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1 Classical Lee–Yang

(Following notes of Srivastava)

1.1 Ferromagnetic Ising model

Definition 1.1 (ferromagnetic Ising model). Consider a graph G(V, E). For an
assignment of spins σ ∈ {±}V , say that

d(σ) = #{uv ∈ E : σ(u) ̸= σ(v)} (number of edges that σ cuts),
m(σ) = #{v ∈ V : σ(v) = +} (number of sites in the + half).

Then for 0 < β < 1, we give σ the weight βd(σ)λm(σ) and assign the partition
function

Zβ,G(λ) = ∑
σ∈{±}V

βd(σ)λm(σ)

to normalize the distribution on {±}V .

β plays the role of temperature* and controls the extent to which we “punish” or “re-
ward” the size of the cut. One extreme of this is β = 0 where the only surviving terms
have no cut edges; if G is connected then this requires σ to be constant, and we call
this a frozen configuration. The other extreme is β = 1 where neighbor interactions
(cuts) have no impact, so sites act as IRVs. Meanwhile, λ is the vertex activity, which
biases the sites to some degree in favor of +.

*Rather than inverse temperature
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Consider the expected fraction Mβ(λ) of the graph in the + half, which is

Mβ(λ) =

∑
σ∈{±}V

m(σ)
#V βd(σ)λm(σ)

∑
σ∈{±}V

βd(σ)λm(σ)
=

1
#VZβ(λ)

(
z

∂

∂z
Zβ(z)

)∣∣∣∣
z=λ

= − 1
#V

(
z

∂

∂z
log Zβ(z)

)∣∣∣∣
z=λ

.

(1.2)

Theorem 1.3 (Lee–Yang ’52)
Let G be a finite graph, 0 < β < 1, and Z = Zβ,G the partition function of the
ferromagnetic Ising model. Then, all of Z’s zeroes lie on S1.

Proof. Suppose each vertex v gets its own vertex activity λv which only appears when
v is included in σ’s + half. Then the function to study is

Z(λv : v ∈ V) = Z(λ) = ∑
σ∈{±}V

βd(σ) ∏
v∈V

σ(v)=+

λv.

We shall show that if |λv| > 1 for all v, then Z(λ) ̸= 0.
We quickly remark why this proves the theorem. First, if λ = λ1 then we see that

Z(λ) ̸= 0 on λ ̸∈ D. Then, note the algebraic fact that Z(λ) = λ#V Z(1/λ) under the
bijection of spins σ 7−→ ¬σ (flipping each spin does not change d).

Moving on to the proof of the new fact, we use the Asano contraction, where we
quotient the pair of vertices {u, v} where uv ̸∈ E.

Say that a graph H has the Lee–Yang property if H and all induced subgraphs of
H satisfy that the partition function Z(λ) fails to vanish when each input is in D. We
show the following now, which is the core of the proof: if H has the Lee–Yang property
then so too does any Asano contraction H′. Indeed, if u, v ∈ V(H) are the vertices to
be contracted, consider decomposing

Zβ,H(λ) = λuλv Aβ,H(λ
′) + λuBβ,H(λ

′) + λvCβ,H(λ
′) + Dβ,H(λ

′) (1.4)

where λ′ = (λw : w ∈ V ∖ {u, v}). We see then that

Zβ,H′(λ, λ′) = λAβ,H(λ
′) + Dβ,H(λ

′) (1.5)

where we assign the vertex activity λ to the contracted u-v vertex s—we lose the
Bβ,H and Cβ,H terms because all terms in H′’s partition function correspond to si-
multaneous lifts to H (i.e. assignments σ(u) = σ(v)), and the λ terms in Zβ,H just
count inclusion in the + half. Now, suppose λw ̸∈ D for w ∈ V(H) ∖ {u, v}. We
want to show that (1.5) is nonzero in this case, with the knowledge that (1.4) does
not vanish for such λ′. λ′ is fixed so suppress the function arguments and decora-
tions and let λu = λv = x, so the quadratic Ax2 + (B + C)x + D has no roots out-
side the disk, so the product of its roots lies in the disk: D/A ∈ D (by Vieta). But
in order for (1.5) to vanish we must have λ = −D/A, and this we have seen lies
in D, which is exactly what we wanted. However, we needed that Aβ,H(λ

′) ̸= 0,
which we recognize as the statement of the Theorem for the induced subgraph Ĥ =
H[V(H)∖ {u, v}] in the following way: Aβ,H(λ

