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1 Review
As usual we consider the standard nonparametric regression setting. Specifically, given a regression func-
tion f0 : Rd → R and samples {(xi, Yi)}ni=1 from:

Yi = f0(xi) + ϵi Eϵi = 0, σ2 := Eϵ2i < ∞ (1)

for fixed covariates xi (or equivalently, after conditioning upon the covariates), the goal was to find a good
estimator f̂ of f0. Namely, we wanted to find an f̂ that:

(i) Fit the training data well:
∑n

i=1(Yi − f̂(xi))
2 is small.

(ii) Is "smooth" so as to reduce the variance of our estimator.

This motivated the following variational problem:

f̂ = argmin
f∈W

1

n

n∑
i=1

(Yi − f(xi))
2 + λ

∑
|α|=m

(
m

α

)∫
Rd

∣∣Dαf |2 dx (2)

where the sum is over all multi-indices α of degree m, the minimization is over the Sobolev space W :=
W 2,m(Rd) with smoothness parameter m (the largest class of functions for which the objective is well-
defined), and λ > 0 is some regularization hyperparameter. Intuitively, the first term in (2) penalizes a
poor fit while the second term penalizes a lack of smoothness, and λ determines the trade-off between
these two aims.

We saw that, as a consequence of the Sobolev embedding theorem, the variational problem (2) had a solu-
tion only when 2m > d and was ill-posed otherwise. From now on, we consider only the 2m > d case. For
d = 1 we obtained a true spline, the smoothing spline, but for d = m = 2 the solution is of the form:

f̂(x) = a+ bTx+

n∑
j=1

βjη(||x− xj ||2) (3)

where η(r) = − 1
16π r

2 ln(r2) is a radial basis function1 and the coefficients are subject to the constraints∑
βj =

∑
βjxj = 0. Note that the solution (3) consists of two parts: a linear part a+ bTx and a radial part

η(||x− xj ||2). The former is natural because any linear term has zero roughness penalty as it vanishes under
the second derivative while the latter is natural because both it and the roughness penalty are invariant
under rotations of the coordinate system. Again the benefit of this is that it reduced the intractable infi-
nite dimensional optimization problem (2) into a finite-dimensional regression problem on the coefficients
(a, b, βj).

1η(||x− x0||2) is a fundamental solution to the biharmonic equations ∆2f = 0.
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2 Exploring New Loss Functions
The squared loss ρ(z) := z2 on the residuals in (2) is nice for many reasons: its simplicity makes it very
theoretically tractable, it is computationally efficient, and it has been studied in many settings within the
statistical literature. Nonetheless, it has some major drawbacks. For one, it is well-known such a loss is
sensitive to outliers. This will be especially problematic if the errors ϵi have heavier tails than the tradi-
tional Gaussian tails for ϵi ∼ N(0, σ2). Thus it may be preferable to have a loss function that increases
more gradually as |x| → ∞, especially if we wish to consider different error models. Secondly, squared loss
is symmetric. In most practical applications it is often more costly to overestimate than underestimate
(or vice versa), necessitating an asymmetric loss function. Hence it is worthwhile extending our thin plate
splines to other loss functions. This motivates the new variational problem where we replace the squared
loss by a general loss function ρ : R → R≥0:

f̂ = argmin
f∈W

1

n

n∑
i=1

ρ(Yi − f(xi)) + λ
∑

|α|=m

(
m

α

)∫
Rd

∣∣Dαf |2 dx. (4)

For compactness of notation, we will denote the objective of (4) as Ln(f) and the smoothness penalty
term as I2m(f). Our analysis of this problem below follows the work of Kalogridis (2022) which calls the
solutions to (4) M-type thin plate splines (MTPS). Of course, to hope to say anything in general about
problem (4) we must make some regularity assumptions on the loss function.

Assumptions

(A1) ρ is convex and Lipschitz.

(A2) There exists a constant κ > 0 so that if |t| ≤ κ:

inf
n

min
i≤n

Eϵ [ρ(t+ ϵi)− ρ(ϵi)] ≥ κt2

(A3) The covariates {xi}∞i=1 are contained in a "nice" set.

Under these assumptions, we will outline the work of Kalogridis (2022) which develops a rate of conver-
gence for the estimator (4) and shows that such an estimator must take a form analogous to one of (3).
Let’s first spend a moment trying to understand these assumptions.

