

Math 53, Fall 2025, Section 106, Quiz 1

Name: _____ Date: _____

Time limit: 20 minutes. Each of the three problems is worth 10 points. If a problem asks for a numerical answer, please box your result. An answer without any work shown will get no credit. You do not need to simplify expressions such as $2(x - 1) + (x - 4)$, but you should evaluate trigonometric functions of simple angles such as multiples of $\frac{\pi}{4}$ and $\frac{\pi}{6}$.

1. Consider the curve $r = 7 \sin \theta$.
 - (a) As θ ranges across all of \mathbb{R} , the curve is traced out many times. Find a range of θ such that the curve is traced out exactly once.
 - (b) By taking an integral, find the length of that single copy of the curve.
2. Triangle ABC has vertices $A = (-1, -1, -4)$, $B = (0, -2, -2)$, and $C = (-1, -3, -2)$ in \mathbb{R}^3 . What is the angle at vertex B ?

3. Consider

- $x = \frac{1}{2}t - \frac{\sqrt{3}}{2} \sin t$ and $y = \frac{\sqrt{3}}{2}t + \frac{1}{2} \sin t$ for $-\pi \leq t \leq \pi$,
- $y = x\sqrt{3}$.

Find the area of the region of the plane enclosed by these two curves.