Nonbipartite LPS Ramanujan graphs

Zachary Stier

October 2022

In this note, I will present Lubotzky–Phillips–Sarnak's construction of nonbipartite Ramanujan graphs.

1 Preliminaries and notation

Throughout, let *p* and *q* be distinct odd primes, both congruent to 1 modulo 4, satisfying $\left(\frac{p}{q}\right) = 1$. For a graph *G*, write A_G for its unnormalized adjacency matrix.

1.1 Spectral preliminaries

Notation (graph spectrum). For a connected *d*-regular graph *G*, let $\sigma(G)$ denote the spectrum of A_G . Say its elements are $d = \lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n$.

Definition (bulk of spectrum). For a *d*-regular graph *G*, the *bulk* of its spectrum is $\sigma(G) \cap \left[-2\sqrt{d-1}, 2\sqrt{d-1}\right]$.

Notation (second absolute eigenvalue). For a graph *G*, let $\lambda_*(G)$ denote the largest between the second eigenvalue and negative of the least eigenvalue of A_G , i.e. max{ $\lambda_2, -\lambda_n$ }.

Definition (Ramanujan graph). A *d*-regular graph *G* is *Ramanujan* if $\lambda_{\star}(G) \leq 2\sqrt{d-1}$. That is, the entire spectrum aside from *d* lies in the bulk.

1.2 Chebyshev polynomials

Notation (Chebyshev polynomials). Let $T_n(x)$ denote the *nth Chebyshev polynomial of the first kind*, and $U_n(x)$ denote the *nth Chebyshev polynomial of the second kind*. We use the convention that $T_n = T_{-n}$ and $U_n = U_{-n}$.

Proposition 1

The following are equivalent formulations of U_n .

- (a) $\frac{\sin((n+1) \arccos x)}{\sin \arccos x}$ is a degree-*n* polynomial in *x* on [-1, 1], and extends to a polynomial U_n in *x* on all of \mathbb{R} .
- (b) Fix c > 0. $c^{n/2}U_n\left(\frac{x}{2\sqrt{c}}\right) =: \tilde{U}_n^{(c)}(x)$ is the solution to the recursion

$$H_0^{(c)}(x) = 1$$
, $H_1^{(c)}(x) = x$, $H_n^{(c)}(x) = xH_{n-1}^{(c)}(x) - cH_{n-2}^{(c)}(x)$.

(c) $U_n(x) = \sum_{0 \le j \le n} T_{n-2j}(x)$. (We are not interested in T_n aside from its use in **Proposition 2**.)

Proposition 2 We have that for all $x \in \mathbb{R} \setminus [-1, 1]$ and *n* even, $T_n(x) \ge 2x^n$, so that

 $U_n(x) \ge 4x^n$.

This fact is a consequence of e.g. this Math.StackExchange answer and **Proposition 1**(c).

1.3 Graph statistics

Notation (girth). For a graph *G*, let its girth be g(G).

Proposition 3

For a *d*-regular graph G(V, E), the number of nonbacktracking paths of length *n* beginning at *x* and ending at *y* is $\tilde{U}_n^{(d-1)}(A_G)(x, y)$.

Proof idea. We note that the recursion from **Proposition 1**(b) inductively counts the desired quantity by subtracting off the paths that backtrack at the very last step (there are d - 1 ways to take a nonbacktracking penultimate step and then immediately backtrack it).

1.4 Number-theoretic preliminaries

Definition. For an integral quadratic form Q taking inputs $x \in \mathbb{Z}^n$, for

 $m \in \mathbb{Z}$ let $r_Q(m)$ be the number of solutions to Q(x) = m.

Theorem 4 (Eichler; Igusa)

Fix *Q* to be the norm against $1 \oplus (2q)^3 I_3$. There is an absolute constant $c_1 > 0$ such that $C(p^k) := c_1 \frac{p^{k+1}-1}{p-1}$ satisfies, for all $\varepsilon > 0$, the relation

$$r_{Q}\left(p^{k}\right) = C\left(p^{k}\right) + O\left(p^{k(1/2+\varepsilon)}\right)$$

(the big-Oh term being asymptotic in *k*).