Convexity is a natural assumption on the loss function because it makes (4) a convex optimization prob-
lem, and hence will at least be somewhat tractable to solve. Moreover, we will see it guarantees us the
existence of a solution to (4). The Lipschitz assumption is mostly just to aid in the proof, but is not en-
tirely harmless either: for one, squared error loss is not Lipschutz. Nonetheless, many other loss functions
satisfy this property, and it is natural to want some level of continuity in a loss function.

Assumption (A2) is saying we want sufficiently fast growth of the loss function near zero. For the squared
error loss ρ(x) = x2 this condition is naturally satisfied:

Eϵ((t+ ϵi)
2 − ϵ2i ) = σ2t2

Hence (A2) is essentially saying the function grows quadratically (or faster) at least locally around zero.
This will be important in proving the rate of convergence of the MTPS to the true f0. If ρ grows too
slowly near zero it will be difficult for the goodness of fit measure n−1

∑
ρ(Yi − f(xi)) to differentiate

between f0 and other functions f which lie close to f0 at the covariates xi. Hence the roughness penalty
may begin to dominate too much, interfering with the desired convergence.

Lastly, (A3) just rules of degenerate choices of the covariates xi by assuming some level of uniformity and
regularity of their spacings. Essentially, it says that any newly sampled covariate x0 will be close to one
of the old covariates most of the time. As our functions are pretty smooth, this the performance at the
new point will not be too much worse than at the covariates xi. This will be essential for our development
of the rate of convergence as it allows us to pass from the simpler setting of studying ||f̂ − f0||L2(Pn) to
||f̂ − f0||L2(P) which might be of more interest.
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2.1 Existence of Solutions
In the original thin plate spline (2) one obstacle was that the penalty term Im(f) has a nontrivial null
space: Im(p) = 0 for any polynomial p : Rd → R with total degree less than m. This can be problematic
because we can replace any f ∈ W by f + p without changing our roughness penalty. Namely, we can always
"wiggle" our fit to the data by a polynomial with no extra cost in the penalty.

This could be a problem when it comes to existence of a solution for two reasons. Firstly, if we could con-
tinuously tweak our function f by a series of polynomials to get a better and better fit, we may never
achieve the infimum in (4). Similarly, given two different functions f, g it might be possible to find differ-
ent polynomials p1, p2 to perturb these functions and make f + p1, g + p2 close. It turns out that these two
problems are essentially the only things that can go wrong. Namely, given a basis ϕ1, ..., ϕM for the vector
space polynomials of degree less than m, a space of dimension M :=

(
m+d−1

d

)
, then as long as:

min
α∈RM

∣∣∣∣∣∣∣∣Y −
M∑
j=1

αjϕj(x)

∣∣∣∣∣∣∣∣
2

has a unique minimizer, we have a unique solution to (2). This is basically saying as long as the polyno-
mial regression problem is well-posed, the infinite dimensional problem is as well. In the same vein, for
general loss function ρ we obtain:

Theorem 1 (Existence of MTPS). If the optimization problem:

min
α∈RM

n∑
i=1

ρ

Yi −
M∑
j=1

αjϕj(xi)


has a unique solution, then (4) has a minimizer in W .

The justification for this will become clear in the following section. There, we will see the optimal solu-
tion will decompose into two parts: a polynomial fit (a fit over the nullspace) and an RKHS fit (a fit over
everything else). The RKHS part always has a unique solution, so the only problems can occur in the
polynomial fit.

2.2 Representer Theorem
Due to the infinite-dimensional nature of the optimization problem (4), the existence guarantee of theorem
1 is of little practical purpose. As with the standard TPS, our real saving grace will be the fact that we
can show the solution must take a particular form, and this form can be found by regression over a finite-
dimensional parameter space.

Theorem 2 (Representer Theorem). There exists a minimizer of Ln(f) of the form:

f̂(x) =

n∑
i=1

γiηm,d(||x− xi||2) +
M∑
j=1

δjϕj(x) (5)

where the coefficients are subject to the constraints:

ΦT γ :=


ϕ1(x1) ϕ2(x1) . . . ϕM (x1)
ϕ1(x2) ϕ2(x2) . . . ϕM (x2)

...
. . .

