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Throughout the following assume the standard conditions: the cost c(x, y) is lower semicontinuous
and bounded below by the sum a(x) + b(y) of two upper semicontinuous functions a ∈ L1(µ), b ∈
L1(ν), and X ,Y are Polish spaces.

1 Kantorovich Duality

Instead of trying to view optimal transport as ”finding the minimal cost transport plan” we can
rephrase the problem as ”trying to determine the value/price of each piece of mass at a given
location x ∈ X or y ∈ Y”. Namely, if a given x is ”close” in terms of c(x, ·) to many different y
we might suppose any mass at x is more valuable because it is easy to transport. Similarly, if a
given y is ”far” from most values of x then we might consider mass there more valuable because it
is hard to get to. Hence introduce two price functions ψ : X → R, ϕ : Y → R which keep track of
these prices/values. Call a pair of prices competitive if:

ϕ(y)− ψ(x) ≤ c(x, y)

Namely, our cost function already gives us some notion of the relationship between these prices
because we always transport mass at x to y at cost c(x, y). The goal then is to maximize the profit
ϕ(y)− ψ(x) according to this constraint, giving us the Kantorovich dual problem:

sup
ϕ,ψ

{∫
ϕ(y) dν −

∫
ψ(x) dµ : ϕ− ψ ≤ c

}
(1)

Integrating the above inequality with respect to any transport plan π ∈ Π(µ, ν) gives weak duality.

Theorem 1 (Weak Duality)

sup
ϕ,ψ

{∫
ϕ(y) dν −

∫
ψ(x) dµ : ϕ− ψ ≤ c

}
≤ inf
π∈Π(µ,ν)

Eπc(X,Y )

Some of the main benefits of the dual formulation of the problem are:

1. Lowerbounds for optimal cost: any pair of competitive prices provides a lower bound.
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2. Functional Analysis: Gives access to functional analysis tools (we get to work over a space
of functions rather than a space of measures)

Once we have such duality it is natural to ask (i) what the optimizing pairs (ϕ, ψ) and optimizing
plans π ∈ Π(µ, ν) tend to look like, and (ii) when we have equality, aka strong duality. First we
focus on the former.

We start with a simple observation that it is always in our best interests to make ϕ as large as
possible and ψ as small as possible. In particular, as we are forced to have ϕ ≤ ψ+ c and ψ ≥ ϕ− c
we might as well choose these inequalities to be as tight as possible. Namely given a competitive
pair (ϕ, ψ) we can always improve it by replacing these functions with their c-transforms (note the
different defintions between X and Y):

ϕc(x) := sup
y∈Y

[ϕ(y)− c(x, y)] (2)

ψc(y) := inf
x∈X

[ψ(x) + c(x, y)] (3)

Any function of the form ϕc for some ϕ is called c-convex. Likewise such a function ψc is called
c-concave.

Example: In the case c(x, y) = −xy we obtain the standard relationship between convexity and
the (negative of) the Legendre transform: a function is convex iff it is the Legendre transform of
some function.

Example: In the case c(x, y) = d(x, y) is the underlying metric, then the c-convex functions are
just the 1-Lipschitz functions. Moreover, 1-Lipschitz functions are self-conjugate

Now to study an optimal transport plan. The intuition is that if a plan π is optimal, there ought
to be no way to ”reroute” mass while lowering the overall cost. Namely, there should not be a
sequence of pairs {(xi, yi)}Ni=1 in the support of π so that:

N∑
i=1

c(xi, yi) >

N∑
i=1

c(xi, yi+1)

This would mean we could take some mass at xi that was originally going to yi and instead send
it to yi+1. By doing this in a cyclic manner, we preserve the total amount of mass each yi receives
just by modifying the sources. This motivates the definition of a c-cyclically monotone set: a set
Γ ⊆ X × Y so:

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1) (4)

and we call a transport plan c-cyclically monotone if it is concentrated on such a set. Note since
cyclces generate all permutations, this is equivalent to the saying now permutation of the sources
can lower the overall cost. Now we are ready to state the main result:

Theorem 2 (Kantorovich Duality) Under our standard assumptions:

1. We have strong duality
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2. We can restrict the dual problem to bounded continuous c-convex/concave functions and
their c-transforms (e.g. (ϕ, ϕc) or (ψc, ψ)).

3. π is optimal iff it is c-cylically monotone iff ϕ(y)− ψ(x) ≤ c(x, y) with equality π a.s.

