Nonbipartite LPS Ramanujan graphs

Zachary Stier

October 2022

In this note, I will present Lubotzky-Phillips-Sarnak's construction of nonbipartite Ramanujan graphs.

1 Preliminaries and notation

Throughout, let p and q be distinct odd primes, both congruent to 1 modulo 4 , satisfying $\left(\frac{p}{q}\right)=1$. For a graph G, write A_{G} for its unnormalized adjacency matrix.

1.1 Spectral preliminaries

Notation (graph spectrum). For a connected d-regular graph G, let $\sigma(G)$ denote the spectrum of A_{G}. Say its elements are $d=\lambda_{1}>\lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$.

Definition (bulk of spectrum). For a d-regular graph G, the bulk of its spectrum is $\sigma(G) \cap[-2 \sqrt{d-1}, 2 \sqrt{d-1}]$.

Notation (second absolute eigenvalue). For a graph G, let $\lambda_{\star}(G)$ denote the largest between the second eigenvalue and negative of the least eigenvalue of A_{G}, i.e. $\max \left\{\lambda_{2},-\lambda_{n}\right\}$.

Definition (Ramanujan graph). Ad-regular graph G is Ramanujan if $\lambda_{\star}(G) \leqslant$ $2 \sqrt{d-1}$. That is, the entire spectrum aside from d lies in the bulk.

1.2 Chebyshev polynomials

Notation (Chebyshev polynomials). Let $T_{n}(x)$ denote the nth Chebyshev polynomial of the first kind, and $U_{n}(x)$ denote the nth Chebyshev polynomial of the second kind. We use the convention that $T_{n}=T_{-n}$ and $U_{n}=U_{-n}$.

Proposition 1

The following are equivalent formulations of U_{n}.
(a) $\frac{\sin ((n+1) \arccos x)}{\sin \arccos x}$ is a degree- n polynomial in x on $[-1,1]$, and extends to a polynomial U_{n} in x on all of \mathbb{R}.
(b) Fix $c>0 . c^{n / 2} U_{n}\left(\frac{x}{2 \sqrt{c}}\right)=: \tilde{U}_{n}^{(c)}(x)$ is the solution to the recursion

$$
H_{0}^{(c)}(x)=1, \quad H_{1}^{(c)}(x)=x, \quad H_{n}^{(c)}(x)=x H_{n-1}^{(c)}(x)-c H_{n-2}^{(c)}(x)
$$

(c) $U_{n}(x)=\sum_{0 \leqslant j \leqslant n} T_{n-2 j}(x)$. (We are not interested in T_{n} aside from its use in Proposition 2.)

Proposition 2

We have that for all $x \in \mathbb{R} \backslash[-1,1]$ and n even, $T_{n}(x) \geqslant 2 x^{n}$, so that

$$
U_{n}(x) \geqslant 4 x^{n}
$$

This fact is a consequence of e.g. this Math.StackExchange answer and Proposition 1(c).

1.3 Graph statistics

Notation (girth). For a graph G, let its girth be $g(G)$.

Proposition 3

For a d-regular graph $G(V, E)$, the number of nonbacktracking paths of length n beginning at x and ending at y is $\tilde{U}_{n}^{(d-1)}\left(A_{G}\right)(x, y)$.

Proof idea. We note that the recursion from Proposition 1(b) inductively counts the desired quantity by subtracting off the paths that backtrack at the very last step (there are $d-1$ ways to take a nonbacktracking penultimate step and then immediately backtrack it).

1.4 Number-theoretic preliminaries

Definition. For an integral quadratic form Q taking inputs $x \in \mathbb{Z}^{n}$, for
$m \in \mathbb{Z}$ let $r_{Q}(m)$ be the number of solutions to $Q(\boldsymbol{x})=m$.

Theorem 4 (Eichler; Igusa)
Fix Q to be the norm against $1 \oplus(2 q)^{3} I_{3}$. There is an absolute constant $c_{1}>0$ such that $C\left(p^{k}\right):=c_{1} \frac{p^{k+1}-1}{p-1}$ satisfies, for all $\varepsilon>0$, the relation

$$
r_{Q}\left(p^{k}\right)=C\left(p^{k}\right)+O\left(p^{k(1 / 2+\varepsilon)}\right)
$$

(the big-Oh term being asymptotic in k).

Lemma 5

Let $G: \mathbb{N} \longrightarrow \mathbb{C}$ be periodic with period coprime to p and satisfy

$$
\sum_{d \mid p^{k}} d G(d)=o\left(p^{k}\right)
$$

as a function of k. Then in fact G is identically zero.

