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Abstract

Boneh, Halevi, Hamburg, and Ostrovsky present in [4] an ElGamal-like encryp-
tion scheme relying on the decisional Diffie-Hellman problem in which encryptions
of secret keys may be published without fear of undermining the security of a pub-
lic key-secret key pair—a security notion known as circular security, a special case
of KDM-security. Boneh, Goh and Nissim present in [3] a different ElGamal-like
semantically secure encryption scheme in which products of ciphertexts faithfully
correspond to encryptions of the products of the plaintexts, but is only equipped
to handle 2-DNF formulas. As a capstone of work from this term, this paper con-
cerns both of these results in greater generality, extending the former to rely on the
k-linear assumption of [1, 8, 11] and discusses the latter in the context of k-linear
maps, enabling the evaluation of k-DNF formulas, before describing a new proposed
encryption scheme relying on the k-linear assumption that is KDM-secure and allows
for the evaluation of k-DNF formulas given a k-linear map.
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Notation

• N denotes the natural numbers {1, 2, . . . }, Z denotes the integers, Zn denotes
the integers modulo n, and R denotes the real numbers.

• P[A] denotes the probability of event A. E[X] denotes the expected value of
random variable X.

• For n ∈ N, [n] denotes the subset of positive integers {1, . . . , n}.
• Vectors are typically denoted by boldface characters, and the vector a has

entries (a1, a2, . . . ).

• ei are the standard basis vectors, i.e. those with 1 in position i and 0 elsewhere.

• a R← S indicates that a is selected uniformly at random from the finite set S.

• A ⊂n B means that A ⊂ B and |A| = n.

• expa b denotes ab.

• logb : Zp → N denotes the least positive integer solving the base-b discrete
logarithm problem.

• log : G→ {0, 1} denotes log x =

{
0 x = 1

1 else
.
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• rankn Ga×b denotes the set of rank-n a× b matrices with elements in G, while
rankM denotes the rank of the matrix M .

• (A|B) denotes the columns of matrix A followed by the columns of B.

• v ×w denotes the m× n matrix (viwj)i∈[m],j∈[n], for v ∈ Zm|G| and w ∈ Gn.

1 Introduction

Many public-key encryption schemes do not admit obvious weaknesses when their
secret key is encrypted, though it is certainly easy to contrive those that do become
immediately weakened, for instance as noted in [4] by ensuring that a secret key
always encrypts to itself. Practically speaking, it is not unreasonable to expect or
hope for a drive containing its own password to still be securely encryptable. It is
therefore advantageous to construct a scheme around this type of security. More
powerfully, we are interested in a cryptosystem (Enc,Dec) for which, given n public
key-secret key pairs (pki, ski), security is intact even if Enc(pki, skj) is published
for 1 6 i, j 6 n. This is the notion of KDM-security, a generalized case of circular
security, in which only Enc(pki, ski+1) is published.

Perhaps similarly, often public-key encryption schemes are homomorphic in a
single operation; e.g. ElGamal is multiplicatively homomorphic, as the component-
wise product of encryptions (gr1 ,m1g

r1x) and (gr2 ,m2g
r2x) corresponds to(

gr1+r2 , (m1m2)g(r1+r2)x
)
.

However, it is much more difficult to incorporate homomorphism in a second oper-
ation. This feat was first accomplished in full by Gentry in [6], using matrices and
lattices and basing security on the learning with errors problem, and in this regime
has been improved in the ensuing decade. However, it was also been attacked earlier
in the form of an ElGamal-like scheme, though only permitting a bounded number
of multiplications; this is the route that we pursue here.

In this paper, I will discuss encryption schemes that satisfy each of these objec-
tives, followed by a proposal for a new encryption scheme that is both circularly
secure and can evaluate k-DNF formulas. This scheme primarily relies on the secu-
rity notions and proofs in [4] but also crucially relies on homomorphism and decryp-
tion ideas from [3]. One property of note is that the k-DNF evaluation property is
ported from a semiprime-order group cryptosystem to a prime-order group in this
new scheme.

This paper represents a cumulation of the content that I have learned and thought
about over the course of this semester. Before discussing some of the existing lit-
erature, I will review relevant ideas of hardness and security in §2.1 and §2.2, re-
spectively. Pollard’s lambda algorithm for discrete logarithms (invoked in [3]) is
discussed in §2.3, and the mathematical ideas underlying elliptic curves and the
Weil pairing, used in the k = 2 case of §4, are reviewed in §2.4. Then, while pre-
senting the results of [4] in §3, instead of relying on the decisional Diffie-Hellman
assumption, we will instead see the results modified to fit the k-linearity assumption.
(This is a proof briefly mentioned in [4] but that has been carried out fully here.)
Doing so makes the security proof in §5 more immediate. We will treat the scheme
in [3], presented in §4, in slightly greater generality—as having the capacity to eval-
uate k-DNF formulas, rather than 2-DNF formulas. §5 contains a full discussion of
the proposed scheme.
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2 Cryptographic, algorithmic, and mathematical
preliminaries

2.1 Hardness assumptions

2.1.1 The k-linearity and decisional Diffie-Hellman assumptions

For an additive group G of order p, define:

• Pk-Lin is the set of (2k+2)-tuples of the form

(
g1, r1g1, . . . , gk, rkgk, h,

k∑
i=1

rih

)
for g1, . . . , gk, h ∈ G and r1, . . . , rk ∈ Zp.

• Rk-Lin is the set of (2k+ 2)-tuples of the form (g1, r1g1, . . . , gk, rkgk, h, σh) for
g1, . . . , gk, h ∈ G and r1, . . . , rk, σ ∈ Zp.

The k-linearity security game consists of a challenger D that draws b
R← {0, 1}

and gives adversary A the (2k + 2)-tuple t for{
t
R← Pk-Lin b = 0

t
R← Rk-Lin b = 1

.

A must ascertain the value of b. The advantage of A in this game is defined as

k-LinAdv[A,G] :=

∣∣∣∣P[A correctly guesses b]− 1

2

∣∣∣∣ .
(For notational convenience, we say that the k-linearity challenge arrives as the
(2k + 2)-tuple (α1, β1, . . . , αk, βk, αk+1, βk+1).)

