
Summer 2017 Summary

Zachary Stier

August 2017

Contents
1 VHDL 2

1.1 File layout and VHDL basics . 2
1.2 Nuances, intricacies and frequent sources of errors 4

2 Quartus II 7
2.1 Files and programs for running Quartus 7
2.2 Pin assignments and DE2-115 input/output 7
2.3 Temporary upload . 8
2.4 Permanent upload . 8
2.5 Quartus miscellany . 9

3 Optical alignment 10
3.1 Polarizer angles and the laser . 10
3.2 Optical component combinations 10
3.3 Alignment procedure for when the signal/idler beam is firing di-

rectly at the sensor . 12
3.4 Alignment procedure for when the signal/idler beam reflects be-

fore meeting the sensor . 12

4 Useful FPGA programs 14
4.1 Rolling rate (roll.qsf) . 14
4.2 Single-output AND gate (SOAndGate.qsf) 15
4.3 10-second counter (tensec.qsf) 15
4.4 LCD display example (lcd_example.qsf) 15

5 Results 16

1

1 VHDL

1.1 File layout and VHDL basics
The VHDL files that I have written all have the following format:
l i b r a r y IEEE ;
use IEEE .STD_LOGIC_1164 .ALL;
use IEEE .STD_LOGIC_ARITH.ALL;
use IEEE .STD_LOGIC_UNSIGNED.ALL; −−e s s e n t i a l l i b r a r i e s

en t i t y designName i s
port (
inputVar i ab l e s : in s td_log i c ;
outputVar iab le s : out s td_log i c
) ;

end designName ;

a r c h i t e c t u r e A o f designName i s
type : g l oba lVa r i ab l e ;
type : g l oba lVa r i ab l e := presetValue ;

begin
proce s s (r e l evan t Input s)

type : l o c a lVa r i a b l e ;
type : l o c a lVa r i a b l e := presetValue ;

begin
−−your code here

end proce s s ;

−−other p r o c e s s e s as nece s sa ry
end A;

(For some reason LATEXautocorrects -- to — in these code snippets, but
know that in your text editor you should comment using two hyphens.)

The architecture will be implemented by the software (in our case, Quartus
II) as a physical circuit on the chip that will run so long as the board is turned
on; as such, it is as if the program is constantly refreshing. Each "refresh" is
known as a delta cycle, which the compiler deftly navigates and weaves together
the instructions for your variables. Each delta cycle is on the order of 5ns, which
is why the board can handle input pulses as low as 10ns (which is the length of
a pulse from the SPCMs in Room 474).

The first thing to know about VHDL is that it is case insensitive and
whitespace-blind; I use capitalization and whitespace formatting only for read-
ability purposes (and out of habit).

When writing VHDL in an environment such as Quartus, the "design name"
– i.e., the name of the project – must follow the keyword entity and must appear
in the other two locations indicated in the above snippet.

The primary data structure classifications are input, output, signal, vari-
able,1 and constant. When altering a value, inputs and outputs are treated as

1Technically variable and shared variable are distinct, but the latter is global and ex-
clusively used before beginning the architecture and the former is local and exclusively used
in a process.

2

signals, which use <=, as in a <= b; to set the value of signal a to that of b.
Variables use :=, as in a := b; for the analogous purpose. Constants, as their
name suggests, cannot be altered.

The primary data structures are std_logic, std_logic_vector, and integer.
Logic types are either true or false; in VHDL they are represented as ‘1’ and
‘0’. It is possible to evaluate logic functions of these structures, such as and,
or, not and xor.2

Here is an example of most of these concepts in action:
en t i t y sampleLogic i s

port (
a , b : in s td_log i c ;
c : in s td_log i c ; −−you can have inputs on many l i n e s
f : out s td_log i c ;
g : out s td_log i c −−same f o r outputs
) ;

end sampleLogic ;

a r c h i t e c t u r e A o f sampleLogic i s
constant speed : i n t e g e r := 299792458;
s i g n a l s : s td_log i c ;
shared va r i ab l e count : i n t e g e r := 0 ;

begin
proce s s (a , b , c)

v a r i a b l e l o c a l S i g : s td_log i c ;
begin

l o c a l S i g := a or b ;
f <= l o c a l S i g and not c ; −−goes to the output pin f o r f
s <= l o c a l S i g and not c ; −−t h i s (and f) i s j u s t (a | b) . (! c)

end proce s s ;

p roc e s s (s) −−you can use a va r i ab l e to con t r o l a p roce s s !
begin

i f (r i s ing_edge (s)) then
count := count + 1 ;
i f (count = 5) then

count := 0 ;
end i f ;

i f (count = 0) then
g <= ' 1 ' ;

e l s i f (count = 2) then
g <= ' 1 ' ;

e l s e
g <= ' 0 ' ;

end i f ; −−t h i s i f b lock s e t s g high i f f has been sent
high 0 or 2 t imes mod 5

end i f ;
end proce s s ;

end A;