Proof Outline: The idea is to construct a c-cyclically monotone π (which will turn out to be
optimal) and use this to construct ψ(x). Then show that:∫

ψc(y) dν −
∫
ψ(x) =

∫
c(x, y) dπ(x, y)

By weak duality, this implies both π, (ψc, ψ) are optimal once we show this choice of prices are
competitive: ψc(y) + ψ(x) ≤ c(x, y). We procede in a few steps by a series of approximations:

• Step 1: For c continuous µ, ν discrete, construct c-cyclically monotone π . This is simple as
then transport plans are essentially just a finite stochastic matrix.

• Step 2: For c-continuous, construct a c-cyclically monotone π for general µ, ν by approxi-
mating these distributions by discrete (random) measures and applying step 1. Then take
limits.

• Step 3: Given such a π from step 2, let Γ ⊆ X ×Y be its support. Define a candidate ”price
function” for fixed (x0, y0) ∈ Γ:

ϕ(x) := sup
m

sup
(xi,yi)∈Γ

{
m∑
i=0

c(xi, yi)− c(xi+1, yi)

}

where xm+1 = x. Namely, the ”value” ϕ(x) of having an additional unit of mass at x is the
largest improvement in cost we could obtain by rerouting some of our transports to utilize
this new mass. Show that ψc(y)− ψ(x) = c(x, y) on Γ.

Step 4: approximate a general cost function by an increasing sequence of continous (bounded)
ones using lower-semicontinuity.

□

1.1 Applications of Duality

The next result shows that under mild assumptions optimal transport plans are stable under limits

Theorem 3 (Stability) Suppose c is continuous and bounded from below. If µk ⇒ µ, νk ⇒ ν
and C(µk, νk) < ∞. Then there is some subsequence along which the optimal transport plans
πk ⇒ π the optimal transport plan for µ, ν.

Proof Outline: The weak convergence of µk, νk implies tightness of the corresponding sequences
and hence tightness of the optimal plans πk. By Prokorohov’s theorem we can hence extra a con-
vergent subsequence πk ⇒ π. It is then just a matter of showing the c-cyclical monotonicity of the
πk is preserved, which follows from the weak convergence and continuity of c. □
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Our next aim is to use duality to study transport inequalities, inequalities of the form:

C(µ, ν) ≤ F (µ) ∀µ ∈ P(x)

The following says for nice F we can represent these inequalities in terms of a Legendre transform
Λ over Cb(X ). Specifically:

Λ(ϕ) := sup
µ∈P (X )

(∫
X
ϕ dµ− F (µ)

)
Theorem 4 (Dual Transport Inequalities) Suppose the cost function is bounded from be-
low. Let F : P (X ) → R be convex and lower semicontinuous. Then:

C(µ, ν) ≤ F (µ) ∀µ ∈ P (X ) ⇐⇒ Λ

(∫
Y
ϕ dν − ϕc

)
≤ 0 ∀ϕ ∈ Cb(X )

Proof outline: Unrolling definitions note:

Λ

(∫
Y
ϕ dν − ϕc

)
= sup
µ∈P (X )

(∫
Y
ϕ dν −

∫
X
ϕc dµ− F (µ)

)
The first two terms are straight out of the Kantorovich dual problem, so the result will come im-
mediately just by applying duality basically. □

Example (KL Divergence): Let X = Y and F (µ) := H(µ|ν) =
∫
ρ log ρ for ρ = dµ

dν . Then an
explicit calculation yields Λ(ϕ) = log

(∫
eϕ dν

)
. Hence:

C(µ, ν) ≤ H(µ|ν) ∀µ ∈ P (X ) ⇐⇒ e
∫
Y ϕ dν ≤

∫
eϕ

c

dν

Lastly, we develop a criterion for an existence of a deterministic coupling:

Theorem 5 (Existence of Deterministic Coupling) If C(µ, ν) < ∞ and any c-convex
ψ : X → R ∪ {∞} has:

µ ({x ∈ X : ψc(y)− ψ(x) = c(x, y) for more than one y}) = 0

Then there is a unique solution to the optimal transport problem and it is deterministic.

Proof Outline: This follows from the fact that at optimality π a.s. we have ψc(y)−ψ(x) = c(x, y).
Hence for µ a.e. x we can set T (x) to be the unique y mentioned in the assumption. □

Example: Again in the case c(x, y) = −xy where the c-convex functions are just standard convex
functions we have:

ψ(x) = sup
y
(ψc(y∗) + xy) → ∇ψc(y) = −x

Since ψc is concave, ∇ψc(y) is nonincreasing. Hence it only has countably many ”flat” points in its
range where∇ψc(y) = −x can occur. Thus the only way for the set in the statement of Theorem 5 to
have nonzero measure is if µ has an atom. Hence as long as µ is nonatomic, a deterministic coupling
exists (e.g. we have seen an example of this before in the increasing rearrangement, example 3 on
pg 19).
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2 Wasserstein Distances