Lemma 5

Let $G : \mathbb{N} \longrightarrow \mathbb{C}$ be periodic with period coprime to *p* and satisfy

$$\sum_{d|p^k} dG(d) = o(p^k),$$

as a function of *k*. Then in fact *G* is identically zero.

Proof. Say $s_k := \sum_{d \mid p^k} dG(d)$. Then we see that $G(p^k) = \frac{1}{p^k}(s_k - s_{k-1}) = \frac{s_k}{p^k} - \frac{1}{p} \cdot \frac{s_{k-1}}{p^{k-1}}$; both terms vanish in k, by hypothesis. However, G is periodic; so if $G(p^\ell) \neq 0$, say $\alpha := |G(p^\ell)| > 0$, then there exists k such that G's period divides $p^k - p^\ell$ and such that $\frac{s_k}{p^k}, \frac{s_{k-1}}{p^{k-1}} < \frac{\alpha}{2}$, a contradiction as $G(p^k) = G(p^\ell)$. Thus indeed $G(p^\ell) = 0$.

2 Construction

We briefly recapitulate the construction of the graphs $X = X^{p,q}$.

Let $S \subset \mathbb{H}(\mathbb{Z})$ consist of solutions to $N(\alpha) = p$ for which $\frac{1}{2} \operatorname{Tr}(\alpha)$ is positive *Construction of* and odd. Let $\iota \in \mathbb{N}$ satisfy $\iota^2 \equiv -1 \pmod{q}$. Consider the map *the graph*

$$\phi: a+bi+cj+dk\longmapsto \begin{pmatrix} a+b\iota & c+d\iota\\ -c+d\iota & a-b\iota \end{pmatrix}\in \mathrm{PSL}(2,\mathbb{F}_q).$$

Then $X^{p,q}$ is defined as the Cayley graph for PSL(2, \mathbb{F}_q) with respect to $\phi(S)$. This graph is (p + 1)-regular, on $n := \frac{1}{2}(q - 1)q(q + 1)$ vertices.

The paper covers in full why this construction actually yields a connected, *Useful interm.* nonbipartite graph—details that we omit here—however it is convenient to *constructions* discuss some intermediate steps in the realization of the graphs. We say that

 $\Lambda'(2)$ consists of $\alpha \in \mathbb{H}(\mathbb{Z})$ for which $N(\alpha)$ is *some* natural power of p and $\frac{1}{2}\operatorname{Tr}(\alpha)$ is odd. Impose the following equivalence relation on $\Lambda'(2)$: $\alpha \sim \beta$ if α/β , when viewed in $\mathbb{H}(\mathbb{Q})$, is in the center \mathbb{Q} , i.e. $\alpha/\beta = \pm p^m$ for $m \in \mathbb{Z}$. We then let $\Lambda(2) := \Lambda'(2)/\sim$, which is free on $S' \subset S/\sim$, defined as ignoring 'inverse-duplicates' in S/\sim : if $\alpha \in S$ then $\overline{\alpha} \in S$, and $[\alpha][\overline{\alpha}] = [1]$, so in compiling S we select only (WLOG) $[\alpha]$. By this freeness and the observation that #S = p + 1 (by Jacobi's four square theorem), we may identify elements of $\Lambda(2)$ with vertices in the rooted (p + 1)-regular tree \mathbb{T} , where WLOG we map [1] to the root. We let $\Lambda'(2q) \subset \Lambda'(2)$ be those α for which $2q \mid (\alpha - \frac{1}{2}\operatorname{Tr}(\alpha))$, i.e. 2q divides each component except the \mathbb{Z} -component. Then, $\Lambda(2q) := \Lambda'(2q)/\sim$, and as $\Lambda(2q) \triangleleft \Lambda(2)$, we set $X := \Lambda(2)/\Lambda(2q)$.

3 Properties

Theorem 6

X is Ramanujan.

In the following proof, all big-Oh and little-oh asymptotics are with respect to variable *k*. For families of variables on the same indexing set indicated by a subscript, equations involving these variables without subscripts indicates suppression of the *same* subscript.