Inputs and outputs may also be std_logic_vectors; this can make the
2Sometimes the Quartus VHDL compiler won’t let me use these logic functions, in those

cases the best solution is often to rewrite using explicit values, i.e. (a or b) and not c
becomes ((a = ‘1’) or (b = ‘1’)) and (c = ‘0’).

3

code cleaner and requires no extra work when doing the pin assignments in
Quartus. Logic operations on two (identically-sized) vectors will perform the
operation done bitwise. Consider the following snippet for an example of vector
declaration and slicing:

proce s s
v a r i a b l e vec : s td_log ic_vector (4 downto 0) := "10110" ;
v a r i a b l e vec31 : s td_log ic_vector (2 downto 0) ;

begin
vec31 := vec (3 downto 1) ; −−vec31 = "011"

end proce s s ;

1.2 Nuances, intricacies and frequent sources of errors
One simple error that can cause trouble is that the final output in the entity
port does not have a semicolon after std_logic: the semicolon is included in
the); on the next line. The compiler will catch this mistake, but knowing
about it in advance can be a time-saver.

One common error that Quartus’ compiler throws and which causes compi-
lation to fail has to do with "resolving multiple drivers." This occurs when a
value is altered in more than one process. For example,
en t i t y d r i v e rF a i l i s

port (
a , b : in s td_log i c ;
f : out s td_log i c ;
) ;

end d r i v e rF a i l ;

a r c h i t e c t u r e A o f d r i v e rFa i l i s
shared va r i ab l e count : i n t e g e r := 0 ;

begin
proce s s (a)
begin

i f (r i s ing_edge (a)) then
count := count+1;

end i f ;
end proce s s ;

p roc e s s (b)
begin

i f (r i s ing_edge (b)) then
count := count+1;

end i f ;
end proce s s ;

p roc e s s (a , b)
begin

i f (count >= 5) then
count := count−5;

end i f ;
i f (count = 0) then

f <= ' 1 ' ;
e l s e

f <= ' 0 ' ;

4

end i f ;
end proce s s ;

end A;

will fail to compile, since count is altered in three processes. However,
a r c h i t e c t u r e A o f driverWin i s

shared va r i ab l e count : i n t e g e r := 0 ;
s i g n a l s : s td_log i c ;

begin
proce s s (a , b)
begin

s <= a or b ;
end proce s s ;

p roc e s s (a , b)
begin

i f (r i s ing_edge (s)) then
i f (a = '1 ' and b = '1 ') then

count := count+2;
e l s e

count := count+1;
end i f ;

i f (count >= 5) then
count := count−5;

end i f ;

i f (count = 0) then
f <= ' 1 ' ;

e l s e
f <= ' 0 ' ;

end i f ;
end i f ;

end proce s s ;
end A;

accomplishes the desired task, and in a single process.
Oddly enough, VHDL will not compile even if a variable is modified in a

"safe" manner in multiple processes. For example,
proce s s (a)
begin

i f (a = '1 ') then
f <= ' 1 ' ;

end i f ;
end proce s s ;

p roc e s s (a , b)
begin

i f (a = '0 ' and b = '1 ') then
f <= ' 1 ' ;

e l s i f (a = '0 ' and b = '0 ') then
f <= ' 0 ' ;

end i f ;
end proce s s ;

does not compile despite each of the conditions to modify f being mutually
exclusive.