′) = βdegH u−1βdegH v−1Zβ,Ĥ(λ
′
A) where
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λ′
A =

(
1

β#(NH (w)∩{u,v}) λw : w ∈ V ∖ {u, v}
)

where NH(w) is w’s neighborhood in H—the
idea is that we want to modify Zβ,Ĥ to pick up a β for each neighbor of u and v which
is excluded from the + half of a given spin assignment.* The Lee–Yang property tells
us that indeed A(λ′) ̸= 0, using also that if λw ̸∈ D then so too is λw

βn for whichever
exponent n arises from the neighborhood consideration (importantly 0 < β < 1).
However, to fully verify the claim we also need to check the Lee–Yang property for
all induced subgraphs H′′ of the Asano contraction H′. We readily handle this by the
following: either s ̸∈ V(H′′), in which case H′′ is already an induced subgraph of H,
or s ∈ V(H′′) and H′′ is an Asano contraction of an induced subgraph of H, namely
H̃ = H[{u, v} ⊔ (V(H′′)∖ {s})], and then in the argument above H̃ plays the role of
H and H′′ plays the role of H′.

We now prove the Theorem for the graph on one vertex. Here, Z(λ0) = 1+ λ0 and
the result clearly holds.

We now prove the Theorem for the graph of just a single edge. Here, Z(λ1, λ2) =

1+ β(λ1 + λ2) + λ1λ2. If Z vanishes then λ2 = − 1+βλ1
β+λ1

; notice that this is the negative
of a Blaschke factor (for −β ∈ D) evaluated at 1/λ1, and Blaschke factors map D to
itself, so if λ1 ̸∈ D then λ2 is actually inside D.

We now prove the Theorem for the disjoint union of graphs G1 and G2 each in-
dividually having the Lee–Yang property. This is immediate because Zβ,G1⊔G2 =
Zβ,G1 Zβ,G2 .

Finally, we now prove the Theorem for any graph G on m edges. The perfect
matching Mm on 2m vertices has the Lee–Yang property, and it is a sequence of Asano
contractions from Mm to G. Thus G has the Lee–Yang property, and in particular it
satisfies the Theorem. ■

1.2 Monomer-dimer model

Definition 1.6 (monomer-dimer model). Consider a graph G(V, E). For a match-
ing M, say that u(M) is the number of unmatched vertices (singletons; monomers)
in M, i.e. u(M) = #V − 2#E(M). Then we give M the weight λu(M) and assign
the partition function

ZG(λ) = ∑
M

λu(M)

to normalize the distribution on matchings.

λ represents the tendency for sites to prefer to be unmatched (monomers) or matched
(dimers); high λ corresponds to a preference for monomers.

*We actually can also see that

Bβ,H(λ′) = βdegH u−1Zβ,Ĥ(λ′
B), λ′

B =

(
β#(NH(w)∩{v})

β#(NH(w)∩{u}) λw : w ∈ V ∖ {u, v}
)

;

Cβ,H(λ′) = βdegH v−1Zβ,Ĥ(λ′
C), λ′

C =

(
β#(NH(w)∩{u})

β#(NH(w)∩{v}) λw : w ∈ V ∖ {u, v}
)

;

Dβ,H(λ′) = Zβ,Ĥ(λ′
D), λ′

D =
(

β#(NH(w)∩{u,v})λw : w ∈ V ∖ {u, v}
)

;

but these function evaluations are not needed for the proof at hand, nor do they have the same quality
of guarantees.
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Consider the expected fraction U(λ) of monomers, which is

U(λ) =
∑
M

u(M)
#V λu(M)

∑
M

λu(M)
=

1
#VZ(λ)

(
z

∂

∂z
Z(z)

)∣∣∣∣
z=λ

= − 1
#V

(
z

∂

∂z
log Z(z)

)∣∣∣∣
z=λ

. (1.7)

Theorem 1.8 (Heilmann–Lieb ’72)
Let G be a finite graph and Z = ZG the partition function of the monomer-dimer
model. Then, all of Z’s zeroes lie on iR.