When X = Y can think of the optimal transport cost C(µ, ν) as a sort of ”distance” between the
probability distributions µ, ν. This is not a true metric in general (it does not necessarily satisfy
any of the properties in fact) but if we choose an underlying metric to use as our cost function
c(x, y) then we do indeed get a metric, and our hope is that in some sense this metric metrizes the
topology of weak convergence. This is indeed the case. For p ≥ 1 define the Wasserstein distance
of order p:

Wp(µ, ν) := inf
π∈Π(µ,ν)

[Ed(X,Y )p]
1/p

(5)

Restricted to the Wasserstein space, denoted Pp(X ), where Wp(δ0, µ) < ∞ then Wp is indeed a
metric. Namely, this is just the space of measures have ”finite moment of order p” within the metric
space. If (X, d) is bounded then this is just all of P (X ).

Since W1 is just an optimal transport cost under a specific choice of cost c(x, y) = d(x, y) we can
apply Kantorovich duality. We already saw the c-convex functions are just 1-Lipschitz and such
functions are self-conjugate. Hence:

W1(µ, ν) = sup
1−Lip

{∫
X
ψ dµ−

∫
X
ψ dν

}

2.1 Metrizes Weak Convergence in Pp(X )

We introduce a slightly stronger notion than weak convergence. We say µk converges weakly in
Pp(X ) to µ if µk → µ AND

∫
d(x0, x)

p dµk →
∫
d(x0, x)

p dµ. Namely, on top of the standard weak
convergence we also assume convergence of the pth moments. This is stronger than standard weak
convergence because in general dp is not a bounded function. If X is of bounded diameter then
these two notions are equivalent.

Theorem 6 Wp metrizes weak convergence in Pp(X )

Proof Outline: Assume µk → µ in Wp. By a technical lemma, this implies {µk} is tight
and hence by Prokohorov’s theorem implies it has a weakly convergent subsequence. Use lower
semicontinuity of Wp to show whole sequence converges. Use the arithmetic lemma:

d(x0, x)
p ≤ (1 + ϵ)d(x0, y)

p + Cϵd(x, y)
p

to separate x, y. Apply an optimal transfer plan πk ∈ Π(µk, µ) and take its marginals.

Conversely assume µk → µ weakly in Pp(X ). Again take an optimal πk ∈ Π(µk, µ) and use
tightness / Prokorhov’s theorem to extract convergent subsequence. Stability of optimal transport
plans implies the limit π is optimal as well, and the optimal coupling of (µ, µ) is trivially just the
identity. Apply a truncation:

Wp(µk, µ)
p =

∫
X
d(x, y)p dπk =

∫
X
[d(x, y)p ∧R+ (d(x, y)p −Rp)+] dπk

The first term is bounded/cts so just apply standard weak convergence. Use convergence in Pp(X )
(the ”finite pth moments condition) to handle the second term. □
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2.2 Controlled by Weighted TV distance

Note this text defines:
||µ− ν||TV = 2 inf

π∈Π(µ,ν)
Pπ(X ̸= Y ) (6)

which is twice the definition I am used to.

Next we aim to show if we weight the TV distance we get an upperbound of Wp.

Theorem 7 (Wp controlled by weighted TV) Suppose p ≥ 1 and p−1 + q−1 = 1. Fix
x0 ∈ X . Then:

Wp(µ, ν) ≤ 21/q
(∫

d(x0, x)
p d|µ− ν|(x)

)1/p

Proof outline: The idea is to use the same coupling π of µ, ν that minimizes 6. The idea is to
keep all the mass that µ, ν share fixed and distribute the rest uniformly. Then a simple calculation
yields the result. □.

2.3 Topological Properties of Wasserstein Space

The next theorem shows the Wasserstein space shares many of the properties of the underlying
metric space X .

Theorem 8 If (X , d) is Polish then so is (Pp(X ),Wp). Moreover, any measure can be ap-
proximated by ones with finite support (discrete measures).

Proof Idea: For separability let xi be a countable dense subset of X . Then:{
n∑
i=1

aiδxi
: ai ∈ Q, n ∈ N

}
⊆ Pp(X )

is countable and dense.
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For completeness, show that Cauchy in Wp implies tightness, and hence by Prokorhov’s theorem
there exists a weakly convergent subsequence. This gives a candidate for the limit. Fatou’s lemma
shows this is in Pp(X ) so we just must show weak convergence in Pp(X ). We just use the lower
semicontinuity of Wp to show Wp(µk, µ) → 0. □
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3 Displacement Interpolation
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