5

VHDL is also very picky about clocks. For example,
a r c h i t e c t u r e A o f c l o c kFa i l 1 i s

shared va r i ab l e count : i n t e g e r := 0 ;
begin

proce s s (a , b)
begin

i f (r i s ing_edge (a)) then
count := count+1;

end i f ;
i f (r i s ing_edge (b)) then

count := count+1;
end i f ;

end proce s s ;

p roc e s s (a , b)
begin

i f (count >= 5) then
count := count−5;

end i f ;
i f (count = 0) then

f <= ' 1 ' ;
e l s e

f <= ' 0 ' ;
end i f ;

end proce s s ;
end A;

fails because VHDL will not let a single process’ action depend on the state
of two different clocks. (This issue is resolved by the driverWin approach.)
a r c h i t e c t u r e A o f c l o c kFa i l 2 i s

shared va r i ab l e count : i n t e g e r := 0 ;
begin

proce s s (a , b)
begin

i f (r i s ing_edge (a)) then
f <= ' 1 ' ;

e l s i f (b = '1 ') then
f <= ' 0 ' ;

end i f ;
end proce s s ;

end A;

This fails to compile because VHDL will not let a variable "hold its value
outside the clock edge" – i.e., it is unhappy with an elsif on the heels of an if
rising_edge.

There is of course more powerful functionality to be had with VHDL, such
as incorporating many files into a single Quartus design or using port maps for
more complicated individual files, but I managed to accomplish everything I
needed to this summer with just the means outlined here.

6

2 Quartus II
In this section I will explain how to do some essential tasks in Quartus and will
give some pointers that hopefully will save some time. (Here "file_name" is the
placeholder name for the pertinent file in the given situation.)

2.1 Files and programs for running Quartus
I had substantial trouble installing any version of Quartus II, and was entirely
unsuccessful with downloading it. Unfortunately, the Windows version is a 64
bit EXE file and Wine for Unix systems is a 32 bit Windows emulator; in
addition, for some reason the installer was uncooperative with the Dell machine
in Room 380. Version 10.0 is currently installed on that computer, as well
as the Dell laptop in Room 474.3 If you would like to install it on another
machine, I found success with the CD that came in the DE2-115 box. You will
also need to install the USB Blaster driver (this is already installed on the two
aforementioned machines); click here for directions. (For Windows 10 the steps
are slightly different but are virtually identical to the first set of directions.)

2.2 Pin assignments and DE2-115 input/output
The theory behind programming the board is that each (std_logic4) input/out-
put variable in your VHDL file corresponds uniquely to a physical location on
the DE2-115. In order for Quartus to teach the chip how to route that informa-
tion, the chip contains a grid of pins, each of which corresponds uniquely to a
location on the board; by identifying each variable to a pin, that variable gets
mapped directly to the physical position.

I: The 18 switches on the bottom of the board

I: The internal 50MHz clock

I/O: The 22 I/O pins (6 on the left and 16 on the right of the board). The
pin arrays have 2 columns; the left column is entirely ground, except for
the bottom-rightmost pin in the left array.5 The I/O pins are each meant
to receive and output 3.3V.

O: LEDs above the row of switches

O: 7-segment displays. Each segment is controlled by a different pin, mak-
ing their pin planning cumbersome.

O: LCD display, whose control requires dark magic (see lcd_example.vhd)
3To log on to that computer, the PIN is 1746.
4This distinction is made only because it is possible to read in a std_logic_vector as input

to a VHDL file.
5I actually couldn’t decipher what this pin is supposed to do, but it briefly shut the board

down when I accidentally touched a free wire to it.

7

https://www.altera.com/support/support-resources/download/drivers/usb-blaster/dri-usb-blaster-vista.html

O: RS-232 port, whose use I did not have a chance to fully explore.

To use the input/output components, click here to consult the DE2-115 User
Manual. The pages of interest are Chapter 4, pages 29-69. In Quartus, enter
the Pin Planner and for each variable set the pin number of the appropriate
part (e.g. if the variable a should represent the state of the rightmost switch,
SW0, in the Pin Planner set a’s pin to PIN_AB28).

2.3 Temporary upload
By default, the RUN/PROG switch on the board should be set to RUN (as it
should be for the present purposes).

1. Make sure the design has successfully been compiled (including with a
complete pin assignment).

2. Open the Programmer window (third button from the right on the icon
bar in Quartus). (The Dell laptop in Room 474 often gives an error
popup when opening the Programmer; clicking "Okay" usually makes it
disappear and does not stop one from continuing.)