Proof. Say $s_{k}:=\sum_{d \mid p^{k}} d G(d)$. Then we see that $G\left(p^{k}\right)=\frac{1}{p^{k}}\left(s_{k}-s_{k-1}\right)=\frac{s_{k}}{p^{k}}-$ $\frac{1}{p} \cdot \frac{s_{k-1}}{p^{k-1}}$; both terms vanish in k, by hypothesis. However, G is periodic; so if $G\left(p^{\ell}\right) \neq 0$, say $\alpha:=\left|G\left(p^{\ell}\right)\right|>0$, then there exists k such that G^{\prime} s period divides $p^{k}-p^{\ell}$ and such that $\frac{s_{k}}{p^{k}} \frac{s_{k-1}}{p^{k-1}}<\frac{\alpha}{2}$, a contradiction as $G\left(p^{k}\right)=G\left(p^{\ell}\right)$. Thus indeed $G\left(p^{\ell}\right)=0$.

2 Construction

We briefly recapitulate the construction of the graphs $X=X^{p, q}$.
Let $S \subset \mathbb{H}(\mathbb{Z})$ consist of solutions to $\mathrm{N}(\alpha)=p$ for which $\frac{1}{2} \operatorname{Tr}(\alpha)$ is positive and odd. Let $\iota \in \mathbb{N}$ satisfy $\iota^{2} \equiv-1(\bmod q)$. Consider the map

$$
\phi: a+b i+c j+d k \longmapsto\left(\begin{array}{cc}
a+b \iota & c+d \iota \\
-c+d \iota & a-b \iota
\end{array}\right) \in \operatorname{PSL}\left(2, \mathbb{F}_{q}\right) .
$$

Then $X^{p, q}$ is defined as the Cayley graph for $\operatorname{PSL}\left(2, \mathbb{F}_{q}\right)$ with respect to $\phi(S)$. This graph is $(p+1)$-regular, on $n:=\frac{1}{2}(q-1) q(q+1)$ vertices.

The paper covers in full why this construction actually yields a connected, nonbipartite graph-details that we omit here-however it is convenient to constructions discuss some intermediate steps in the realization of the graphs. We say that
$\Lambda^{\prime}(2)$ consists of $\alpha \in \mathbb{H}(\mathbb{Z})$ for which $\mathrm{N}(\alpha)$ is some natural power of p and $\frac{1}{2} \operatorname{Tr}(\alpha)$ is odd. Impose the following equivalence relation on $\Lambda^{\prime}(2): \alpha \sim \beta$ if α / β, when viewed in $\mathbb{H}(\mathbb{Q})$, is in the center \mathbb{Q}, i.e. $\alpha / \beta= \pm p^{m}$ for $m \in \mathbb{Z}$. We then let $\Lambda(2):=\Lambda^{\prime}(2) / \sim$, which is free on $S^{\prime} \subset S / \sim$, defined as ignoring 'inverse-duplicates' in S / \sim : if $\alpha \in S$ then $\bar{\alpha} \in S$, and $[\alpha][\bar{\alpha}]=[1]$, so in compiling S we select only (WLOG) $[\alpha]$. By this freeness and the observation that $\# S=p+1$ (by Jacobi's four square theorem), we may identify elements of $\Lambda(2)$ with vertices in the rooted $(p+1)$-regular tree \mathbb{T}, where WLOG we map [1] to the root. We let $\Lambda^{\prime}(2 q) \subset \Lambda^{\prime}(2)$ be those α for which $2 q \left\lvert\,\left(\alpha-\frac{1}{2} \operatorname{Tr}(\alpha)\right)\right.$, i.e. $2 q$ divides each component except the \mathbb{Z}-component. Then, $\Lambda(2 q):=\Lambda^{\prime}(2 q) / \sim$, and as $\Lambda(2 q) \triangleleft \Lambda(2)$, we set $X:=\Lambda(2) / \Lambda(2 q)$.

3 Properties

Theorem 6

X is Ramanujan.

In the following proof, all big-Oh and little-oh asymptotics are with respect to variable k. For families of variables on the same indexing set indicated by a subscript, equations involving these variables without subscripts indicates suppression of the same subscript.