1.3 Broad-strokes picture

This area of study can be motivated by phase transitions in magnetic materials,
where at the “Curie temperature” spontaneous magnetism is lost. One attempt at
modeling this (via the ferromagnetic Ising model, §1.1) is to assign a sign (spin) at
each site in a lattice, which interact and favor being aligned with their neighbors. This
favoring is quantified with weights on entire configurations, with the interactions get-
ting weaker as temperature β increases. There might also be a magnetic field, whose
strength separately induces the sites to favor a particular spin. The quantity to study
here, magnetization M(β), is the fraction of +s, so that M(β) = 1/2 would mean that
there is no magnetism. The phase transition should appear as a discontinuity in some
derivative of M, however there should be no phase transition in the magnetic field.

Finite graphs give polynomials, which lack discontinuities, so one instead can
study limits of larger and larger graphs. For no external magnetic field, Ising showed
in 1925 that when the lattice is Z, M remains analytic but Onsager showed in 1944
that when the lattice is Z2, M′′ has a singularity. It was then Lee–Yang in 1952 who
showed that mathematically there is no phase transition with respect to the magnetic
field, as has been observed experiementaly.

The general situation for a graph G is that the external field arises formally through
the parameter λ and the partition function, which normalizes the weighted distribu-
tion over physical objects (spins, in the above situation and §1.1; pairings (matchings,
monomers/dimers) in §1.2), is denoted ZG(λ). We can also study the related free
energy

FG(λ) = − 1
#V(G)

log ZG(λ),

which we see gives interesting formulas for possible observables in (1.2) and (1.7). If
FG is analytic on some domain Ω ⊂ C in either setting, or any analogous setting for
a different model, then there cannot be a phase transition inside Ω; the domain of
particular interest is R+ for the above settings.

One setting with a large body of work is approximating G = Z2 (infinite; might
have singularities in FG) by squares Gn (finite; cannot have singularities in FGn ). On-
sager’s work referenced earlier was with λ = 1 and β the parameter exhibiting a
singularity. Yang–Lee* showed the following:

*In a different paper from that which contains Theorem 1.3.
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Theorem 1.9 (Yang–Lee ’52)
Let FG(z) = lim

n→∞
FGn(z). If ZGn lacks roots in the open domain Ω ⊂ C then FG is

analytic in Ω, so that if I ⊂ R∩Ω is an interval then there are no phase transitions
on I.

This is perhaps intuitively true but the analytic details are the content of the theorem.

2 The Heisenberg XXZ model

(Following a paper of Asano)
Let Xi, Yi, Zi be the respective Pauli matrices acting on the ith site (and as identity

elsewhere).

Definition 2.1 (Heisenberg XXZ model). Pick n ∈ N. Consider the operators

Hi,j =
1
2
(
ZiZj − id+γi,j

(
XiXj + YiYj

))
for −1 < γi,j < 1 symmetric, and the Hamiltonian

H = −∑
i<j

Ji,jHi,j

for Ji,j > 0 symmetric, all indices between 1 and n.

We consider the magnetization M = ∑
i

Zi and magnetic field h. M actually commutes

with H; clearly this is the case with the ZiZj and id terms, and the nontrivial commu-
tativity comes from the X’s and Y’s “switching places” as applicable (and using that
YiYj is a real matrix). It is also not hard to check that

⟨¬σ|Hi,j|¬σ⟩ = ⟨σ|Hi,j|σ⟩. (2.2)

We are interested in the partition function

Q(z) = tr exp(β(hM − H)) ∑
σ∈{±1}n

⟨σ|zMe−βH |σ⟩

where z takes the role eβh for inverse temperature β = 1
kT , and each entry in σ cor-

responds to a different qubit/site/wire, and {|σ⟩ : σ ∈ {±}n} forming a basis for the
qubits, with σi = ±1 corresponding to the ±1-eigenfunction of Zi.

Consider the function
Φ(z) = ∑

σ

zσ⟨σ|e−βH |σ⟩

where z = zn = (zi : 1 ⩽ i ⩽ n) (the decoration will be dropped if context is clear),
and zσ = ∏

i
zσi

i . For the Ising model, it is known that Φ(z) ̸= 0 when for all i, zi ̸∈ D

and there exists j for which z ̸∈ D; this is the Lee–Yang lemma. An analagous result
will not be proved here. Instead, we get at Q(z) another way. Consider the following
terminology:
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Definition 2.3 (Lee–Yang lemma). We say that a function f (z) satisfies the Lee–
Yang lemma if whenever for all i, zi ̸∈ D and there exists j for which z ̸∈ D, it is
the case that f (z) ̸= 0.