3. Make sure the Mode is set to JTAG (this is the default unless you had
saved the .cdf6 as Active Serial previously).

4. If file_name.sof does not appear in the main portion of the window, add
it using "Add File" and check the box under "Program/Configure." If
"Hardware Setup..." does not read "USB-Blaster" then make sure the
board is turned on and plugged into your computer before clicking on
"Hardware Setup...", double-clicking the USB Blaster in the new window,
and clicking "Close."

5. Click "Start;" the upload should complete within 10 seconds.

Do not turn off the board for as long as you want to use the design just uploaded;
it will remain until a new one is uploaded or the board loses power.

2.4 Permanent upload
1. Make sure the design has successfully been compiled (including with a

complete pin assignment).

2. Go to "File > Convert Programming Files..." For the DE2-115, in the
Configuration Device menu I have found that EPCS64 and EPCS128 work,
but a different specification may be necessary for a different board (click
here for more information about EPCS and Altera boards). Click on the
text in the largest box in the window and select "Add File..." on the right;
choose file_name.sof and click "Generate." Once that completes (it should
be almost instantaneous) you can close the window.

6The .cdf file is the Programmer setup file that Quartus will load as the default when you
open the Programmer each time.

8

http://www.ee.ryerson.ca/~courses/coe608/labs/DE2_115_User_Manual.pdf
http://www.ee.ryerson.ca/~courses/coe608/labs/DE2_115_User_Manual.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cfg/cyc_c51014.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cfg/cyc_c51014.pdf

3. Usually the RUN/PROG switch on the board is set to RUN; flip it to
PROG.

4. Open the Programmer window.

5. Make sure the Mode is set to Active Serial.

6. If file_name.pof does not appear in the main portion of the window, add
it using "Add File" and check the box under "Program/Configure." If
"Hardware Setup..." does not read "USB-Blaster" then make sure the
board is turned on and plugged into your computer before clicking on
"Hardware Setup...", double-clicking the USB Blaster in the new window,
and clicking "Close."

7. Click "Start;" in my experience the upload typically takes between two
and five minutes to complete.

8. Though probably unnecessary, to be sure that the upload was successful
I always switch the RUN/PROG switch back to RUN, turn the board off,
and turn it back on again.

The design just uploaded is now the default for when the board starts up.

2.5 Quartus miscellany
Since all the tasks we need the FPGA to perform have reasonably large margins
of error, there are lots of built-in precision tools that Quartus wants to use that
we just don’t need. This includes .sdc and Timing Analysis files that Quartus
mentions in the Critical Warning tab upon compilation; I have been fine just
ignoring these complaints.

9

3 Optical alignment
When I arrived in June I found the optical breadboard partially set up for the
Grangier experiment. The portion that sends the laser beam through a polarizer
and the BBO crystal was already aligned, so I did not touch that end of the
table all that much; I did, however, manage to find ways to calibrate the other
end, outlined below.

3.1 Polarizer angles and the laser
The laser beam passes through a polarizer and the BBO crystal before reaching
the detectors. The relative angle between those polarizers determines the angle
of the signal/idler beams above the table via the formula

cos2 θm
n2o

+
sin2 θm
n2e

=
1

n2o − sin2 θL
, (1)

where θL is the "lab angle," θm is the relative rotation of the polarizers, no ≈
1.66 and ne ≈ 1.57.7 When solving this for specific values of θm or θL I found
Wolfram|Alpha to be sufficient.

Unfortunately, in the setup on Room 474’s optical breadboard, the reference
angles for the two polarizers are different, so it appears to be impossible to
precisely measure the rotational difference. All data collected was with the
empirically accurate rotations of the polarizer set to its reference mark of 0◦
and the BBO rotated so that it reads 322◦.

One other thing to keep in mind is that the laser strength decays at an
approximately linear rate (∼10%/hour), but I did not have a chance to let it
run long enough to determine if it would stabilize at a nonzero power or not.

3.2 Optical component combinations
In order to mount the sensors so that they are coplanar with the BBO and laser
beam, and so that that plane is parallel to the tabletop, there are three primary
combinations of parts that can be used.

1. 2D trans. mount + rot. stage + custom cylinder8 + sensor mount
7no and ne are calculated for λ = 810 nm and 405 nm, respectively, using (B5) in Galvez

et al.; (1) is derived from (B3) and (B4), their statement of Snell’s law as sin θL = ns sin θc,
setting ns = no, their statement that ñ(θm) = no cos θc, and algebraic manipulation (squaring
and summing) to eliminate θc.

