}$ and $\theta = \pi/6 + 2k\pi, 5\pi/6 + 2l\pi, k, l \in \mathbb{Z}$. The vertical tangents are where $1 + \sin \theta - 2 \sin^2 \theta = (1 + 2 \sin \theta)(1 - \sin \theta) = 0$ which occurs at $\pi/2 + 2k\pi, k \in \mathbb{Z}$ and $\theta = 7\pi/6 + 2k\pi, 11\pi/6 + 2l\pi, k, l \in \mathbb{Z}$. Notice there is overlap at $\theta = \pi/2 + 2k\pi$ so we must take a limit to verify the slope. We see that

$$\lim_{\theta \rightarrow \pi/2} \frac{\cos \theta - \sin(2\theta)}{-\sin \theta - \cos(2\theta)} = \lim_{\theta \rightarrow \pi/2} \frac{-\sin \theta - 2 \cos(2\theta)}{-\cos \theta + 2 \sin(2\theta)} = \frac{1}{0}$$

so the horizontal tangents only occur at $\theta = \pi/2 + (2k + 1)\pi, k \in \mathbb{Z}$ and $\theta = \pi/6 + 2k\pi, 5\pi/6 + 2l\pi, k, l \in \mathbb{Z}$.

(c) $\frac{dy}{d\theta} = \sec \theta \tan \theta \sin \theta + \tan \theta$ and $\frac{dx}{d\theta} = \tan \theta - \sin \theta \sec \theta = 0$. The slope $\frac{dy}{dx}$ is undefined. So for all θ we have a vertical tangent and no horizontal tangents.

(d) $\frac{dy}{d\theta} = e^\theta(\sin \theta + \cos \theta)$ and $\frac{dx}{d\theta} = e^\theta(\cos \theta - \sin \theta)$ so the slope is $\frac{dy}{dx} = \frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta}$. The horizontal tangents are where $\tan \theta = -1$ which occurs at $3\pi/4 + k\pi, k \in \mathbb{Z}$ and the vertical tangents are where $\tan \theta = 1$ which occurs at $\pi/4 + k\pi, k \in \mathbb{Z}$.

Problems 1–3 and 5 courtesy of Carlos Esparza.