We will construct perturbation series ΦN(z) and prove the Lee–Yang lemma about
these functions. They are

ΦN(z) = ∑
σ

zσ⟨σ|
(

∏
i>j

exp
(

βJi,j

N
Hi,j

)
︸ ︷︷ ︸

P(N)

)N

|σ⟩

and we recognize that P(N)N ≈ e−βH for large N, by Trotterization, and that moreover
the order of the product is inessential (we will pick an order later on). This function
obeys

ΦN(z) = ΦN

(
z−1
)

(2.4)

(inverse taken entrywise) due to inversion-symmetry of spins (namely, (2.2)) so that
(z−1)σ = z¬σ and the coefficient of z¬σ is the same as that of zσ.

Another perturbation series is for Q:

QN(z) = ∑
σ∈{±1}n

⟨σ|zMP(N)N |σ⟩

and it follows that
QN(z) = ΦN(z1) (2.5)

(i.e. z1 is constant z-valued). We thus have a conditional result, combining (2.5) with
(2.4), that once ΦN is known to satisfy the Lee–Yang lemma, all of ΦN’s roots must lie
on S1. Then, znQN(z) is a degree-2n polynomial with coefficients converging to those
of znQ(z) in N. Since roots are continuous in the coefficients, it follows in turn that
Q’s roots would all lie on S1. Thus, we must prove the following:

Theorem 2.6 (T.1)
ΦN satisfies the Lee–Yang lemma for all N ∈ N.

Consider the function

F(z, ζ) = ∑
σ

∑
σ′

zσ⟨σ|e−βH∣∣σ′〉ζσ′

where we are weighting each entry in e−βH with separate weights for the ‘row’ and
‘column.’ We will relate it to Φ later. For now, we construct an analogous pertutbation
series

FN(z, ζ) = ∑
σ

∑
σ′

zσ⟨σ|P(N)N∣∣σ′〉ζσ′
.

The plan will be to prove that FN satisfying the Lee–Yang lemma will imply that ΦN
does too (this is the first step of §2.4). We actually will do this using the generalized

FN,N′(z, ζ) = ∑
σ

∑
σ′

zσ⟨σ|P(N′)N∣∣σ′〉ζσ′
, (2.7)

and the goal becomes that
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Theorem 2.8 (T.2)
FN,N′ satisfies the Lee–Yang lemma for all N, N′ ∈ N.

This decoupling between N and N′ allows the simplification of considering instead of
Ji,j just the values J′i,j =

J
N′ and thus N′ = 1.

We move now to general functions which will satisfy the Lee–Yang lemma (Lee–
Yang functions).

2.1 Lee–Yang functions

Definition 2.9 (D.1 (I)). Call f (z) rationally multiaffine if z1 f (z) is multiaffine in
each variable z2

i and has nonzero degree-2n coefficient (i.e. of z21).

That is, the structure of such functions is ∑
σ

ασzσ for some coefficients ασ with α1 ̸= 0.

Definition 2.10 (D.1). We say that f (z) ∈ L′(z) if it is rationally multiaffine, and
that f (z) ̸= 0 whenever zi ̸∈ D for all i.

This provides further constraints on the ασs.
L′ obeys

Proposition 2.11 (T.3)
For any f (z) ∈ L′(z) and i, f = zigi(z¬i) − 1

zi
hi(z¬i) where gi(z¬i), hi(z¬i) ∈

L′(z¬i).

We use L′ to build the following:

Definition 2.12 (D.2). We say that f (z) ∈ L(z) if it is rationally multiaffine, and
that for any i, f = g

(
zi − a

zi

)
where g(z¬i) ∈ L′(z¬i) and a is a function of z¬i

where if zj ̸∈ D for all j ̸= i then a(z¬i) ∈ D.

Notice that the only difference between Definition 2.12 and the second half of Propo-
sition 2.11 is whether a lands in D or D (resp.). This definition is remarkably power-
ful:

Theorem 2.13 (T.4)
Suppose f is rationally multiaffine. Then f (z) ∈ L(z) if and only if f satisfies the
Lee–Yang lemma (in the sense of Definition 2.3).

Thus, we can rightfully think of L as the Lee–Yang functions.
(We omit the proofs of Proposition 2.11 and Theorem 2.13 since they are not es-

sential to the main line of reasoning.)
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2.2 Two examples of Lee–Yang functions

Consider n = 1 and N = 1. Then, we have F1(z, ζ) = zζ + 1
zζ .