...
ϕ1(xn) ϕ2(xn) . . . ϕM (xn)


T

γ = 0
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Namely, analogous to (3), the solution must be the sum of two parts: a radial part and a polynomial. Here
ηm,d(||x− xi||) are fundamental solutions to the m-iterated Laplacian ∆m which take the form:

ηm,d(r) ∝

{
x2m−d log(x) d is even
x2m−d d is odd

The condition on γ merely states γ is perpendicular to the space of all polynomial fits, namely vectors of
the form [p(x1), ..., p(xn)] for some polynomial p of degree less than m. The proof is very similar to our
proof of the representer theorem for the smoothing spline. In particular, it can be shown that given any
other g ∈ W we can find an f̂ of the form (5) which can interpolate (xi, g(xi)) and which is at least as
smooth as g.

Let’s try to make sense of where this representation is coming from. The inclusion of the polynomial is
obvious: any polynomial of degree less than m has zero roughness penalty, and hence we can include it
in our fit basically for free. To see where the ηm,d are coming from observe that a few applications of
integration by parts yields:

I2m(f) :=
∑

|α|=m

(
m

α

)∫
Rd

|Dαf |2 =

∫
Rd

f∆mf (6)

Hence we can view the roughness penalty as the action of a seminorm induced by the semi-inner product:

⟨f, g⟩ =
∑

|α|=m

(
m

α

)∫
Rd

DαfDαg =

∫
Rd

f∆mg

If g is a fundamental solution to ∆m, namely if ∆mg = δx then we have ⟨f, g⟩ =
∫
fδx = f(x). Hence ⟨·, g⟩

produces exactly the "evaluation at x" linear functional. In particular, g is playing exactly the same role
as the reproducing kernel k(·, x) in an RKHS. Recall from RKHS theory that given a RKHS H we have
the analogous representation theorem for squared error loss:

f̂ = argmin
f∈H

1

n

n∑
i=1

(Yi − f(xi))
2
+ λ||f ||2H → f̂ =

n∑
i=1

βik(·, xi) (7)

Thus Theorem 2 is essentially saying our fit breaks down into two parts: a fit on the nullspace of our semi-
norm Im(f), namely a polynomial fit, and an RKHS fit on the orthogonal complement using the above
(semi) inner product2.

Since ηm,d(||x− xi||) is a fundamental solution to the iterated Laplacian ∆m and ∆mϕ = 0 for any polyno-
mial of degree less than m, using (6) we can see f̂ of the form (5) has penalty:

Im(f̂) =

∫  n∑
i=1

γiηm,d(||x− xi||2) +
M∑
j=1

δjϕj(x)

 ·

(
n∑

k=1

γkδxk

)

=

n∑
i,j=1

γiγjηm,d(||xj − xi||2)

where the polynomial term vanishes due to the ΦT γ = 0 condition. Hence the optimization problem (4)
becomes a form of generalized ridge regression where the standard squared-error loss has been replaced by
our new convex loss ρ:

lim
γ∈Rn,δ∈RM

[
1

n

n∑
i=1

ρ
(
Yi − f̂(xi)

)
+ λγTΩγ

]
s.t. ΦT γ = 0

2There are some technical details I have left out on how this decomposition is done. More details can be found here or in
section 2 of Beatson et al. (2018).
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where Ωij = ηm,d(||xi − xj ||2). Hence our problem reduces to a generalized form of ridge regression. We
can convert this to an unconstrained problem simply by replacing γ by Qβ where the columns of Q form a
basis for Null(ΦT ). The above is a common convex optimization problem which can be easily solved by a
variety of methods.

2.3 Rate of Convergence
Now that we know a solution exists, the next natural question is how well such a solution will approximate
the true mean function f0. We hope that as the amount of data we gather grows, our MTPS eventually
gets close to f0. In this section, we exactly quantify the rate of this convergence.

Theorem 3 (Rate of Convergence MTPS). If we choose penalty parameter λ ∼ n− 2m
2m+d then there exists

a sequence f̂n of MTPS which are minimizers to (4) and satisfy:

||f̂n − f0||L2(Pn) = OP (n
− 2m

2m+d ) and Im(f̂n) = OP (1).

Moreover, the same rate is achieved under L2(P) under assumption (A3).

