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In this note, I will present Lubotzky—Phillips—Sarnak’s construction of non-
bipartite Ramanujan graphs.

1 Preliminaries and notation

Throughout, let p and g be distinct odd primes, both congruent to 1 modulo
4, satisfying g = 1. For a graph G, write A for its unnormalized adjacency
matrix.

1.1 Spectral preliminaries

Notation (graph spectrum). For a connected d-regular graph G, let ¢(G) de-
note the spectrum of Ag. Say its elementsared = Ay > Ay > --- > A,

Definition (bulk of spectrum). For a d-regular graph G, the bulk of its spec-
trum is ¢(G) N [—2\/01 —1,2Vd - 1} .

Notation (second absolute eigenvalue). For a graph G, let A,(G) denote the
largest between the second eigenvalue and negative of the least eigenvalue of
Ag, ie. max{Ay, —A,}.

Definition (Ramanujan graph). A d-regular graph G is Ramanujan if A, (G) <
24/d — 1. That is, the entire spectrum aside from 4 lies in the bulk.

1.2 Chebyshev polynomials

Notation (Chebyshev polynomials). Let T,(x) denote the nth Chebyshev poly-
nomial of the first kind, and U, (x) denote the nth Chebyshev polynomial of the
second kind. We use the convention that T,, = T_, and U,, = U_,,.
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Proposition 1

The following are equivalent formulations of U,,.

(a) Sm((s’;rfalr)cjgzc;’sx) is a degree-n polynomial in x on [—1,1], and extends

to a polynomial U, in x on all of R.

(b) Fix ¢ > 0. c"2U, (ﬁ) =: (") (x) is the solution to the recursion

H(()C)(x) =1, Hl(c)(x) = x, H,(f)(x) = xH('i)l(x) — cH,SC_)z(x).

() Un(x) = X T, 2j(x). (We are not interested in T} aside from its
0<j<n
use in Proposition 2.)
- J

4 . N
Proposition 2

We have that for all x € R\ [—1,1] and n even, T,(x) > 2x", so that

U, (x) > 4x".
. J

This fact is a consequence of e.g. this Math.StackExchange answer and Propo-
sition 1(c).

1.3 Graph statistics
Notation (girth). For a graph G, let its girth be ¢(G).

Proposition 3
For a d-regular graph G(V,E), the number of nonbacktracking paths of
length n beginning at x and ending at y is g (Ag)(x,y).

Proof idea. We note that the recursion from Proposition 1(b) inductively counts
the desired quantity by subtracting off the paths that backtrack at the very last
step (there are d — 1 ways to take a nonbacktracking penultimate step and then
immediately backtrack it). u

1.4 Number-theoretic preliminaries

Definition. For an integral quadratic form Q taking inputs x € Z", for


https://math.stackexchange.com/a/3370465/608231

m € Z let rg(m) be the number of solutions to Q(x) = m.

4 ) N
Theorem 4 (Eichler; Igusa)

Fix Q to be the norm against 1 @ (29)I;. There is an absolute constant
k+1
c1 > 0 such that C(p*) :=¢; ®

p—1
ro <pk) _ C(pk> i O<pk(1/2+s)>

(the big-Oh term being asymptotic in k).
- J

satisfies, for all € > 0, the relation

4 )\
Lemma 5

Let G : N — C be periodic with period coprime to p and satisfy

Y dG(d) = o(p"),

d|pk

as a function of k. Then in fact G is identically zero.
. J

Proof. Say s; := Y. dG(d). Then we see that G(p*) = #(sk —Sk_1) = % -
dlp*

% : % ; both terms vanish in k, by hypothesis. However, G is periodic; so if

G(p") # 0, say a := |G(p")| > 0, then there exists k such that G’s period

divides p* — p’ and such that %, ;’,:11 < &, a contradiction as G(p*) = G(p’).

Thus indeed G(p’) = 0. [

2 Construction

We briefly recapitulate the construction of the graphs X = X?1.
Let S C H(Z) consist of solutions to N(«) = p for which  Tr(«) is positive
and odd. Let: € N satisfy 1> = —1 (mod q). Consider the map

a+bi c+di

¢:a+bi+cj+dk— (—c—i—dt 0 by

) € PSL(2, ).
Then X7/ is defined as the Cayley graph for PSL(2,F;) with respect to ¢(S).
This graph is (p + 1)-regular, on n := 3(q — 1)q(q + 1) vertices.

The paper covers in full why this construction actually yields a connected,
nonbipartite graph—details that we omit here—however it is convenient to
discuss some intermediate steps in the realization of the graphs. We say that
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N'(2) consists of & € H(Z) for which N(«) is some natural power of p and
3 Tr(a) is odd. Impose the following equivalence relation on A’(2): & ~
if #/p, when viewed in H(Q), is in the center Q, i.e. #/p = +p™ form € Z.
We then let A(2) := A’(2)/~, which is free on S’ C S/~, defined as ig-
noring ‘inverse-duplicates’ in S/~: if « € Sthenw € S, and [«][x] = [1],
so in compiling S we select only (WLOG) [«]. By this freeness and the ob-
servation that #5 = p + 1 (by Jacobi’s four square theorem), we may iden-
tify elements of A(2) with vertices in the rooted (p + 1)-regular tree T, where
WLOG we map [1] to the root. We let A’(2q) C A’(2) be those a for which

2q | (oc — %Tr(oc)), i.e. 2g divides each component except the Z-component.
Then, A(2g9) := A'(2q)/~, and as A(29) < A(2), we set X := A(2)/A(2g).