8The custom cylinder was built in the shop and is recognizable via its lack of holes on its
curved surface. It is 0.5" tall and has a 0.5" diameter.

10

2. 1D trans. mount + rot. stage + 0.75"-long cylinder + sensor mount

3. rot. stage + 1.5"-long cylinder + sensor mount

11

3.3 Alignment procedure for when the signal/idler beam
is firing directly at the sensor

1. Make sure that all devices are turned off.

2. Position the sensor/mount where you would like it to be on the optical
breadboard.9

3. Unscrew the bandpass filter from the sensor.

4. Unscrew the optical cable from the SPCM and screw that end into into
the red handheld laser.

5. Rotate the stage until the laser fires near the crystal. (Ideally at least a
sliver of the beam will hit the crystal.)

6. Fix the rotating stage.

7. Use the screws on the back of the sensor’s mount to nudge the beam
onto the crystal. The laser should now fire dead-center right through the
crystal.

8. Return the bandpass filter to its place on the sensor. Unscrew the optical
cable from the handheld laser and return it to the SPCM.

9. Make sure the FPGA is set to the 1-second reset program (roll.qsf; this
is the current default file as of 8/11). Turn off the lights, turn on the power
supply to the laser and sensors, and rotate the crystal until you notice the
rate peaking. (The laser output will most likely be decaying during this
time, but the variance is high enough that there’s a few degrees of error
anyway.)

3.4 Alignment procedure for when the signal/idler beam
reflects before meeting the sensor

1. Make sure that all devices are turned off.

2. Position the sensor/mount approximately where you would like it to be
on the optical breadboard.10 (The sensor will end up at most a millimeter
or two from where you initially place it.)

3. Position the optically-mounted laser behind the BBO crystal, and adjust
it until it fires through the crystal along the path that the signal/idler
beam will take.11

9This method only requires the mount to have a rotating stage.
10This method requires the mount to have both a rotating stage as well as one dimension

of translation.
11Once this is aligned, I usually clamp down the laser’s mount’s base, but this is probably

optional.

12

4. Position the beam splitter along the signal/idler path, approximately at
the foot of the perpendicular from the sensor onto that line, and rotate
it until the main deflected beam appears near the center of the bandpass
filter.

5. Unscrew the bandpass filter from the sensor. Adjust the translational
stage until the deflected beam hits the sensor. (The sensor will be red if
and only if this is happening, since the handheld laser should be turned
off.)

6. Turn off the laser behind the BBO and turn on the handheld laser.

7. Rotate the stage until the laser fires near the crystal. (Ideally at least a
sliver of the beam will hit the crystal.)

8. Fix the rotating stage.

9. Use the screws on the back of the sensor’s mount to nudge the beam
onto the crystal. The laser should now fire dead-center right through the
crystal.

10. Turn off the handheld laser and turn the laser behind the crystal, just
to make sure that is still aligned as well. It might be slightly off, so in
that case you may need to repeat these steps (but the adjustments will be
much slighter).

11. Turn off both lasers. Return the bandpass filter to its place on the sensor.
Unscrew the optical cable from the handheld laser and return it to the
SPCM.

12. Make sure the FPGA is set to the 1-second reset program (roll.qsf; this
is the current default file as of 8/11). Turn off the lights, turn on the power
supply to the laser and sensors, and rotate the crystal until you notice the
rate peaking. (The laser output will most likely be decaying during this
time, but the variance is high enough that there’s a few degrees of error
anyway.)

13

4 Useful FPGA programs
This section contains the function of each part of the board for some of the
FPGA programs that I’ve written; hopefully this will be a timesaver (so you
don’t have to spend as much time parsing the code). Each of these is in a folder
on the desktop of the laptop in Room 474.

4.1 Rolling rate (roll.qsf)
Inputs:

A: EX_IO[6]

B: EX_IO[5]

C: EX_IO[4]

use A? SW[17]

use B? SW[16]

use C? SW[15]

flip A? SW[4]

flip B? SW[3]

flip C? SW[2]

Reset: SW[1]

Pause: SW[0]

Formally, the program counts instances of (useA and (A xor flipA)) and
(useB and (B xor flipB)) and (useC and (C xor flipC)) but it’s better
to think of it as the "use" switches determining which variables to include, and
then the "flip" switches negating the corresponding variable if that switch is
high. So, (useA,useB,useC,flipA,flipB,flipC)=(1,0,1,0,0,1) will cause the board
to count instances of the function A.(!C).