The proper choice of λ comes from attempting to balance the asymptotic variance and bias of our given
estimators. Note that the rate gets better as we increase our smoothness parameter m, but this comes
at a computational cost: the number of parameters in (5) grows with M ∼ (m + d)d. Moreover, recall
our representer theorem says that the MTPS is essentially a polynomial of degree at most m plus some
radial part. Hence as we increase m, in a sense we are allowing our estimator to be less smooth as we are
allowing for a high degree polynomial to be included in the fit.

Furthermore, just as with kNN and kernel smoothing, this rate too suffers from the curse of dimensionality.
Namely, if we desire an error of at most ϵ than by setting n−2m/(2m+d) = ϵ we see we need a sample
number on the order of (1/ϵ)1+d/2m, exponentially large in the desired error rate.

Let’s outline a few ideas from the proof. This is where our assumptions (A2) and (A3) will start to come
into play. Let Mn(f) := n−1

∑
ρ(Yi − f(xi)):

1. Interpolation: Given an optimal solution f̂n to (4) we define f̃ := αf̂n+(1−α)f0 for α ∈ (0, 1) to be
chosen later. Convexity of our optimization problem Ln and optimality of f̂n imply Ln(f̃) ≤ Ln(f0)
no matter the choice of α.

2. Localize around f0: choose α small enough so ||f̃ − f0||L2(Pn) is small. Note that by definition:

||f̃ − f0||L2(Pn) = α||f̂n − f0||L2(Pn)

Hence by controlling the left hand side, we also get bounds on the right which is what we desire. In
particular, we will try to bound both sides of the following in terms of ||f̃ − f0||L2(Pn):

Ln(f̃) + E(Mn(f̃)−Mn(f0)) ≤ +Ln(f0) + E(Mn(f̃)−Mn(f0))

→ E(Mn(f̃)−Mn(f0)) + I2m(f̃) ≤ [Mn(f0)− EMn(f0)]− [Mn(f̃)− EMn(f̃)] + I2m(f0)

We use (A2) to lowerbound the left hand side. Namely because EYi = f0(xi) then Yi − f0(xi) is
mostly close to zero. Hence if ||f̃ − f0||L2(Pn) is large, due to the growth of ρ near zero this implies
Mn(f̃)−Mn(f0) is likely large as well.

3. Entropy: For the upperbound we need to control the size of the set of "good estimators", those
with good fit (in squared error sense) and good smoothness: {f ∈ W : ||f ||L2(Pn) ≤ 1, Im(f) ≤ R}.
We need this to get a better idea of what Mn(f̃) looks like.

4. Approximation: Here we use (A3) to extend from the L2(Pn) to L2(P). Basically, as (A3) tells us
a new point x0 won’t be too far away from our covariates xi most of the time and as our functions
are pretty smooth, we can discretize our space at the covariates xi without much loss. Namely, ||f̂ −
f0||L2(P) is well-approximated by ||f̂ − f0||L2(Pn).
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3 A New Domain: Splines on the Sphere
For some applications it is more natural to have a domain different from some open subspace of Rd. For
example, if the underlying function f0 : R → R is periodic it is natural to impose a further restriction on
the standard smoothing spline: it and its derivatives ought to be equal at the two endpoints. Since any
periodic function f0 : R → R can be viewed equivalently as a function f0 : S1 → R defined on the circle, we
can view this problem as trying to fit a spline on circle. More generally, we might be interested in fitting a
thin plate spline on the hypersphere Sd−1. To give a concrete example, if one is trying to predict the value
of some meteorological quantity across all of Earth, it is convenient to work on the domain S2 to account
for the fact that we expect continuity in these quantities as we circumnavigate the globe.

Golomb (1968) covers the S1 case while Wahba (1981) extends this to S2 and provides an explicit (but
not closed form) solution for the associated reproducing kernels, and laid the foundation for much of the
following work. More recent work by Beatson et al. (2018) gives the closed form expression in Sd−1 via a
recurrence for these kernels. In this section, we will outline some of this work.

