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In this note, I will present Lubotzky–Phillips–Sarnak’s construction of non-
bipartite Ramanujan graphs.

1 Preliminaries and notation

Throughout, let p and q be distinct odd primes, both congruent to 1 modulo
4, satisfying

(
p
q

)
= 1. For a graph G, write AG for its unnormalized adjacency

matrix.

1.1 Spectral preliminaries

Notation (graph spectrum). For a connected d-regular graph G, let σ(G) de-
note the spectrum of AG. Say its elements are d = λ1 > λ2 > · · · > λn.

Definition (bulk of spectrum). For a d-regular graph G, the bulk of its spec-
trum is σ(G) ∩

[
−2
√

d− 1, 2
√

d− 1
]
.

Notation (second absolute eigenvalue). For a graph G, let λ?(G) denote the
largest between the second eigenvalue and negative of the least eigenvalue of
AG, i.e. max{λ2,−λn}.

Definition (Ramanujan graph). A d-regular graph G is Ramanujan if λ?(G) 6
2
√

d− 1. That is, the entire spectrum aside from d lies in the bulk.

1.2 Chebyshev polynomials

Notation (Chebyshev polynomials). Let Tn(x) denote the nth Chebyshev poly-
nomial of the first kind, and Un(x) denote the nth Chebyshev polynomial of the
second kind. We use the convention that Tn = T−n and Un = U−n.
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Proposition 1
The following are equivalent formulations of Un.

(a) sin((n+1) arccos x)
sin arccos x is a degree-n polynomial in x on [−1, 1], and extends

to a polynomial Un in x on all of R.

(b) Fix c > 0. cn/2Un

(
x

2
√

c

)
=: Ũ(c)

n (x) is the solution to the recursion

H(c)
0 (x) = 1, H(c)

1 (x) = x, H(c)
n (x) = xH(c)

n−1(x)− cH(c)
n−2(x).

(c) Un(x) = ∑
06j6n

Tn−2j(x). (We are not interested in Tn aside from its

use in Proposition 2.)

Proposition 2
We have that for all x ∈ R r [−1, 1] and n even, Tn(x) > 2xn, so that

Un(x) > 4xn.

This fact is a consequence of e.g. this Math.StackExchange answer and Propo-
sition 1(c).

1.3 Graph statistics

Notation (girth). For a graph G, let its girth be g(G).

Proposition 3
For a d-regular graph G(V, E), the number of nonbacktracking paths of
length n beginning at x and ending at y is Ũ(d−1)

n (AG)(x, y).

Proof idea. We note that the recursion from Proposition 1(b) inductively counts
the desired quantity by subtracting off the paths that backtrack at the very last
step (there are d− 1 ways to take a nonbacktracking penultimate step and then
immediately backtrack it). �

1.4 Number-theoretic preliminaries

Definition. For an integral quadratic form Q taking inputs x ∈ Zn, for
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m ∈ Z let rQ(m) be the number of solutions to Q(x) = m.

Theorem 4 (Eichler; Igusa)
Fix Q to be the norm against 1 ⊕ (2q)3 I3. There is an absolute constant

c1 > 0 such that C
(

pk) := c1
pk+1−1

p−1 satisfies, for all ε > 0, the relation

rQ

(
pk
)
= C

(
pk
)
+ O

(
pk(1/2+ε)

)
(the big-Oh term being asymptotic in k).

Lemma 5
Let G : N −→ C be periodic with period coprime to p and satisfy

∑
d|pk

dG(d) = o(pk),

as a function of k. Then in fact G is identically zero.

Proof. Say sk := ∑
d|pk

dG(d). Then we see that G(pk) = 1
pk (sk − sk−1) = sk

pk −

1
p ·

sk−1
pk−1 ; both terms vanish in k, by hypothesis. However, G is periodic; so if

G(p`) 6= 0, say α :=
∣∣G(p`)

∣∣ > 0, then there exists k such that G’s period
divides pk − p` and such that sk

pk , sk−1
pk−1 < α

2 , a contradiction as G(pk) = G(p`).