Outputs:

count: 7-segment display

pulse: EX_IO[1]

The output pulse fires whenever the board detects a coincidence. The 7-
segment display resets every second and displays the number of coincidences it
detected in the previous second.

14

4.2 Single-output AND gate (SOAndGate.qsf)
Inputs: identical to roll.qsf

Outputs: identical to roll.qsf
The 7-segment display updates in real time and does not reset.

4.3 10-second counter (tensec.qsf)
Inputs: identical to roll.qsf

Outputs: identical to roll.qsf
The 7-segment display updates in real time and pauses after exactly 10

seconds.

4.4 LCD display example (lcd_example.qsf)
Inputs: none

Outputs: counts seconds on the LCD display
This program is perhaps most useful as a template for programs to incorpo-

rate use of the LCD display; the best explanation I can offer for how to control
that display is to examine lcd_example.vhd.

Figure 1: Some useful reference locations on the board.

15

5 Results

Figure 2: Graph of how single-count frequency changes in distance to the main
beam. "East" and "West" refer to the sides of the table (the door is on the
Eastern half of the room). Each sensor’s mount’s southernmost screw was placed
34" down the table from the BBO. The maximal values were reached with sensor
A on the 1D stage set to 1 with its closest screw to the beam 2" away, and sensor
B on the 2D stage set to 5 with its screws 5" away, getting 495 and 598 kHz,
respectively;* the coincidence rate was approximately 60 kHz.

These values are the raw FPGA outputs – they do not account for dark
counts or SPCM efficiency. The formula for computing the exact value is

R ≈ 2(R′ −D),

where R is the actual photon rate, R′ is the value measured using the FPGA,
and D is the individual SPCM’s dark count rate, which is between 1.4 and 2
kHz for each SPCM in Room 474, so when the setup is properly aligned D is
negligible. The factor of two comes from dividing by SPCM efficiency, which is
approximately 50% on 810 nm photons.12 Noise is also negligible for coincidence
counts; using resolving time of 21± 2 ns, dark counts should account for up to
60 Hz of the measured coincidences, 0.1% of the value measured by the FPGA.

12Click here for related manufacturer information.

16

https://www.physics.utoronto.ca/~phy326/qie/SPCM_EDU_CustomerSpecification.pdf

y RA RB

1.39 3.2
1.41 3.2
1.43 3.2
1.47 1.9
1.51 3.5
1.55 3.4
1.59 3.4
1.63 3.6
1.67 3.6
1.70 3.7
1.78 4.4
2.05 2.5
2.15 51
2.25 320
2.30 420 29
2.31 33
2.32 56
2.33 493 59
2.34 450 75
2.35 495 85
2.36 485 124
2.37 463 144
2.38 489 170
2.39 467 267
2.40 462 257
2.41 418 281
2.42 420 362
2.43 430 382
2.44 345 482
2.45 284 554
2.46 342 551
2.47 367 554
2.48 220 563
2.49 212 587
2.50 185 598
2.51 162 591
2.52 133 588
2.53 101 560
2.54 74 547
2.55 74
2.56 5.6
2.57 52
2.58 44
2.59 38

Figure 3: Source data for Figure 1. y represents distance from the sensor to the
main beam, and RA and RB are the rates detected by each sensor, measured in
kHz. 17

Figure 4: Sensor-end of the board that yielded successful coincidence detection.
(Translating stages might require slight modification from this exact figure.)

18

	VHDL
	File layout and VHDL basics
	Nuances, intricacies and frequent sources of errors

	Quartus II
	Files and programs for running Quartus
	Pin assignments and DE2-115 input/output
	Temporary upload
	Permanent upload
	Quartus miscellany

	Optical alignment
	Polarizer angles and the laser
	Optical component combinations
	Alignment procedure for when the signal/idler beam is firing directly at the sensor
	Alignment procedure for when the signal/idler beam reflects before meeting the sensor

	Useful FPGA programs
	Rolling rate (roll.qsf)
	Single-output AND gate (SOAndGate.qsf)
	10-second counter (tensec.qsf)
	LCD display example (lcd_example.qsf)

	Results