The k-linearity assumption asserts that there does not exist an adversary A
with computational power polynomial in p with non-negligible advantage in p. The
k-linearity assumption (under various similar names) was discussed in [8, 11] with
both drawing from [1].

We note that the hardness of 1-linearity is equivalent to the decisional Diffie-
Hellman assumption (DDH), which is usually formulated (over multiplicative G
as asking an adversary to distinguish between a 4-tuple of the form (g, ga, gb, gab)←
PDDH and (g, ga, gb, gc)← RDDH; instead, in the language of k-linearity, h is “short-
hand” for gb, rendering the tuples as (g, ga, h, ha) ← P1-Lin and (g, ga, h, hc) ←
R1-Lin.

We are interested here in k-linearity because when operating in a group equipped
with an efficiently-computable k-linear form, for instance that of [3] having the
modified Weil pairing ê with k = 2, it is clear that DDH is trivial by considering,

for input (α1, α2, α3, α4), ê(α1, α4)
?
= ê(α2, α3).

2.1.2 The subgroup decision assumption

The subgroup decision assumption, introduced in [3], asserts that it is difficult
to discern whether an arbitrary element of a semiprime group has prime order. The
assumption applies to algorithms G for generating groups of semiprime order with
bilinear maps. Put precisely: let G take as its argument the security parameter
λ ∈ N. Generate λ-bit primes q1, q2, a group G of order n := q1q2 with generator

4



Zachary Stier Junior Paper, Spring 2019

g, another group G′ also of order n, and a bilinear map e : G2 → G′. G outputs
the tuple (q1, q2,G,G′, e). The subgroup decision game consists of a challenger D
that runs G(λ) and draws b

R← {0, 1} and x
R← G, giving (n,G,G′, e, xb(q2−1)+1) to

adversary A. A must ascertain the value of b. The advantage of A in this game is
defined as

SDAdv[A,G](λ) :=

∣∣∣∣P[A guesses correctly]− 1

2

∣∣∣∣ .
The subgroup decision assumption is that there does not exist an adversary A run-
ning in polynomial time in λ with SDAdv[A,G](λ) non-negligible in λ.

2.2 Security notions

In this section, we will introduce the types of security satisfied by the schemes
described in §3–§5.

2.2.1 Semantic security

The semantic security game for the encryption scheme E = (Gen,Enc,Dec)
consists of the following actions: a challenger D runs Gen(λ), returning a message
spaceM (deterministically), a public key pk, and a secret key. M and pk are given to
an adversary A which is allowed running time polynomial in λ. A produces m0,m1 ∈
M for D, which draws b

R← {0, 1} and returns to A an encryption Enc(pk,mb). A
must ascertain the value of b. The advantage of A in this game is defined as

SemAdv[A, E ](λ) :=

∣∣∣∣P[A correctly guesses b]− 1

2

∣∣∣∣ .
E is semantically secure if SemAdv[A, E ](λ) is negligible in λ for all A running

in polynomial time in λ.

2.2.2 KDM-security and circular security

A scheme E = (Gen,Enc,Dec), with Gen(·) returning a message space M (deter-
ministically), a public key, and a secret key lying in S (the latter two nondeter-
ministically), has key-dependent message security (KDM-security) if not only
are encryptions of chosen plaintexts indistinguishable from encryptions of a fixed
message (e.g. a string of all 0’s), but also an adversary can query about a function
of the secret keys (of course, without being told the keys). That is to say, given C
a set of functions f : Sn →M, the KDM-security game consists of a challenger D
that draws b

R← {0, 1} and gives adversary A the message m ∈ M as well as the n
pairs (pk1, sk1), . . . , (pkn, skn) arising from n calls of Gen(λ). Let s be the length-n`
concatenation of the secret keys (where each secret key has fixed length `). A may
send D a number polynomial in λ of pairs (i, f) for 1 6 i 6 n and f ∈ C, to which
D replies with {

Enc(pki, f(s)) b = 0

Enc(pki,m) b = 1

A must ascertain the value of b. The advantage of A in this game is defined as

KDMAdv
(n)
C [A, E ](λ) :=

∣∣∣∣P[A correctly guesses b]− 1

2

∣∣∣∣ .
5



Zachary Stier Junior Paper, Spring 2019

E is n-way KDM-secure with respect to C if KDMAdv
(n)
C [A, E ](λ) is negli-

gible in λ for all A running in polynomial time in λ.
E has clique security if it is n-way KDM-secure with respect to C where C

contains the n “selector functions” fi : s 7→ ski and the |M| constant functions.
Circular security is a weakened form of clique security in which the pairs (i, fj)
may be queried to the challenger only if i−j ≡ 1 (mod n); we shall only be concerned
here with security notions that are at least as strong as clique security, and hence
strictly stronger than circular security. Indeed, the clique case shall be covered
by considering CN to be the set of affine functions ZNp → ZNp characterized by
x 7→ Ax + b for A a matrix and b a vector.

2.3 Pollard’s lambda algorithm

The following method is due to Pollard in [10]. In its most general form, the algo-
rithm computes intersections between pseudorandom subsets of a large finite group.
(In terms of kangaroos, the tame kangaroo sets traps for the wild kangaroo; both
leap in a pseudorandom fashion.) What we shall see now, however, is the special
case of the algorithm, used to compute a discrete logarithm with high probability.

It is also known under the name of Pollard’s kangaroo algorithm because of
the analogy that Pollard draws in his paper to using a tame kangaroo to catch a wild
kangaroo. The notion of a “lambda” arises from viewing one of the pseudorandom
variables as having a straight-line path that collides with the middle of the other’s
straight-line path.

2.3.1 The algorithm

We begin with a prime p, a base r ∈ Z, a value q ∈ Zp, integers A < B, and a
guarantee that there exists e ∈ [A,B] ∩ Z such that re ≡ q (mod p). We wish to
compute e = logr q.