Thus indeed G(p`) = 0. �

2 Construction

We briefly recapitulate the construction of the graphs X = Xp,q.
Let S ⊂H(Z) consist of solutions to N(α) = p for which 1

2 Tr(α) is positive Construction of
the graphand odd. Let ι ∈N satisfy ι2 ≡ −1 (mod q). Consider the map

φ : a + bi + cj + dk 7−→
(

a + bι c + dι
−c + dι a− bι

)
∈ PSL(2, Fq).

Then Xp,q is defined as the Cayley graph for PSL(2, Fq) with respect to φ(S).
This graph is (p + 1)-regular, on n := 1

2(q− 1)q(q + 1) vertices.
The paper covers in full why this construction actually yields a connected, Useful interm.

constructionsnonbipartite graph—details that we omit here—however it is convenient to
discuss some intermediate steps in the realization of the graphs. We say that
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Λ′(2) consists of α ∈ H(Z) for which N(α) is some natural power of p and
1
2 Tr(α) is odd. Impose the following equivalence relation on Λ′(2): α ∼ β
if α/β, when viewed in H(Q), is in the center Q, i.e. α/β = ±pm for m ∈ Z.
We then let Λ(2) := Λ′(2)/∼, which is free on S′ ⊂ S/∼, defined as ig-
noring ‘inverse-duplicates’ in S/∼: if α ∈ S then α ∈ S, and [α][α] = [1],
so in compiling S we select only (WLOG) [α]. By this freeness and the ob-
servation that #S = p + 1 (by Jacobi’s four square theorem), we may iden-
tify elements of Λ(2) with vertices in the rooted (p + 1)-regular tree T, where
WLOG we map [1] to the root. We let Λ′(2q) ⊂ Λ′(2) be those α for which
2q |

(
α− 1

2 Tr(α)
)

, i.e. 2q divides each component except the Z-component.
Then, Λ(2q) := Λ′(2q)/∼, and as Λ(2q)CΛ(2), we set X := Λ(2)/Λ(2q).

3 Properties

Theorem 6
X is Ramanujan.

In the following proof, all big-Oh and little-oh asymptotics are with respect
to variable k. For families of variables on the same indexing set indicated by
a subscript, equations involving these variables without subscripts indicates
suppression of the same subscript.

Proof. Recall Proposition 3: Ũ(p)
k (AX) =: Ũk(AX) =: Lk tracks the number of Two ways of

studying n.b.
walk counts

nonbacktracking paths of length k in X. We study its trace in two ways:

• By the graph’s transitivity, Lk’s diagonal is constant (all closed walks
starting from e are in bijection with those from g via the graph auto-
morphism x 7−→ gx). Thus, Tr Lk = nLk(e, e). However, a walk from the
identity to itself of length t is a nonbacktracking walk in T from the iden-
tified lift of e to any element of Λ(2q). Thus, the number of such length-k
nonbacktracking paths is the number of points at that distance. This is
exactly 1

2rQ
(

pk), the one-half factor accounting for the equivalence of so-
lutions ±x satisfying Q(x) = pk under ∼, where Q is as in Theorem 4.
All told,

Tr Lk =
n
2

rQ

(
pk
)

. (1)

• We also know that

Tr Lk = ∑
j∈[n]

Ũ(p)
k

(
λj
)
= pk/2 ∑

j∈[n]
Uk

(
λj

2
√

p

)
(2)

since AG is diagonalizable and Ũk is just a polynomial.
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We combine (1), (2), and Theorem 4 to find

C(p) + O
(

pk(1/2+ε)
)
=

2
n

pk/2 ∑
j∈[n]

Uk

(
λj

2
√

p

)
. (♠)

(The following paragraph is taken essentially verbatim from the paper.)
C(pk) is the “singular series” and it comes from the contribution of the Eisen- C is a sum over

divisorsstein series when expressing the “θ-function” θ(z) = ∑
ν∈Z4

exp(2πiQ(ν)z) as

a combination of Eisenstein series and a cusp form. That is, C(pk) is the pkth
Fourier coefficient of a combination of the Eisenstein series of weight two for
Γ(16q2). From the known Fourier expansions of Eisenstein series one easily
shows that C is of the form

C(n) = ∑
d|n

dF(d)

where F : N −→ C is periodic of period (2q)2, so we are left with

∑
d|pk

dF(d) + O
(

pk(1/2+ε)
)
=

2
n

pk/2 ∑
j∈[n]