Proof. Recall Proposition 3: $\tilde{U}_{k}^{(p)}\left(A_{X}\right)=: \tilde{U}_{k}\left(A_{X}\right)=: L_{k}$ tracks the number of nonbacktracking paths of length k in X. We study its trace in two ways:

- By the graph's transitivity, L_{k} 's diagonal is constant (all closed walks starting from e are in bijection with those from g via the graph automorphism $x \longmapsto g x$). Thus, $\operatorname{Tr} L_{k}=n L_{k}(e, e)$. However, a walk from the identity to itself of length t is a nonbacktracking walk in \mathbb{T} from the identified lift of e to any element of $\Lambda(2 q)$. Thus, the number of such length- k nonbacktracking paths is the number of points at that distance. This is exactly $\frac{1}{2} r_{Q}\left(p^{k}\right)$, the one-half factor accounting for the equivalence of solutions $\pm \boldsymbol{x}$ satisfying $Q(\boldsymbol{x})=p^{k}$ under \sim, where Q is as in Theorem 4. All told,

$$
\begin{equation*}
\operatorname{Tr} L_{k}=\frac{n}{2} r_{Q}\left(p^{k}\right) . \tag{1}
\end{equation*}
$$

- We also know that

$$
\begin{equation*}
\operatorname{Tr} L_{k}=\sum_{j \in[n]} \tilde{U}_{k}^{(p)}\left(\lambda_{j}\right)=p^{k / 2} \sum_{j \in[n]} U_{k}\left(\frac{\lambda_{j}}{2 \sqrt{p}}\right) \tag{2}
\end{equation*}
$$

since A_{G} is diagonalizable and \tilde{U}_{k} is just a polynomial.

We combine (1), (2), and Theorem 4 to find

$$
C(p)+O\left(p^{k(1 / 2+\varepsilon)}\right)=\frac{2}{n} p^{k / 2} \sum_{j \in[n]} U_{k}\left(\frac{\lambda_{j}}{2 \sqrt{p}}\right)
$$

(The following paragraph is taken essentially verbatim from the paper.) $C\left(p^{k}\right)$ is the "singular series" and it comes from the contribution of the Eisenstein series when expressing the " θ-function" $\theta(z)=\sum_{v \in \mathbb{Z}^{4}} \exp (2 \pi i Q(v) z)$ as a combination of Eisenstein series and a cusp form. That is, $C\left(p^{k}\right)$ is the p^{k} th Fourier coefficient of a combination of the Eisenstein series of weight two for $\Gamma\left(16 q^{2}\right)$. From the known Fourier expansions of Eisenstein series one easily shows that C is of the form

$$
C(n)=\sum_{d \mid n} d F(d)
$$

where $F: \mathbb{N} \longrightarrow \mathbb{C}$ is periodic of period $(2 q)^{2}$, so we are left with

$$
\begin{equation*}
\sum_{d \mid p^{k}} d F(d)+O\left(p^{k(1 / 2+\varepsilon)}\right)=\frac{2}{n} p^{k / 2} \sum_{j \in[n]} U_{k}\left(\frac{\lambda_{j}}{2 \sqrt{p}}\right) \tag{*}
\end{equation*}
$$

We turn to the right-hand side. Write

$$
t:=\frac{\lambda}{2 \sqrt{p}}+\sqrt{\frac{\lambda^{2}}{4 p}-1}
$$

Study Cheb. evals. of eigenvalues
(taken to be in the upper half-plane and with a positive square root, where relevant); this t is the solution to

$$
\frac{t+1 / t}{2}=\frac{\lambda}{2 \sqrt{p}}
$$

so that if $t=e^{i \theta}$ then θ can be seen as the "solution" to $\lambda=2 \sqrt{p} \cos \theta$ —but we extend cos to \mathbb{C} as $\frac{e^{i z}+e^{-i z}}{2}$. Similarly, we extend \sin to \mathbb{C} as $\frac{e^{i z}-e^{-i z}}{2 i}$. Interpreting Proposition 1(a) in this light we find that

$$
U_{k}\left(\frac{\lambda}{2 \sqrt{p}}\right)=\frac{t^{k+1}-t^{-(k+1)}}{t-t^{-1}}
$$