3 Properties

Theorem 6
X is Ramanujan.

In the following proof, all big-Oh and little-oh asymptotics are with respect
to variable k. For families of variables on the same indexing set indicated by
a subscript, equations involving these variables without subscripts indicates
suppression of the same subscript.

Proof. Recall Proposition 3: Z:IIEp ) (Ax) =: Ux(Ax) =: Ly tracks the number of
nonbacktracking paths of length k in X. We study its trace in two ways:

e By the graph’s transitivity, L;’s diagonal is constant (all closed walks
starting from e are in bijection with those from ¢ via the graph auto-
morphism x — gx). Thus, Tr L, = nLi(e, e). However, a walk from the
identity to itself of length ¢ is a nonbacktracking walk in T from the iden-
tified lift of e to any element of A(2g). Thus, the number of such length-k
nonbacktracking paths is the number of points at that distance. This is
exactly 3ro(p¥), the one-half factor accounting for the equivalence of so-
lutions +x satisfying Q(x) = p* under ~, where Q is as in Theorem 4.
All told,

_hn k
TrLy = er<p ) (1)
e We also know that
Aj

_ ~(p) _ k2
TrLe= ) 0 (A) =p”* ) uk<—> (2)
i) i \2VP

since A is diagonalizable and Uy is just a polynomial.

Two ways of
studying n.b.
walk counts



We combine (1), (2), and Theorem 4 to find

1/2+e 2 Aj
)+ 0(pH9) =y 3 (555 ). @
j€ln

(The following paragraph is taken essentially verbatim from the paper.)
C(p¥) is the “singular series” and it comes from the contribution of the Eisen-
stein series when expressing the “0-function” 6(z) = Y exp(27iQ(v)z) as

vezZ4
a combination of Eisenstein series and a cusp form. That is, C(p¥) is the p¥th
Fourier coefficient of a combination of the Eisenstein series of weight two for
I'(16¢%). From the known Fourier expansions of Eisenstein series one easily
shows that C is of the form

C(n) = Y_dF(d)

d|n

where F : N — C is periodic of period (29)?, so we are left with

2 k )\]
Z dF(d) + 0) pk(l/Z—i—S) — _P/Z Z Uk (_) (')
i ( ) n e 2,/p
We turn to the right-hand side. Write
A A?
ti=—+4/——1 3)
VPV 4p

(taken to be in the upper half-plane and with a positive square root, where
relevant); this t is the solution to

t+1/t_ A
2 27

so that if t = ¢’ then 6 can be seen as the “solution” to A = 2,/p cos I—but we

extend cos to C as % Similarly, we extend sin to C as % Interpreting
Proposition 1(a) in this light we find that

A tk+1 _ t*(k+1)
NG ey

Algebra reveals that ¢ as in (3) satisfies

AR S k 1-(1-2% R (4)
t+t-1 4Ap\2/p A2
k
so that when 2,/7 < [A| < p + 1, (4) decays as o(p"/?) from the term (ﬁ) ;
when A = 2,/7, (4) equals 1; when |A| < 2./, (4) decays still as o(p/?) from
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the term 47;7 ; and when A = p + 1 we directly compute that t = ,/p so (4)
dominates (it is @( Y/ 2)) In particular,

o B (ags) =25 o) =R )

j€ln] " djpk

transforming (¥) into

Y dr(d) +0(p* VHE)— Y d+o(p”) (#)

d|pk " apk

(and the little-oh term on the right is cancelled by the big-Oh term on the left).
We apply Lemma 5 to F(d) — 2 in (#). Thus we have computed ¢; from
Theorem 4 to be %
Finally, we show that the remaining eigenvalues are entirely contained
within the bulk. We consider (#), with the newfound knowledge of c;. When

k+1
p—

yu (3 ) =0(v") %)

j>1

j =1, A = p + 1 so the corresponding term in the sum equals %p Il, so that

we are left with

for any fixed e. Let k be even. If A—towards contradiction—is not in the bulk
then ﬁ? = +(1+ ) for some § > 0. Proposition 2 tells us that the corre-

sponding term in the sum above grows faster than (1 + 6)*, and by definite
parity of the Chebyshev polynomials—they will all be positive on R ~\ [—1,1]
and bounded by O(k) on [—1, 1]—we see that

(1+0)f < Zuk<2?/_> o<pke>.

>1

Compute C(p)

Bound
remaining
eigenvalues

The contradiction is evident now: select € so that p* < 1+ 6 (say, &€ = % logp (1+49)).

Then clearly the left-hand side grows faster than the right-hand side, a contra-
diction. Thus indeed we must have the entire remainder of the spectrum inside
the bulk. This is the same as saying that the graph is Ramanujan. u

z(as)
o —L
jem AP
is completed in a different fashion in this MathOverflow answer; in particular
the final step of the proof above is substantively different.

Remark. The analysis of


https://mathoverflow.net/a/432390/159965

Proposition 7
8(X) = 2log,, q.

Proof. WLOG by transitivity that a shortest cycle under consideration, say of
length t, begins and ends at e. This lifts to a nonbacktracking path in T from
[1] to [&] € A(2g), [«] at distance t. Take a representative of this class & =
a+2q(bi + cj + dk) (with ged(a, b,c,d) = 1). Then,

pt = N(a) = a® +4¢*(b* + > + d°). (5)
At least one of {b,c,d} is nonzero, otherwise [¢] = [1], in particular (WLOG)
b? <1, s0 (5) becomes pt > 4q2 > qz. The result follows. [ |
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