Lemma 2.14
F1(z, ζ) is a Lee–Yang function.

Proof. Use the substitution τ = zζ, so F1(z, ζ) = F1(τ) = τ + 1
τ = τ + τ

|τ|2
. If F1(τ) = 0

then looking at imaginary parts, we have Im τ = Im τ

|τ|2
, so |τ| = 1. However, the Lee–

Yang lemma insists that F1 not vanish when both z and ζ lie outside the disk, with one
lying outside the closed disk, so |τ| = |zζ| > 1, a violation of the necessary condition
just derived for F1 to vanish. Thus indeed F1 fails to vanish on such (z, ζ). ■

Consider now n = 2. Then, we have

F1(z1, z2, ζ1, ζ2) = ∑
σ,σ′

zσ1
1 zσ2

2 ⟨σ| exp(K1,2H1,2)
∣∣σ′〉ζσ′

1
1 ζ

σ′
2

2

(for appropriate K = K1,2). Notice that the Hamiltonian considerations have simpli-
fied massively in light of the few qubits.

Proposition 2.15 (Appendix 2)
F1(z1, z2, ζ1, ζ2) is a Lee–Yang function.

Proof. Call γ = γ1,2. Then, one may calculate—this is where we most directly use the
structure of the Hamiltonian—that

F1(z1, z2, ζ1, ζ2) = z1z2ζ1ζ2 +
1

z1z2ζ1ζ2
+ e−K cosh(γK)

(
z1ζ1

z2ζ2
+

z2ζ2

z1ζ1

)
+ e−K sinh(γK)

(
z1ζ2

z2ζ1
+

z2ζ1

z1ζ2

)
.

(2.16)
We isolate the coefficient of z1, which is

z2ζ1ζ2

(
1 +

e−K

z2
2

(
cosh(γK)

ζ2
2

+
sinh(γK)

ζ2
1

))
.

This function lies in L(z2, ζ1, ζ2) since for real x, |cosh x| + |sinh x| = e|x| so we use
the triangle inequality and the fact that |γK| < K. Clearly (by symmetry) an identical
argument suffices for the other variables.

Suppose now towards contradiction that F1 vanishes where (WLOG) z1 ̸∈ D and
z2, ζ1, ζ2 ̸∈ D. We shall show that there exist z′1 ̸∈ D and z′2 ∈ S1 with F1(z′1, z′2, ζ1, ζ2) =
0. Write F1(z1, z2, ζ1, ζ2) = z2A(z1, ζ1, gz2) + z−1

2 B(z1, ζ1, ζ2) (A and B are readily
retrievable from (2.16)) and in the zero locus view z2 as a function of z1, namely√
− B(z1,ζ1,ζ2)

A(z1,ζ1,ζ2)
. In the limit |z1| −→ ∞, z2 limits to ie−

K
2

ζ1ζ2

√
cosh(γK)ζ2

1 + sinh(γK)ζ2
2,

which is clearly of magnitude smaller than 1. Thus there is some (z′1, z′2) attained on
the contour taking z1 to ∞ which attains |z′2| = 1.
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The above argument has nothing special to do with z2, i.e. we can find ζ ′1, ζ ′2 ∈ S1

with F1(z′′′1 , z′2, ζ ′1, ζ ′2) = 0. Rename back to z1, z2, ζ1, ζ2, resp. We now solve for z1 in
terms of these other values in S1:

z1 = −
1 + e−Kz2

2
(
cosh(γK)ζ2

2 + sinh(γK)ζ2
1

)
1 + e−Kz2

2
(

cosh(γK)ζ2
2
+ sinh(γK)ζ1

2
) z2

2ζ1
2
ζ2

2

= −
z2

2 + e−K(cosh(γK)ζ2
2 + sinh(γK)ζ2

1

)
1 + z2

2e−K
(

cosh(γK)ζ2
2
+ sinh(γK)ζ1

2
) ζ1

2
ζ2

2

and this is the negative of a Blaschke factor for −e−K(cosh(γK)ζ2
2 + sinh(γK)ζ2

1

)
(which

we know to lie in D), evaluated at z2
2, times −ζ1

2
ζ2

2 ∈ S1. As the Blaschke factors
map the closed disk to itself, this contradicts that z1 ̸∈ D. Thus we are done. ■

2.3 Operations on Lee–Yang functions

Definition 2.17 (derivative operators, D.3). For a function f of n complex vari-
ables z and j, k indices, write

dj f (z) = zj
∂ f
∂zj

(z)

Ij f (z) = −i f (. . . , zj−1, izj, zj+1, . . . )

D′[zj, zk][ f (z)] = dj f (. . . , zj−1,
√

zj, zj+1, . . . , zk−1,
√

zj, zk+1, . . . )

D[zj, zk][ f (z)] = IjD′[zj, zk][ f (z)].