First, select a tuning parameter θ (see the next section for discussion on θ’s
value). Next, select a finite set S ⊂ N of size |S| �

√
B −A and construct a

pseudorandom function f : Zp → S (i.e. a deterministic function, computable in
polynomial time, that is computationally indistinguishable from truly random). We
precompute rs (mod p) for each s ∈ S. (This is where we need the requirement
|S| �

√
B −A—otherwise this step is completely impractical.) Select N ∈ N

such that N ≈ θm where m is the average value in S. We now construct the
sequence {xi}Ni=0 as follows: x0 := rB (mod p) and xi+1 := xir

f(xi) (mod p). Define

di :=
i−1∑
j=0

f(xj). We now compute a new sequence {x′i}i∈N as follows: x′0 := q and

x′i+1 := x′ir
f(x′

i) (mod p). Define d′i :=
i−1∑
j=0

f(x′j). If there exists M ∈ N such that

x′M = xN , then we return
B + dN − d′M .

Otherwise, once d′M > dN + B − A, halt, select new values of S and f , and start
over.

6
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2.3.2 Analysis: correctness, timing, and likelihood of success

We shall first show that it is correct to halt when x′M = xN . Noting that di satisfies

xi = x0r
di and d′i satisfies x′i = x′0r

d′i , we expand and have qrd
′
M = rBrdN and so

logr q = B + dN − d′M .
If d′M > dN +B −A, we know that our choice of S and f will be insufficient, as

d′M is monotonically increasing, and we would have B+dN −d′M < A, a violation of
logr q ∈ [A,B]. So, if an arbitrary choice of S and f has high probability of success
and a full iteration for a given choice runs sufficiently quickly, then this algorithm
is viable.

We compute timing and likelihood of success in terms of θ.
The number of operations is on the order of N + M , so we with to compute

E[N+M ] = N+
(
1
2
B−A
m +N

)
because in expectation we halt about halfway through

the algorithm. Temporarily usingm = α
√
B −A for some α ∈ R>0, this expectation

is
√
B −A

(
2αθ + 1

2α

)
, taking its minimum of 2

√
θ(B −A) at α = 1

2
√
θ

so we wish

to have m ≈ 1
2

√
B−A
θ .

At each step, the likelihood of halting is 1
m , so the likelihood of failure in the N

attempts, by (pseudo)randomness, is approximated by
(
1− 1

m

)N
and thus success

occurs with likelihood 1 −
(
1− 1

m

)N
= 1 −

(
1− 1

m

)mθ ≈ 1 − 1
eθ
> 0.98 for θ > 4.

Therefore the expected number of times the whole algorithm must be run is 1
1− 1

eθ
=

1 + 1
eθ−1 < 1.02 for θ > 4.

2.4 Elliptic curves

In this section, we will state some basic elliptic curve facts and prove some elementary
results (which can be found, e.g., in [12]). We will then see a bilinear function known
as the Weil pairing. (That portion largely comes from [2].) Because this section is
so heavy on definitions, we shall present it in a quantized definition-lemma format.
Further, in the interest of brevity—since elliptic curves will not play a central role
in the following cryptographic discourse, but are central to the scheme of [3]—we
shall sketch or omit many of the more involved proofs.

Definition 1 (nonsingularity). A plane curve given by f(x, y) = 0 is nonsingular
if, for each point P on the curve,(

∂

∂x
f(P ),

∂

∂y
f(P )

)
6= 0.

Definition 2 (elliptic curve). An elliptic curve is a nonsingular plane cubic in
Weierstrass form:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Definition 3. E(K) is the set of solutions to elliptic curve E over the field K along
with a “point at infinity,” O.

O arises as [0, 1, 0] from viewing E as a projective curve, in homogeneous coor-
dinates X,Y, Z:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

7
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Definition 4. For P,Q ∈ E(K), let P ∗Q be the third intersection point of the line
connecting P and Q in K2 ∪ O. Let P +Q = O ∗ P ∗Q.

Proposition 5. P ∗Q always exists (although it might need to be defined in terms
of tangencies), ∗ is associative, and (E(K),+) is an abelian group with identity O.

Proof. This is a classical but involved result, particularly for associativity; see e.g.
Proposition 2.2 of [12]. �

Definition 6 (torsion subgroup). E(K)[n] is the nth torsion subgroup, i.e. all
elements of E(K) of order n.

Lemma 7. For E : y2 = x3 + 1, #E[Fp] = p+ 1 for all primes p > 3 with 3 - p− 1.

Proof. 3 is coprime to #F×p , so cubing is injective, while squaring is 2-to-1. If y2 = 0
then there is a unique x with x3 = −1. Otherwise, for z ∈ (F×p )2, there is a unique

x with x3 = z − 1, while there are two distinct y with y2 = z. #(F×p )2 = 1
2 (p− 1).

Adding in O, the group has 1 + 1 + 2 · 12 (p− 1) = p+ 1 elements. �

Definition 8 (divisor). A divisor is a formal sum∑
P∈E(Fp2 )

aP (P ),

where aP ∈ Z and (P ) distinguishes P as a generator of a free Z-module. For a
bivariate rational function f : E(Fp2)→ R, its divisor is defined as

(f) =
∑

P∈E(Fp2 )

ordf P · (P ),

where ordf is the order of a point P = (x0, y0) on the curve as a root of f(x, y).

For instance, a line through two non-inverse points has three roots and a triple
pole at O, so its divisor looks like (P ) + (Q) + (R)− 3(O).

The index of this sum will be omitted going forward for ease of reading.

Definition 9 (principal divisor). A principal divisor is a divisor D arising as (f)
for some rational function f .

Lemma 10.
∑
aP (P ) is a principal divisor iff

∑
aP = 0 and

∑
aPP = O.

Note that this last sum is of points as group elements.

Proof idea. → For f with (f) =
∑
aP (P ), we count the mulitplicities and note

that they balance with the multiplicity of O once we view f projectively (to
account for having O as a root).

← We construct f with (f) =
∑
aP (P ) such that its roots lie precisely at the

points P with multiplicities aP .
�

Definition 11. Define f evaluated at D =
∑
aP (P ) as f(D) :=

∏
f(P )aP .

We note that this is invariant under scaling f by a constant in c ∈ Fp2 since this
produces a factor

∏
caP = 1.