Let’s start with some motivation, starting on the circle S1 ⊆ R2. We would like to find a way of making
sense of our roughness penalty I2(f) on this new domain. Since I2 is defined in terms of cartesian coordi-
nates, our first idea might be to try to change to polar coordinates which are more natural for working on
the circle. To make the outcome of this transformation more clear, let’s manipulate I2 a bit. As we have
noted before, a few applications of integration by parts yields:

I22 (f) :=

∫
R2

(
f2
xx + 2f2

xy + f2
yy

)
=

∫
R2

f∆2f dx dy

where ∆ is the Laplace operator. Rewriting ∆ in polar coordinates gives:

∆f = frr +
1

r
fr +

1

r2
fθθ

If we want to consider functions f on S1, then we can just think of choosing r = 1 and dropping the
dependence of r (the fr, frr terms) from the Laplacian. Hence our roughness penalty becomes I2(f) =∫ 2π

0
f(θ)f (4)(θ) dθ. We can repeat the above argument for general m, d to get that:

Im(f) = (−1)m
∫
Rd

f∆mf dx1 ... dxd (8)

and so understanding the roughness penalty on Sd−1 just boils down to rewriting the Laplacian ∆ in
terms of the relevant spherical coordinates and dropping all dependencies on the radius r. This yields the
Laplace-Beltrami operator ∆∗ which for the sphere S2 is of the form:

∆∗f =
1

sin2(θ)
fϕϕ +

1

sin(θ)
(sin(θ)f)θ

Now that we have our roughness penalty sorted out, we can determine the space of functions we would
like to optimize over to find our thin plate spline. Of course the natural choice is the largest space of func-
tions for which the penalty (8) is well-defined. As we will see below, determining the proper class will rely
heavily on the natural connection between the Fourier series and periodic functions as well as its higher
dimensional analogous. We start by using our previous work as a motivating example for what is to come.

Recall that above we saw the solutions (2) were of the form:

f̂(x) := p(x) +
∑

γiη(||x− xi||)

where p was a polynomial of degree less than m and η(r) was a fundamental solution to the m-iterated
Laplacian ∆mu = δ0. The former came as a basis for the nullspace of the standard iterated Laplacian ∆m

and the latter came from a fundamental solution to ∆m and applying RKHS theory. In the same way, we
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can develop a representer theorem for thin plate splines on the sphere by (i) determining the nullspace of
∆m

∗ and (ii) using a fundamental solution to ∆m
∗ to develop a RKHS.

To accomplish these two aims, we start just by trying to diagonalize our operator ∆∗. It turns out the
spherical harmonics {Y k

j } for k ≥ 0, 1 ≤ j ≤ Nd,k
3, which are the restrictions of the real harmonic

homogeneous polynomials of degree k from Rd to Sd−1, are precisely our eigenfunctions with eigenvalues:

∆∗Y
k
j = −k(k + d− 2)Y k

j

Note that this implies the nullspace of ∆m
∗ is precisely just the span of Y 1

0 which turns out to be the set of
constant functions. Curiously, unlike before we no loneger have any dependence between the nullspace and
the smoothing parameter m.

The particular form these spherical harmonics take is not super important, but these spherical harmonics
have the crucial property that they form an orthonormal system for L2(Sd−1) under the standard surface
area measure. We can use this to decompose an arbitrary element f ∈ L2(Sd−1) with respect to this
system:

f =
∞∑
k=0

Nd,k∑
j=1

〈
f, Y k

j

〉
L2(Sd−1)

Y k
j

Parseval’s identity and the fact the Y k
j are eigenfunctions to ∆∗ imply that:

||∆m
∗ f ||22 =

∞∑
k=1

(k(k + d− 2))m
Nd,k∑
j=1

〈
f, Y k

j

〉2
L2

Letting Fd,m be space of f ∈ L2(Sd−1) where this is finite gives us a natural choice of domain for our
thin plate splines. From here, we can repeat the ideas from Section 2.2. Namely we can define the natural
semi-inner product on this space as:

⟨f, g⟩d.m :=

∞∑
k=1

(k(k + d− 2))m
Nd,k∑
j=1

〈
f, Y k

j

〉
L2 ·

〈
g, Y k

j

〉
L2 (9)

This becomes an inner product once we restrict to the space F0
d,m of functions f ∈ Fd,m with

〈
f, Y 1

0

〉
= 0.

