

Discussion #1

GSI: Zack Stier

Date: 9/3/2025

1. Find Cartesian equations $f(x, y) = 0$ for the following parametrized curves.
 - (a) $x = \sqrt{t+1}$, $y = \frac{1}{t+1}$, for $t > -1$.
 - (b) $x = 4 - 2t$, $y = 3 + 6t - 4t^2$.
 - (c) $x = 2e^t$, $y = \cos(1 + e^{3t})$.
2. Compute the slopes of the following curves at a point in time t . Find the points where the tangents are vertical and horizontal and compute the second derivative d^2y/dx^2 at the horizontal points.
 - (a) $x = \cos t$, $y = \sin t$.
 - (b) $x = t^2 - 1$, $y = t^3 - t$.
 - (c) $x = e^t - 1$, $y = \sin t$.

3. Find the length of each curve.

- (a) $x = 1 + 3t^2, y = 4 + 2t^3, 0 \leq t \leq 1.$
- (b) $x = e^t - t, y = 4e^{t/2}, 0 \leq t \leq 2.$
- (c) $x = e^t \cos t, y = e^t \sin t, 0 \leq t \leq \pi.$

4. Convert the following from polar to Cartesian, or vice versa. What curve does it trace out?

- (a) $x + y = 1, 0 \leq y \leq 1.$
- (b) $r = -3, 0 \leq \theta \leq \pi.$

5. Compute the slopes of the following curves. Find the points where the tangents are vertical and horizontal.

- (a) $r = 3 \cos \theta;$
- (b) $r = 1 - \sin \theta;$
- (c) $r = \sec \theta;$
- (d) $r = e^\theta.$