8
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Lemma 12 (Weil reciprocity). f((g)) = g((f)) for f and g with disjoint supports.

Definition 13 (Weil pairing). Fix n. For P,Q ∈ E(Fp2)[n] (abbreviated to E[n]),
define DP := n(P )−n(O) and DQ := n(Q)−n(O). Let fP and fQ have (fP ) = DP
and (fQ) = DQ. The Weil pairing e : F2

p2 → R is given by

e(P,Q) :=
fP (DQ)

fQ(DP )
.

Lemma 14. The Weil pairing has the following properties:

(1) It is well-defined.

(2) e is bilinear in both components.

(3) e’s range is actually µn, the nth roots of unity.

Proof idea. (1) Using alternate choices DP and fP , we note that they differ from
the original by (g) and ·g for some g; using Lemma 12, extraneous terms cancel.

(2) Because e is antisymmetric (e(P,Q) = e(Q,P )−1 by inspection), it suffices to
show for the first component. Using the evaluation of fQ at n(P +P ′)−n(O)
and fP+P ′ at DQ, and cancelling terms arising from possibly new mutual
zeroes/poles, we obtain the desired product.

(3) This follows by bilinearity e.g. in the first component (since the domain is in
the n-torsion).

�

Because of (3), we may equivalently view e as having codomain any cyclic group
of order n as we see fit.

Definition 15 (modified Weil pairing). Let ζ be a nontrivial cubic root of unity
in Fp2 . Define φ : F2

p2 → F2
p2 by (x, y) 7→ (ζx, y). The modified Weil pairing

ê : F2
p2 → µn is given by

ê(P,Q) = e(P, φ(Q)).

Lemma 16. The modified Weil pairing has the following properties:

(1) ζ exists and φ is an automorphism on E(Fp2).

(2) If P generates a subgroup of order n then ê(P, P ) also generates such a subgroup
(in the image group).

Proof idea. (1) ζ exists because 3 | p2 − 1, so cubing is 3-to-1 on Fp2 . Multiplica-
tion by scalar ζ is an injection; since there are no linear or quadratic x terms
in the specification of E, (ζx)3 = x3 and hence φ sends points on E to points
on E whose sum respects the group law.

(2) If not, then bilinearity would force P to generate a group of order (properly)
dividing n, a contradiction.

�

Further, it is clear that ê maintains the properties of e in Lemma 14. [9] gives
an efficient algorithm to compute e and ê. The reason that we elect to use ê over e
is because e(P, P ) = 1, an undesirable constraint for how the bilinear maps are used
obtain homomorphic properties.

9
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3 A Circular-Secure Encryption Scheme

The following scheme is due to Boneh, Halevi, Hamburg, and Ostrovsky in [4]. We
present here their scheme, with the extension (as per §4 of their paper) to the k-linear
assumption (as opposed to the 1-linear assumption, i.e. DDH).

3.1 Overview

The main functionality of this ElGamal-like scheme is to blind a ciphertext by
providing a long list of group elements (as opposed to only one in ElGamal), but
hiding the ciphertext behind an unknown selection of those elements (in expectation,
half of them). The particular selection of group elements is equivalent to the secret
key. This scheme is not only circular-secure but also KDM-secure with respect to
affine functions on the group used to encrypt; the underlying hardness assumption
is DDH. We instead show security under k-linearity.

3.2 Description

• Initialization. Given security parameter λ, choose prime p such that 1
p is

negligible in λ. Pick a group G of order p with generator g.

Set ` = d(k + 2) log2 pe, gi
R← G for i ∈ [`], and s

R← {0, 1}`. Define h =∏̀
i=1

g−sii . Let pk = (g1, . . . , g`, h) and sk = (gs1 , . . . , gs`).

Publish (p, g,G, pk).

• Encryption. For (unpublished) r
R← Zp, encrypt message m ∈ G as

(gr1, . . . , g
r
` , h

rm).

• Decryption. Given ciphertext C = (c1, . . . , c`, d) and secret key (e1, . . . , e`),
decrypt C to

d
∏̀
i=1

clog eii .

We call this scheme E .

3.3 Security

Throughout the security proof, we shall switch to considering additive groups, for
ease of notation.

3.3.1 Preliminary lemmata

Lemma 17. For c = (α1, β1, . . . , αk, βk, γ, δ)← Pk-Lin, let

Mc :=


αk γ

. .
. ...

α1 γ
β1 · · · βk δ
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with unspecified entries equal to 0. Then,

rankMc = k.

Note that Mc is always (k + 1) × (k + 1), so Lemma 17 says that Mc is not

full-rank. Observe also that in the case k = 1, Mc appears as

(
α1 γ
β1 δ

)
which is

precisely the (transpose of the) first block of Φ1 in the proof of Lemma 1 in [4].

Proof. We rewrite αi = gi = aig and βi = rigi = riaig for 1 6 i 6 k and γ = h = ag

and δ =
k∑
i=1

rih =
k∑
i=1

riag for g, gi ∈ G and a, ai, ri ∈ Zp. Write bi = a−1i ∈ Zp.

We note then that
k∑
i=1

abiβi = δ, so if ci is the ith column of Mc, from the left,

then
k∑
i=1

abici = ck+1, bounding the rank above by k; since the values drawn from

Pk-Lin are nonzero, we also bound the rank from below by k, by considering the αi
antidiagonal. �

Lemma 18 (matrix k-linearity). For integers k 6 r1 < r2 6 a, b and A : Ga×b →
{0, 1} a polynomial-time algorithm, where G is an additive group of order p, if

P (A, n) := P
[
A(Φ) = 1 | Φ R← rankn Ga×b

]
,

then there is a k-linear adversary B that runs in approximately the same time as A
with

|P (A, r2)− P (A, r1)| 6 (r2 − r1)k-LinAdv[B,G].

Proof. We proceed by hybrids on the distributions rankn(Ga×b) for n ∈ [r1, r2]∩N.