Uk

(
λj

2
√

p

)
. (♥)

We turn to the right-hand side. Write Study Cheb. evals.
of eigenvalues

t :=
λ

2
√

p
+

√
λ2

4p
− 1 (3)

(taken to be in the upper half-plane and with a positive square root, where
relevant); this t is the solution to

t + 1/t

2
=

λ

2
√

p
,

so that if t = eiθ then θ can be seen as the “solution” to λ = 2
√

p cos θ—but we

extend cos to C as eiz+e−iz

2 . Similarly, we extend sin to C as eiz−e−iz

2i . Interpreting
Proposition 1(a) in this light we find that

Uk

(
λ

2
√

p

)
=

tk+1 − t−(k+1)

t− t−1 .

Algebra reveals that t as in (3) satisfies

tk+1 + t−(k+1)

t + t−1 =
λ2

4p

(
λ

2
√

p

)k
(

1−
(

1− 4p
λ2

)b k+1
2 c−1

)
(4)

so that when 2
√

p < |λ| < p + 1, (4) decays as o
(

pk/2
)

from the term
(

λ
2
√

p

)k
;

when λ = 2
√

p, (4) equals 1; when |λ| < 2
√

p, (4) decays still as o
(

pk/2
)

from
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the term 4p
λ ; and when λ = p + 1 we directly compute that t =

√
p so (4)

dominates (it is Θ
(

pk/2
)
). In particular,

2
n

pk/2 ∑
j∈[n]

Uk

(
λj

2
√

p

)
=

2
n

pk+1 − 1
p− 1

+ o
(

pk/2
)
=

2
n ∑

d|pk

d + o
(

pk/2
)

,

transforming (♥) into

∑
d|pk

dF(d) + O
(

pk(1/2+ε)
)
=

2
n ∑

d|pk

d + o
(

pk/2
)

(♦)

(and the little-oh term on the right is cancelled by the big-Oh term on the left).
We apply Lemma 5 to F(d) − 2

n in (♦). Thus we have computed c1 from Compute C(p)
Theorem 4 to be 2

n .
Finally, we show that the remaining eigenvalues are entirely contained Bound

remaining
eigenvalues

within the bulk. We consider (♠), with the newfound knowledge of c1. When

j = 1, λ = p + 1 so the corresponding term in the sum equals 2
n

pk+1−1
p−1 , so that

we are left with

∑
j>1

Uk

(
λj

2
√

p

)
= O

(
pkε
)

(♣)

for any fixed ε. Let k be even. If λ—towards contradiction—is not in the bulk
then λ

2
√

p = ±(1 + δ) for some δ > 0. Proposition 2 tells us that the corre-

sponding term in the sum above grows faster than (1 + δ)k, and by definite
parity of the Chebyshev polynomials—they will all be positive on R r [−1, 1]
and bounded by O(k) on [−1, 1]—we see that

(1 + δ)k < ∑
j>1

Uk

(
λj

2
√

p

)
= O

(
pkε
)

.

The contradiction is evident now: select ε so that pε < 1+ δ (say, ε = 1
2 logp(1 + δ)).

Then clearly the left-hand side grows faster than the right-hand side, a contra-
diction. Thus indeed we must have the entire remainder of the spectrum inside
the bulk. This is the same as saying that the graph is Ramanujan. �

Remark. The analysis of

∑
j∈[n]

Uk

(
λj

2
√

p

)
is completed in a different fashion in this MathOverflow answer; in particular
the final step of the proof above is substantively different.
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Proposition 7
g(X) > 2 logp q.

Proof. WLOG by transitivity that a shortest cycle under consideration, say of
length t, begins and ends at e. This lifts to a nonbacktracking path in T from
[1] to [α] ∈ Λ(2q), [α] at distance t. Take a representative of this class α =
a + 2q(bi + cj + dk) (with gcd(a, b, c, d) = 1). Then,

pt = N(α) = a2 + 4q2(b2 + c2 + d2). (5)

At least one of {b, c, d} is nonzero, otherwise [α] = [1], in particular (WLOG)
b2 6 1, so (5) becomes pt > 4q2 > q2. The result follows. �
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