Namely the subset of Fd,m orthogonal to the constant functions. Under this inner product Beatson et al.
(2018) shows:

Theorem 4. Under the inner product (9) the space F0
d,m is an RKHS with kernel K function:

Kd,m(x, y) :=

∞∑
k=1

(k(k + d− 2))−mNd,kW
λ
k (x

T y)

where λ = d−2
2 and Wλ

n is the Gegenbauer polynomial of order λ normalized so Wλ
k (1) = 1. Specifically:

Nd,kW
λ
k (x

T y) =

Nd,k∑
j=1

Y j
k (x)Y

j
k (y)

This kernel has feature map ϕ : Sd−1 → F0
d.m sending x to the function f ∈ Fd,m with Fourier coefficients:

〈
f, Y k

j

〉
L2 =

{
0 k = 0, j = 1

(k(k + d− 2))−m/2Y j
k (x) otherwise

3Nd,k =
(k+d−1

k

)
−

(k+d−3
k−2

)
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A simple calculation shows this indeed has the reproducing property:

⟨f,K(·, x)⟩d,m =

∞∑
k=1

(k(k + d− 2))m
Nd,k∑
j=1

〈
f, Y k

j

〉
L2

〈
K(·, x), Y k

j

〉
L2 =

∞∑
k=1

Nd,k∑
j=1

〈
f, Y k

j

〉
L2 Y

k
j (x) = f(x)

Moreover, just as was the case for ηm,d(||x− xi||) the kernel functions K(·, x) can be viewed as the funda-
mental solution to ∆m

∗ . Using the fact Y k
j are eigenfunctions of ∆m

∗ :

∆m
∗ Kd,m(·, x) =

∞∑
k=1

(k(k + d− 2)−m

Nd,k∑
j=1

Y j
k (x)∆

m
∗ Y j

k =

∞∑
k=1

Nd,k∑
j=1

Y j
k (x)Y

j
k

Note that the right hand side is precisely the Fourier series of the function f ∈ L2(Sd−1) satisfying <
f, Y j

k >L2= Y j
k (x). Namely, f is playing the role of the dirac function δx.

Hence as before we see our fit breaks into two parts: a fit over the constant functions and an RKHS fit
over the orthogonal space F0

d,m whose kernel function is essentially just the fundamental solution of the
underlying iterated Laplacian ∆m

∗ . Thus just as before we get a representer theorem

Theorem 5 (Representer Theorem for Splines on Sd−1). The solution to variational problem:

argmin
f∈Fd,m

1

n

n∑
i=1

(Yi − f(xi))
2
+ λ

∫
Sd−1

f∆m
∗ f

must take the form for some constant c:

f̂(x) = c+

n∑
i=1

βiK(x, xi)

However, this is not as useful as it might seen because Theorem 4 only gives the kernel K(·, xi) in the
form of an infinite series which is not amenable to regression. Certainly we could get approximate kernel
functions simply by taking the partial sums, but we would prefer a nice closed form expression like we had
for ηm,d in Theorem 2. The main contribution of Beatson et al. (2018) was the formulation of a recurrence
relation for the associated function κ : R → R related to the kernel K by K(x, y) = κ(xT y). Since K only
depends on x, y through xT y this is well-defined. This at least allows for explicit calculation of the kernel
in cases of small m, d but does not give a general formula. But since most applications care simply about
the d = 3 case, this is of course practically very useful.

3.1 Further Extensions
There is nothing special about the sphere Sd−1 discussed in the previous section. Namely, it makes sense
to define thin plate splines onto any domain in which one can make sense of derivatives, specifically the
Laplacian. In particular, these ideas would all make sense on any Riemannian manifold, a space for which
the Laplace-Beltrami operator is well-understood. Work by Steinke et al. (2008) explores some of these
ideas and their applications to computer graphics.

Another interesting extension is to consider different penalty/energy functions. Namely, in essence all of
the above work boils down to finding the appropriate RKHS associated to a given energy functional:

E(f) = ⟨f, f⟩ =
∑

|α|=m

(
m

α

)∫
Dαf ·Dαf

Of course there are many other potential energy structures induced by an inner product structure like
this one, and under the right choice of underlying space it is possible to find the inducing kernel. I would
be curious about the interpretations of different differential operators in terms of desirable "smoothness"
properties of the associated optimal solutions. In the literature, splines with penalty of the form

∫
|Lf |2

for a linear operator L are called L-splines. See chapter 10 of Schumaker (2007) for more details.
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