B is given a k-linear challenge (α1, β1, . . . , αk+1, βk+1). It picks n
R← [r1 + 1, r2]∩N

and constructs the a× b matrix

Φ′ :=

 Mc

γIn−(k+1)

Z


with Z := 0(a−n)×(b−n) and the unspecified entries equal to 0. B selects L

R←
GLa(Zp), R

R← GLb(Zp) and defines Φ := LΦ′R. If the k-linear challenge was
drawn from Pk-Lin then the first k rows (Mc) have rank k by Lemma 17 and so
rank Φ = n − 1 and Φ is uniform in rankn−1 Ga×b (since L and R were drawn
randomly); otherwise, the challenge was drawn from Rk-Lin and so rank Φ = n and
Φ is uniform in rankn Ga×b (since L and R were drawn randomly).

Applying this reasoning r2 − r1 times, i.e. stepping from r1 to r2, each time
obtaining from B’s advantage in the k-linearity challenge a term k-LinAdv[B,G],
we obtain the desired result. �

Definition 19 (k-universal hash family). A set H of hashes from X to Y is a
k-universal hash family if for all pairwise-distinct (x1, . . . , xk) ∈ Xk and all not-
necessarily-pairwise-distinct (y1, . . . , yk) ∈ Y k,

P[H(xi) = yi∀1 6 i 6 k] =
1

|Y |k

11
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over all H ← H.

Definition 20 (ρ-uniformity). A distribution D on X is ρ-uniform if∑
x∈X

∣∣∣∣D(x)− 1

|X |

∣∣∣∣ 6 ρ.
Lemma 21 (simplified leftover hash lemma). H is a 2-universal hash family from

finite sets X to Y . Then the distribution (H,H(x)) for H
R← H, x R← X is

√
|Y |
4|X| -

uniform on H× Y .

Proof. This follows immediately from the leftover hash lemma, first proved as Lemma
4.5.1 in [7]. �

Corollary 22. Let r
R← Z`q and s

R← {0, 1}`. Then (r> | –r · s)> is 1

q
1
2
(k+1)

-uniform

in Z`+1
q , and hence 1

q -uniform.

Proof. For the family of hashes parameterized using r ∈ Z`q given by Hr : s 7→ −r ·s,
this is 2-universal since the parameter space has sufficient dimension to make any
output of Hr equally likely. Thus, there is a bijection between pairs (Hr, Hr(s)) and
vectors (r>|Hr(s))>, so by Lemma 21, we conclude the desired bound. �

3.3.2 The scheme E1
We first describe a scheme on an additive group which otherwise operates similarly
to E ; accordingly, it is named E1.

• Initialization. Given security parameter λ, choose prime p such that 1
p is

negligible in λ. Pick a group G of order p with generator g.

Set ` = d(k + 2) log2 pe, s
R← {0, 1}`, Ψ

R← rank` G(`+1)×`, and Φ = (Ψ | –Ψ·s).
Let pk = Φ and sk = gs.

Publish (p, g,G, pk).

• Encryption. For (unpublished) r
R← Z

1×(`+1)
p , encrypt message µ ∈ G as the

(`+ 1)-vector
r · Φ + (01×`|µ).

• Decryption. Given ciphertext C> and secret key s, decrypt C> to

C · (s>|1)>.

We observe that decryption holds because (s>|1)> ⊥ pk, and that the only difference
between E (when formulated over an additive group as opposed to a multiplicative
group) and E1 is that a random combination of Φ’s rows is used rather than a random
multiple of the vector pk as in E .

12
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3.3.3 Properties of E1
The scheme E1 satisfies each of the following properties:

(a) (secret-key homomorphism) For invertible affine function f : Z`p → Z`p

sending x 7→ Ax + b, let Mf =

(
A b

01×` 1

)
. Observe that Mf (x>|1)> =

(f(x)>|1)>. For x ∈ {0, 1}` a secret key for Φ, if f(s) ∈ {0, 1}`, then Φ ·M−1f
is a public key for f(s), and Enc1(Φ, µ) ·M−1f encrypts µ with pk = Φ ·M−1f .

For instance, if fa : s 7→ s ⊕ a for the extension x ⊕ 0 as the identity and
x ⊕ 1 = 1 − x, then we can easily compute corresponding public keys and
ciphertexts for modifications via of a secret key by this extended XOR.

(b) (public-key blinding) For public key Φ and R
R← GL`+1(Zp), Φ ·R is a uni-

formly random public key for Φ’s secret key, and the distribution of ciphertexts
under Φ is the same as that under Φ ·R.

(c) (self-referential encryption) For secret key sk = s corresponding to public
key Φ, (gei|0) is an encryption of si under Φ.

(d) (plaintext homomorphism) For affine function f : Gn → G sending x 7→
a + β and public key Φ, if M ∈ Gn×(`+1) has ith row Enc(Φ, µi), then aM +
(01×`|b) is an encryption of f(m)

(e) (total blinding) For public key Φ and r
R← Z

1×(`+1)
p , rΦ + c is uniformly

random in G1×(`+1).

3.3.4 KDM-security of E1
Proposition 23. Any Cn`-KDM-adversary A against E1 has a k-linearity adversary
B running in about the same time for which

KDM
(n)
Cn`Adv[A, E1] 6 (2`− 1)k-LinAdv[B,G] +

1

q
.

Proof. We shall demonstrate the result through a series of games. Let

wi := P[A wins game i].

Game 0 is the Cn`-KDM-security game from §2.2.2, and so
∣∣w0 − 1

2

∣∣ = KDM
(n)
Cn`Adv[A, E1].

Game 1 is a modification of the Cn`-KDM-security game, in the following way.
The challenger D1 generates (pk, sk) = (Φ, s) but never uses s for the rest of the

game, essentially “forgetting” it. Instead, picking ai
R← {0, 1}` for 1 6 i 6 n,

D1 sends these to the adversary, which is consistent with the actual secret keys
ski = (s ⊕ ai)g—but does not ever actually use s. Then, D1 uses (a) and (b) to
generate uniformly random public keys pki for secret keys ski using Φ,ai.