We will only ever use D, and these operators are set up in this way to ensure that
the rationally multiaffine structure is maintained. While the meaning is somewhat
opaque directly from the definitions, the following calculation is quite enlightening.
Write

f (z) = z1z2A f (z′) +
z1

z2
B f (z′) +

z2

z1
C f (z′) +

1
z1z2

D f (z′) (2.18)

where z′ = (zi : i > 2). Then, dropping arguments and decorations,

g(z1, z′) = f
(√

z1,
√

z1, z′
)
= z1A + B + C +

1
z1

D

and thus

d1g(z1, z′) = z1A − 1
z1

D

D[z1, z2][ f (z)] = z1A +
1
z1

D. (2.19)

An identical calculation reveals that if

f (z) = z1A f (z′) +
1
z1

B f (z′), g(ζ) = ζ1Cg(ζ
′) +

1
ζ1

Dg(z′) (2.20)

(where here z′ = (zi : i > 1) and ζ′ = (ζi : i > 1)) then (again dropping arguments
and decorations)

D[z1, ζ1][ f (z)g(ζ)] = z1AC +
1
z1

BD. (2.21)
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Definition 2.22 (Lee–Yang product, D.4). Consider f (z, ζ) and g(z, σ) rationally
multiaffine, decomposed as

f (z, ζ) = ∑
σ,σ′

zσa(σ, σ′)ζσ′

g(z, ζ) = ∑
σ,σ′

zσb(σ, σ′)ζσ′

for the appropriate coefficient functions a and b. Then, the Lee–Yang product is
as follows:

( f ⋆ g)(z, ζ) = ∑
σ,σ′,σ′′

zσa(σ, σ′)b(σ′, σ′′)ζσ′′
.

Definition 2.23 (Lee–Yang projection, D.4). Consider f (z, ζ) rationally multiaffine,
decomposed as

f (z, ζ) = ∑
σ,σ′

zσa(σ, σ′)ζσ′

for the appropriate coefficient function a. Then, the Lee–Yang projection is as
follows:

f⋆(z) = ∑
σ

zσa(σ, σ).

These operations preserve “Lee–Yang-ness” via Proposition 2.25.

2.4 Assembling the perturbation series

In this section, we do the work towards the main results of the paper and defer the
technical points about Lee–Yang functions to §2.5. (This section will not be referenced
there, so there is no concern of circularity.)

We prove Theorem 2.6 from Theorem 2.8: notice that ΦN(z) = (FN)⋆(z, ζ) =
(FN,N)⋆(z, ζ), so if FN,N is a Lee–Yang function then by Proposition 2.25 we are done.
We prove that hypothesis now, as Theorem 2.8.

We proceed with inductions on n and N.
First, to induct on N, we write (from expanding a matrix multiplication in (2.7))

FN(z, ζ) = ∑
σ,σ′,σ′′

zσ⟨σ|P(1)N−1∣∣σ′〉〈σ′∣∣P(1)∣∣σ′′〉ζσ′′
= (FN−1 ⋆ F1)(z, ζ).

The induction hypothesis tells us that FN−1(z, ζ), F1(z, ζ) ∈ L(z, ζ), and Proposition
2.25 tells us that so too does FN(z, ζ).