Proof. Recall **Proposition 3**: $\tilde{U}_k^{(p)}(A_X) =: \tilde{U}_k(A_X) =: L_k$ tracks the number of *Two ways of* nonbacktracking paths of length *k* in *X*. We study its trace in two ways: *studying n.b*

By the graph's transitivity, L_k's diagonal is constant (all closed walks starting from *e* are in bijection with those from *g* via the graph automorphism *x* → *gx*). Thus, Tr L_k = *n*L_k(*e*, *e*). However, a walk from the identity to itself of length *t* is a nonbacktracking walk in T from the identified lift of *e* to *any* element of Λ(2*q*). Thus, the number of such length-*k* nonbacktracking paths is the number of points at that distance. This is exactly ½*r*_Q(*p*^k), the one-half factor accounting for the equivalence of solutions ±*x* satisfying *Q*(*x*) = *p*^k under ~, where *Q* is as in Theorem 4. All told,

$$\operatorname{Tr} L_k = \frac{n}{2} r_Q \left(p^k \right). \tag{1}$$

• We also know that

$$\operatorname{Tr} L_{k} = \sum_{j \in [n]} \tilde{U}_{k}^{(p)}(\lambda_{j}) = p^{k/2} \sum_{j \in [n]} U_{k}\left(\frac{\lambda_{j}}{2\sqrt{p}}\right)$$
(2)

since A_G is diagonalizable and \tilde{U}_k is just a polynomial.

studying n.b. walk counts We combine (1), (2), and **Theorem 4** to find

$$C(p) + O\left(p^{k(1/2+\varepsilon)}\right) = \frac{2}{n} p^{k/2} \sum_{j \in [n]} U_k\left(\frac{\lambda_j}{2\sqrt{p}}\right). \tag{(4)}$$

(The following paragraph is taken essentially verbatim from the paper.) $C(p^k)$ is the "singular series" and it comes from the contribution of the Eisen- C is a sum over stein series when expressing the " θ -function" $\theta(z) = \sum_{\nu \in \mathbb{Z}^4} \exp(2\pi i Q(\nu)z)$ as a combination of Eisenstein series and a cusp form. That is, $C(p^k)$ is the p^k th

Fourier coefficient of a combination of the Eisenstein series of weight two for $\Gamma(16q^2)$. From the known Fourier expansions of Eisenstein series one easily shows that *C* is of the form

$$C(n) = \sum_{d|n} dF(d)$$

where $F : \mathbb{N} \longrightarrow \mathbb{C}$ is periodic of period $(2q)^2$, so we are left with

$$\sum_{d|p^k} dF(d) + O\left(p^{k(1/2+\varepsilon)}\right) = \frac{2}{n} p^{k/2} \sum_{j \in [n]} U_k\left(\frac{\lambda_j}{2\sqrt{p}}\right). \tag{()}$$

We turn to the right-hand side. Write

$$t := \frac{\lambda}{2\sqrt{p}} + \sqrt{\frac{\lambda^2}{4p} - 1} \tag{3}$$

(taken to be in the upper half-plane and with a positive square root, where relevant); this *t* is the solution to

$$\frac{t+1/t}{2} = \frac{\lambda}{2\sqrt{p}},$$

so that if $t = e^{i\theta}$ then θ can be seen as the "solution" to $\lambda = 2\sqrt{p}\cos\theta$ —but we extend cos to \mathbb{C} as $\frac{e^{iz}+e^{-iz}}{2}$. Similarly, we extend sin to \mathbb{C} as $\frac{e^{iz}-e^{-iz}}{2i}$. Interpreting **Proposition 1**(a) in this light we find that

$$U_k\left(\frac{\lambda}{2\sqrt{p}}\right) = \frac{t^{k+1} - t^{-(k+1)}}{t - t^{-1}}.$$

Algebra reveals that t as in (3) satisfies

$$\frac{t^{k+1} + t^{-(k+1)}}{t + t^{-1}} = \frac{\lambda^2}{4p} \left(\frac{\lambda}{2\sqrt{p}}\right)^k \left(1 - \left(1 - \frac{4p}{\lambda^2}\right)^{\left\lfloor\frac{k+1}{2}\right\rfloor - 1}\right) \tag{4}$$

so that when $2\sqrt{p} < |\lambda| < p+1$, (4) decays as $o(p^{k/2})$ from the term $(\frac{\lambda}{2\sqrt{p}})^k$; when $\lambda = 2\sqrt{p}$, (4) equals 1; when $|\lambda| < 2\sqrt{p}$, (4) decays still as $o(p^{k/2})$ from