We denote by v the vector (sk>1 | · · · |sk>n )>. For affine function f ∈ Cn`, to
compute Enc(pki, f(v)), we do the following: for each 1 6 j 6 n, D1 uses (c) to
generate Enc(pkj , µ) for each µ ∈ skj and (a) to transform it into an encryption
Enc(pki, µ). Combining these into a matrix of encryptions of each element of v
under pki. Using (d), D1 generates an encryption c← Enc(pki, f(v)); it then sends

A, for r
R← Z

1×(`+1)
p , rpki + f(v). Since the distributions are identical to those in

the previous game, we conclude that w1 = w0.

13
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Game 2 is a modification of Game 1, in the following way. Ψ
R← rank1 G(`+1)×`

and Φ := (Ψ | –Ψs), so rank Ψ = 1 rather than `. By Lemma 18, there is a k-linearity
adversary B running in about the same time as A with

|w2 − w1| 6 (`− 1)k-LinAdv[B,G].

Ψ can be computed by choosing random nonzero ψ
R← G`+1, r

R← Z`p and setting

Ψ := ψ×r. By Corollary 22, Φ = ψ×(r> | –r·s)> is 1
q -uniform in rank1 G(`+1)×(`+1).

Game 3 replaces Φ in Game 2 with Φ
R← rank1 G(`+1)×(`+1) so by 1

q -uniformity,

|w3 − w2| 6 1
q .

Game 4 replaces Φ in Game 3 with Φ
R← rank`+1 G(`+1)×(`+1). By (e), the

resulting ciphertexts are uniformly random, independently of D1’s choice of b ←
{0, 1}, so w4 = 1

2 . By Lemma 18, there is a k-linearity adversary B running in
about the same time as A with |w4 − w3| 6 ` · k-LinAdv[B,G].

Combining the outcomes of each game, we find precisely the desired bound. �

3.3.5 KDM-security of E
Proposition 24. Any Cn`-KDM-adversary A against E has a k-linearity adversary
B1 running in about the same time and a Cn`-KDM adversary B2 also running in
about the same time for which

KDM
(n)
Cn`Adv[A, E ] 6 (`− 1)k-LinAdv[B1,G] + KDM

(n)
Cn`Adv[B2, E1].

Proof. We shall demonstrate the result through a series of games. Let wi :=
P[A wins game i].

Game 0 is the Cn`-KDM-security game from §2.2.2, and so
∣∣w0 − 1

2

∣∣ = KDM
(n)
Cn`Adv[A, E ].

Game 1 is a modification of the Cn`-KDM-security game, in the following way.

The challenger D generates Ψ0
R← rank1 G(`+1)×` and secret keys si

R← {0, 1}` for

1 6 i 6 n. Corresponding public keys are generated from Li
R← GL`+1(Zp) and

Ri
R← GL`(Zp), using Ψi := LiΨ0Ri and pki := (Ψi | –Ψisi). Then, for each i, D

selects a E public key as any nonzero row of pki. (It is a valid public key for E by
its randomness and orthogonality to si.) This row ρi is send to A. However, when

responding to A’s queries, D just uses Φi and E1, outputting for R
R← Z

n×(`+1)
q the

ciphertext RΦi + (0|m) for message m. Because rank Φi = 1, each row is a scalar
multiple of the others, so the distributions of public keys, secret keys and ciphertexts
between Games 0 and 1 are identical. Therefore w1 = w0.

Game 2 is a modification of Game 1 with Ψ0
R← rank` G(`+1)×`, yielding valid

E1 public key Φ. By Lemma 18, there is a k-linearity adversary B1 running in about
the same time as A for which |w2 − w1| 6 (`−1)k-LinAdv[B1,G]; because A attacks
E1 but only being able to see one row of the public keys (an attack that we name

B2),
∣∣w2 − 1

2

∣∣ = KDM
(n)
Cn`Adv[B2, E1].

Combining the outcomes of each game, we find precisely the desired bound. �

Combining Proposition 24 with Proposition 23 proves the security of E .
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4 A Semantically-Secure Scheme to Evaluate 2-
DNF Formulas

The following scheme is due to Boneh, Goh, and Nissim in [3].

4.1 Overview

The main functionality of this ElGamal-like scheme is to blind a ciphertext with
a uniformly random element in a subgroup of a semiprime-order cyclic group, in
contrast to ElGamal, which blinds with a uniformly random element in a subgroup
of a prime-order group. The difficulty of discerning the “component” of the cipher-
text lying in this subgroup—the subgroup decision problem—underlies the scheme’s
security.

4.2 Description

• Initialization. Given security parameter λ, generate λ-bit primes q1, q2 and
compute n := q1q2. Generate groups G,G′ of order n with k-linear map ê

sending k-tuples of elements of G to G′. Pick g, u
R← G and set h := uq2 . The

message space is M = [T ] for some T chosen to make decryption practical.

The tuple (n,G,G′, ê, g, h) is public knowledge and constitutes the public key.
The secret key is q1.

• Encryption. For (unpublished) r
R← Zp, encrypt message m ∈M as

gmhr.

• Decryption. Given ciphertext C, compute Cq1 = gmq1uq1q2r = (gq1)m. (Pre)compute
gq1 , and using Pollard’s lambda algorithm, compute m as loggq1 C

q1 .

We call this scheme Ẽ .
In [3], this is accomplished for k = 2 by finding the least m such that 3mn − 1

is prime (this exists, e.g. by Dirichlet’s theorem); name it p, letting G be the
subgroup of E(Fp) of order n, where E : y2 = x3 + 1, and letting G′ be the
subgroup of F×p2 of order n, where bilinear map ê is the modified Weil pairing. This

setup (n,G,G′, ê, g, h) satisfies the subgroup decision problem.

4.3 k-DNF formula evaluation

In terms of logic, a k-disjunctive normal form formula (k-DNF formula) takes
the form

n∨
i=1

ni∧
j=1

Xij

for boolean variables Xij where ni ∈ [k] for each i. (a ∧ ¬b) ∨ c ∨ (¬d ∧ b) is an
example of a 2-DNF formula on boolean variables. Viewing ∧ as addition and ∨ as
multiplication, on (modular) integers, a k-DNF formula takes the form

n∑
i=1

ni∏
j=1

Xij

15
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again with ni ∈ [k]. ab + c + db is an example of a 2-DNF formula on (modular)
integer variables.