We now enable this induction on N by proving the base case, N = 1, via induction
on n. It is here that we will multiply the exponential Trotter terms in our special order:
reverse-lexicographic on the first entry followed by lexicographic on the second. e.g.,
if n = 4, then the order of pairs is (3, 4), (2, 3), (2, 4), (1, 2), (1, 3), (1, 4). We write fn for
F1 on n spins. We use the intermediary object

Gn(z, ζ, K1) = ∑
σ,σ′

zσ⟨σ|
(

∏
j

exp(K1,jH1,j)

)∣∣σ′〉ζσ′
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where Ki = (Ki,j : j ̸= i) and we enforce that the product is taken in lexicographic
order. From Gn we will construct fn, but first we need to know that Gn(z, ζ, K1) ∈
L(z, ζ) (where K1 is held fixed). The cases n = 1 and n = 2 are respectively handled
by Lemma 2.14 and Proposition 2.15. Then, for n > 2, define

Gn(z, ζ, K1) = D[u, v][Gn−1(z, u, (ζi : i > 1), K1)G2(v, zn, ζ1, ζn, K1,n)]|u=1

(recall D from Definition 2.17) and these are all in L(z), by Proposition 2.24. We then
construct

fn(z, ζ) =

(
n

∏
i=2

D[ui, vi]

)
[ fn−1((zj : j > 1), (uj : j > 1), (Kj,k : 1 < j < k))Gn(z1, (vj : j > 1), ζ, K1)]|u=1;

from Proposition 2.24, the techniques of the proof of Proposition 2.25, our knowledge
of Gn, and the induction hypothesis for fn−1, we conclude that fn(z, ζ) ∈ L(z, ζ). The
base case ( f1) is once more Lemma 2.14. Thus the proof is complete.

2.5 Facts about operations on Lee–Yang functions

Proposition 2.24 (T.7, T.8)
For f (z) ∈ L(z), D[z1, z2][ f (z)] ∈ L(z), and by symmetry this extends to all pairs
of indices. For f (z) ∈ L(z) and g(ζ) ∈ L(ζ), D[z1, ζ1][ f (z)g(ζ)] ∈ L(z, ζ), and
again by symmetry this extends to all pairs.

Proof. For the first, we use (2.18) and (2.19). Specialize (2.18) to z2 = z1 and suppose
the function vanishes; using Vieta’s formulas for the product of the roots, we find that
(2.19) cannot vanish unless z1 ∈ D. It is essential here that A not vanish, which is
given by f ’s Lee–Yang-ness.

Similarly, for the second, we use (2.20) and (2.21). Specialize (2.20) to ζ1 = z1:

z2
1AC + AD + BC +

1
z2

1
BD

and suppose the function vanishes; using Vieta’s formulas for the product of the roots,
we find that (2.21) cannot vanish unless z1 ∈ D. It is essential here that A and C not
vanish, which is given by f and g’s Lee–Yang-ness. ■

Notice that this is identical to the strategy used in the proof of Theorem 1.3.

Proposition 2.25 (T.11)
For Lee–Yang functions f and g, f ⋆ g and f⋆ are also Lee–Yang functions; i.e., if
f (z, ζ), g(z, ζ) ∈ L(z, ζ), then ( f ⋆ g)(z, ζ) ∈ L(z, ζ) and f⋆(z) ∈ L(z).

Proof. For the first, consider D[ui, vi][ f (z, u)g(v, ζ)] ∈ L(z, u, (vj : j ̸= i), ζ) by Propo-
sition 2.24, hence (

∏
i

D[ui, vi]

)
[ f (z, u)g(v, ζ)] ∈ L(z, u, ζ)

11



and specializing to u = 1 recovers f ⋆ g. The easiest way to see this is by analyzing
D[u1, v1][ f (z, u)g(v, ζ)] where

f (z, u)g(v, ζ) = u1v1A f (z, u′)Cg(v′, ζ) +
u1

v1
ADg(v′, ζ) +

v1

u1
B f (z, u′)C +

1
u1v1

BD

and we have u′ = (uj : j > 1), v′ = (vj : j > 1), A f , B f , Cg, Dg are defined in
analogy to (2.20), and we drop decorations/arguments midway for legibility. Then
unsurprisingly

D[u1, v1][ f (z, u)g(v, ζ)]|u1=v1=1 = AC + BD,

i.e. we have “glued” the parts where u1 and v1 are in the numerator and where they
are in the denominator. We then carry this through for all i.

Similarly, for the second, by the same argument D[zi, ζi][ f (z, ζ)] ∈ L(z) and we
recognize

f⋆ =

(
∏

i
D[zi, ζi]

)
[ f (z, ζ)],

the quick idea being that in

f (z, ζ) = ∑
σ,σ′

zσa(σ, σ′)ζσ′

when we substitute
√

z1 for z1 and ζ1, there is cancellation precisely when σ1 ̸= σ′
1 and

so the z1-derivative causes such terms to vanish; this persists for each i after 1. ■
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