Algebra reveals that t as in (3) satisfies

$$
\begin{equation*}
\frac{t^{k+1}+t^{-(k+1)}}{t+t^{-1}}=\frac{\lambda^{2}}{4 p}\left(\frac{\lambda}{2 \sqrt{p}}\right)^{k}\left(1-\left(1-\frac{4 p}{\lambda^{2}}\right)^{\left\lfloor\frac{k+1}{2}\right\rfloor-1}\right) \tag{4}
\end{equation*}
$$

so that when $2 \sqrt{p}<|\lambda|<p+1$, (4) decays as $o\left(p^{k / 2}\right)$ from the term $\left(\frac{\lambda}{2 \sqrt{p}}\right)^{k}$; when $\lambda=2 \sqrt{p}$, (4) equals 1 ; when $|\lambda|<2 \sqrt{p}$, (4) decays still as $o\left(p^{k / 2}\right)$ from
the term $\frac{4 p}{\lambda}$; and when $\lambda=p+1$ we directly compute that $t=\sqrt{p}$ so (4) dominates (it is $\Theta\left(p^{k / 2}\right)$). In particular,

$$
\frac{2}{n} p^{k / 2} \sum_{j \in[n]} U_{k}\left(\frac{\lambda_{j}}{2 \sqrt{p}}\right)=\frac{2}{n} \frac{p^{k+1}-1}{p-1}+o\left(p^{k / 2}\right)=\frac{2}{n} \sum_{d \mid p^{k}} d+o\left(p^{k / 2}\right)
$$

transforming ($\boldsymbol{\nabla}$) into

$$
\sum_{d \mid p^{k}} d F(d)+O\left(p^{k(1 / 2+\varepsilon)}\right)=\frac{2}{n} \sum_{d \mid p^{k}} d+o\left(p^{k / 2}\right)
$$

(and the little-oh term on the right is cancelled by the big-Oh term on the left).
We apply Lemma 5 to $F(d)-\frac{2}{n}$ in (\diamond). Thus we have computed c_{1} from Compute $C(p)$ Theorem 4 to be $\frac{2}{n}$.

Finally, we show that the remaining eigenvalues are entirely contained within the bulk. We consider ($\boldsymbol{\uparrow}$), with the newfound knowledge of c_{1}. When $j=1, \lambda=p+1$ so the corresponding term in the sum equals $\frac{2}{n} \frac{p^{k+1}-1}{p-1}$, so that

Bound remaining eigenvalues we are left with

$$
\sum_{j>1} U_{k}\left(\frac{\lambda_{j}}{2 \sqrt{p}}\right)=O\left(p^{k \varepsilon}\right)
$$

for any fixed ε. Let k be even. If λ-towards contradiction-is not in the bulk then $\frac{\lambda}{2 \sqrt{p}}= \pm(1+\delta)$ for some $\delta>0$. Proposition 2 tells us that the corresponding term in the sum above grows faster than $(1+\delta)^{k}$, and by definite parity of the Chebyshev polynomials-they will all be positive on $\mathbb{R} \backslash[-1,1]$ and bounded by $O(k)$ on $[-1,1]$-we see that

$$
(1+\delta)^{k}<\sum_{j>1} U_{k}\left(\frac{\lambda_{j}}{2 \sqrt{p}}\right)=O\left(p^{k \varepsilon}\right)
$$

The contradiction is evident now: select ε so that $p^{\varepsilon}<1+\delta\left(\right.$ say,$\varepsilon=\frac{1}{2} \log _{p}(1+\delta)$). Then clearly the left-hand side grows faster than the right-hand side, a contradiction. Thus indeed we must have the entire remainder of the spectrum inside the bulk. This is the same as saying that the graph is Ramanujan.

Remark. The analysis of

$$
\sum_{j \in[n]} U_{k}\left(\frac{\lambda_{j}}{2 \sqrt{p}}\right)
$$

is completed in a different fashion in this MathOverflow answer; in particular the final step of the proof above is substantively different.

Proposition 7

$$
g(X) \geqslant 2 \log _{p} q
$$

Proof. WLOG by transitivity that a shortest cycle under consideration, say of length t, begins and ends at e. This lifts to a nonbacktracking path in \mathbb{T} from $[1]$ to $[\alpha] \in \Lambda(2 q),[\alpha]$ at distance t. Take a representative of this class $\alpha=$ $a+2 q(b i+c j+d k)($ with $\operatorname{gcd}(a, b, c, d)=1)$. Then,

$$
\begin{equation*}
p^{t}=\mathrm{N}(\alpha)=a^{2}+4 q^{2}\left(b^{2}+c^{2}+d^{2}\right) . \tag{5}
\end{equation*}
$$

At least one of $\{b, c, d\}$ is nonzero, otherwise $[\alpha]=[1]$, in particular (WLOG) $b^{2} \leqslant 1$, so (5) becomes $p^{t} \geqslant 4 q^{2} \geqslant q^{2}$. The result follows.