To ensure that the above scheme can handle k-DNF formulas, we demonstrate
that it can handle arbitrary additions and exactly one multiplication, so that the
sum of multiplied terms can be made to match any k-DNF formula.

Addition (pre-multiplication) is multiplication of ciphertexts with rerandomiza-

tion using r
R← Zn:

Enc(pk,m1)+Enc(pk,m2) = (gm1hr1)(gm2hr2)hr = gm1+m2hr1+r2+r = Enc(pk,m1+m2).

The sum of uniformly randomly chosen values in Zn is itself uniformly random, so
this encryption of m1 +m2 is also random.

Multiplication is mapping of ciphertexts under ê with rerandomization using

r
R← Zn:

Enc(pk,m1) · · · · · Enc(pk,mk) = ê(gm1hr1 , . . . , gmkhrk)hr1

= expg1

(
k∏
i=1

mi

)
exph1

r +

k∑
d=1

∑
I⊂d[k]

(aq2)d−1
∏
i∈I

ri
∏
j 6∈I

mj


where h = gaq2 for some a ∈ Zn, g1 := ê(g, g) and h1 := ê(g, . . . , g, h). In the case
of k = 2 and ê as in §2.4, this uses the properties of ê in Lemma 14 and Lemma 16.
The second line of the above equations then becomes gm1m2

1 hm1r2+r2m1+aq2r1r2+r
1 .

The randomness of ri and r leads to h1 having uniformly random exponent (whether
for k = 2 or k > 2).

Addition (post-multiplication) is still multiplication of ciphertexts with reran-

domization using r
R← Zn:

Enc(pk,m1)+Enc(pk,m2) = (gm1
1 hr11 )(gm2

1 hr21 )hr1 = gm1+m2
1 hr1+r2+r1 = Enc(pk,m1+m2).

The sum of uniformly randomly chosen values in Zn is itself uniformly random, so
this encryption of m1 +m2 is also random.

4.4 Security

We shall show that if the initialization step satisfies the subgroup addition assump-
tion, then the scheme is semantically secure. Suppose towards contradiction that B
is an adversary that running in polynomial in λ time that breaks Ẽ ’s semantic secu-
rity, i.e. B wins the semantic security game with nonnegligible advantage. We shall
use B to construct A, running in about the same time, that breaks the supposed
subgroup hardness of Ẽ ’s initialization procedure.
A is given (n,G,G′, ê, x) with the task to determine whether or not xq1 = 1 (out-

putting 1 if so, 0 otherwise). Treating x as h, A gives B the tuple (n,G,G′, ê, g, x),

which returns m0,m1 ∈ M. A draws b
R← {0, 1} and returns gmbxr to B, which

guesses b′ ∈ {0, 1}. If B is correct, A outputs 1 in the subgroup decision game,
and otherwise A outputs 0; this is because if B is correct then x is uniform in the
subgroup of order q1 in G, and so A obtains B’s same nonnegligible advantage. This
suffices to prove the security of this scheme.
G yielding k-linear map ê is a priori no less vulnerable to a subgroup decisions

adversary since n’s factorization remains obscured. Therefore, a large part of the
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difficulty is to find such maps in the first place. [5] discusses some of the difficulties
in this task for the case n > 2.

5 A proposed KDM-secure scheme to evaluate k-
DNF formulas

5.1 Overview

The general idea of this scheme is to exploit the encryption idea of [4]—which
is convenient due to its strong security—and to exploit the homomorphism and
decryption ideas of [3]. This is done by transforming the hrm term of [4] into hr+m.
This admits convenient addition in the obvious way and multiplication via k-linear
maps.

5.2 Description

• Initialization. Given security parameter λ, choose prime p such that 1
p is

negligible in λ. Pick a group G of order p and another group G′ such that there

exists a k-linear map L : Gk → G′. Set ` = d(k + 2) log pe, sk = s
R← {0, 1}`.

pk = (g1, . . . , g`, h) for gi random elements of G, and h :=
∏̀
i=1

gsii =
∏

i:si=1

gi.

The tuple (p, `, L,G,G′, pk) is public knowledge.

• Encryption. For (unpublished) r
R← Zp, encrypt message m ∈ M as the

(`+ 1)-vector
(gr1, . . . , g

r
` , h

r+m).

• Decryption. Given ciphertext C, assume it is a matrix with dimensions

(`+ 1)× · · · × (`+ 1)︸ ︷︷ ︸
k factors

and if instead C instead given in the form (gr1, . . . , g
r
` , h

r+m) then consider it
as

C · Enc(pk, 1) · · · · · Enc(pk, 1)︸ ︷︷ ︸
k − 1 factors

.

Let the ith of of those multiplicands be written as (ai,1, · · · , ai,`+1), so c’s
entries are bx = L(a1,x1

, . . . , ak,xk) where x ∈ [`+ 1]k. Let

Sd = {bx | x ∈ [`+ 1]k, xi = `+ 1 for exactly d values of i, if xi 6= `+ 1 then sxi = 1}.

Then, compute
k∏
d=0

∏
b∈Sd

b(−1)
k+d

. (25)

Following [3], having chosenM such that a search is practical e.g. via Pollard’s
lambda method, we recover m.
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As mentioned earlier, in [3], this is accomplished for k = 2 by finding the least
m such that 3mn − 1 is prime (this exists, e.g. by Dirichlet’s theorem); name it p,
letting G be the subgroup of E(Fp) of order n, where E : y2 = x3 + 1, and letting
G′ be the subgroup of F×p2 of order n, where bilinear map ê is the modified Weil
pairing.

5.3 Justification of Decryption

We begin by proving a lemma that will render the justification of decryption imme-
diate.