Study Cheb. evals. of eigenvalues

divisors

the term $\frac{4p}{\lambda}$; and when $\lambda = p + 1$ we directly compute that $t = \sqrt{p}$ so (4) dominates (it is $\Theta(p^{k/2})$). In particular,

$$\frac{2}{n}p^{k/2}\sum_{j\in[n]}U_k\left(\frac{\lambda_j}{2\sqrt{p}}\right) = \frac{2}{n}\frac{p^{k+1}-1}{p-1} + o\left(p^{k/2}\right) = \frac{2}{n}\sum_{d\mid p^k}d + o\left(p^{k/2}\right),$$

transforming (♥) into

$$\sum_{d|p^k} dF(d) + O\left(p^{k(1/2+\varepsilon)}\right) = \frac{2}{n} \sum_{d|p^k} d + o\left(p^{k/2}\right) \tag{(4)}$$

(and the little-oh term on the right is cancelled by the big-Oh term on the left).

We apply Lemma 5 to $F(d) - \frac{2}{n}$ in (\blacklozenge). Thus we have computed c_1 from *Compute* C(p)**Theorem 4** to be $\frac{2}{n}$.

Finally, we show that the remaining eigenvalues are entirely contained *Bound* within the bulk. We consider (\blacklozenge), with the newfound knowledge of c_1 . When *remaining* $j = 1, \lambda = p + 1$ so the corresponding term in the sum equals $\frac{2}{n} \frac{p^{k+1}-1}{p-1}$, so that *eigenvalues* we are left with

$$\sum_{j>1} U_k \left(\frac{\lambda_j}{2\sqrt{p}} \right) = O\left(p^{k\varepsilon} \right) \tag{(4)}$$

for any fixed ε . Let k be even. If λ —towards contradiction—is not in the bulk then $\frac{\lambda}{2\sqrt{p}} = \pm(1+\delta)$ for some $\delta > 0$. **Proposition 2** tells us that the corresponding term in the sum above grows faster than $(1+\delta)^k$, and by definite parity of the Chebyshev polynomials—they will all be positive on $\mathbb{R} \setminus [-1, 1]$ and bounded by O(k) on [-1, 1]—we see that

$$(1+\delta)^k < \sum_{j>1} U_k\left(\frac{\lambda_j}{2\sqrt{p}}\right) = O\left(p^{k\varepsilon}\right).$$

The contradiction is evident now: select ε so that $p^{\varepsilon} < 1 + \delta$ (say, $\varepsilon = \frac{1}{2} \log_p(1 + \delta)$). Then clearly the left-hand side grows faster than the right-hand side, a contradiction. Thus indeed we must have the entire remainder of the spectrum inside the bulk. This is the same as saying that the graph is Ramanujan.

Remark. The analysis of

$$\sum_{j\in[n]} U_k\left(\frac{\lambda_j}{2\sqrt{p}}\right)$$

is completed in a different fashion in this MathOverflow answer; in particular the final step of the proof above is substantively different.

Proposition 7 $g(X) \ge 2\log_p q.$

Proof. WLOG by transitivity that a shortest cycle under consideration, say of length *t*, begins and ends at *e*. This lifts to a nonbacktracking path in \mathbb{T} from [1] to $[\alpha] \in \Lambda(2q)$, $[\alpha]$ at distance *t*. Take a representative of this class $\alpha = a + 2q(bi + cj + dk)$ (with gcd(*a*, *b*, *c*, *d*) = 1). Then,

$$p^{t} = \mathbf{N}(\alpha) = a^{2} + 4q^{2}(b^{2} + c^{2} + d^{2}).$$
 (5)

At least one of $\{b, c, d\}$ is nonzero, otherwise $[\alpha] = [1]$, in particular (WLOG) $b^2 \leq 1$, so (5) becomes $p^t \geq 4q^2 \geq q^2$. The result follows.