Lemma 26. The following algebraic identity holds:

k∏
i=1

mi =

k∑
d=0

∑
I⊂d[k]

(−1)k+d
∏
i∈I

(ri +mi)
∏
j 6∈I

rj . (27)

Proof. Fix I0 ( [k]. Let MI0 :=
∏
i∈I0

mi

∏
j 6∈I0

rj . We note that in the expansion of

pI :=
∏
i∈I

(ri + mi)
∏
j 6∈I

rj , coefpI MI0 =

{
1 I ⊇ I0
0 else

. We wish to use this to show

that
∑
I⊂[k]

(−1)k+#I coefpI MI0 = 0. As it is clear that coefRHSM[k] = 1, this will

complete the proof. We observe that
∑
I⊂[k]

(−1)k+#I coefpI MI0 =
∑

I0⊆I([k]

(−1)k+#I .

Suppose #I = #I0 + n. The number of such sets I equals
(
k−#I0
n

)
, and so we

actually have (−1)k+#I0
k−#I0∑
n=0

(−1)n
(
k−#I0
n

)
= 0 by the combinatorial identity that

the alternating sum along a row of Pascal’s triangle vanishes. �

We now observe that the right-hand side of the equation in (27) is precisely the
exponent of each term L(ga1 , . . . , gak) for which sai = 1 for 1 6 i 6 k in (25).

5.4 Homomorphism

Addition (pre-multiplication) is componentwise multiplication with rerandomization

using r
R← Zn:

Enc(pk,m1)+Enc(pk,m2) = (gr1+r2+r1 , · · · , gr1+r2+r` , hr1+r2+r+m1+m2) = Enc(pk,m1+m2).

The sum of uniformly randomly chosen values in Zp is itself uniformly random, so
this encryption of m1 +m2 is also random.

Multiplication is a mapping of all combinations under the bilinear map L : Gk →
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G′ to a k-fold tensor, e.g. for k = 2:

Enc(pk,m1) · Enc(pk,m2) =


L(gr11 , g

r2
1 ) · · · L(gr11 , g

r2
` ) L(gr11 , h

r2+m2)
...

. . .
...

L(gr1` , g
r2
1 ) L(gr1` , g

r2
` ) L(gr1` , h

r2+m2)
L(hr1+m1 , gr21 ) · · · L(hr1+m1 , gr2` ) L(hr1+m1 , hr2+m2)



=


L(g1, g1)r1r2 · · · L(g1, g`)

r1r2 L(g1, h)r1(r2+m2)

...
. . .

...
L(g`, g1)r1r2 L(g`, g`)

r1r2 L(g`, h)r1(r2+m2)

L(h, g1)(r1+m1)r2 · · · L(h, g`)
(r1+m1)r2 L(h, h)(r1+m1)(r2+m2)


Addition (post-multiplication) is entrywise multiplication in the (`+ 1)× (`+ 1)

matrix of elements of G′ corresponding to encryption using the bilinear map. This
is valid because each entry z of the entrywise product is of the form xy, and so

k∏
d=0

∏
z∈Sd

z(−1)
k+d

=

k∏
d=0

∏
i∈I

z
(−1)k+d
i

=

k∏
d=0

∏
i∈Id

(xiyi)
(−1)k+d

=

(
k∏
d=0

∏
i∈Id

x
(−1)k+d
i

)(
k∏
d=0

∏
i∈Id

y
(−1)k+d
i

)

=

 k∏
d=0

∏
x∈S′

d

x(−1)
k+d

 k∏
d=0

∏
y∈S′′

d

y(−1)
k+d


where the Sd correspond to those sets in the product, S′d, S

′′
d to those sets in each

multiplicand, and Id to the indices of matrix elements giving rise to Sd.
After performing any of these homomorphic operations, we re-randomize by mul-

tiplying each entry of the form ab (where a is known, b may not be known) by ar

for randomly chosen r. e.g., for multiplication in the case k = 2, the final matrix
would be

L(g1, g1)r1r2+r · · · L(g1, g`)
r1r2+r L(g1, h)r1(r2+m2)+r

...
. . .

...
L(g`, g1)r1r2+r L(g`, g`)

r1r2+r L(g`, h)r1(r2+m2)+r

L(h, g1)(r1+m1)r2+r · · · L(h, g`)
(r1+m1)r2+r L(h, h)(r1+m1)(r2+m2)+r

 .

5.5 Security

We shall show that the above scheme E ′ is n-way KDM-secure with respect to
Cn`. Suppose towards contradiction that adversary A′ has nonnegligible advan-

tage KDMAdv
(n)
Cn` [A

′, E ′](λ) and achieves this by sending the challenger the pairs
(ik, g

′
k) for 1 6 k 6 N , 1 6 ik 6 n and gk ∈ Cn` (not to be confused with the

selector functions fk). We now construct an adversary A for E with the same ad-
vantage. A constructs the functions gk : Gn` → G given by gk(x1, . . . , xn`) =
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exph(g′k(log x1, . . . , log xn`)). Then, A’s queries are of the form (ik, gk), and receives
the outputs ck from the E-challenger. We note that these outputs correspond pre-
cisely to original encryptions with the functions g′k if the challenger chose b = 0 and
0 (corresponding to the element 1 ∈ G) otherwise. A then gives the challenger’s
outputs to A′, which outputs b′, and so A also outputs b′ having the same (nonneg-
ligible) advantage as A′, a violation of the hardness assumptions. Thus the desired
security follows.

6 Future work

One substantial drawback to this scheme is that ciphertext sizes (after application

of the k-linear map) are exponential in k, namely d(k + 2) log pek. [4] provides one
means to shorten ciphertext sizes in its §4, but only by a factor of O(log log p)k—
making ciphertext lengths still ω(kk). One possible future route would be to find a
way to keep ciphertexts at size subexponential in k, perhaps even linear or constant.

Another more ambitious objective is to use this idea to generate fully homomor-
phic encryption. This would likely only be possible after reducing ciphertext sizes
to a constant in k; then, depending on the (circuit) complexity of the decryption
method, it might be possible to pass that decryption circuit through the encryption
circuit, effectively bootstrapping the scheme into a fully homomorphic encryption.

Of course, a main hurdle to all of this is in finding k-linear maps to begin with,
for k > 2. A discussion of this can be found in [5], where a high degree of difficulty
is posited for this task. Thus this is a question that must first be resolved before
the scheme here may be brought to fruition.
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