Number Theory B Homework 1

Xinyi Yuan

March 4, 2013

1. Prove that the chord-tangent construction defines a group law on (the smooth part of) a cubic curve without referring to the divisor class group. In particular, it works for singular cubic curves.
2. Consider the cubic curve $X^{3}+Y^{3}=a Z^{3}$ over a field k. It is non-singular if $a \neq 0$ and $\operatorname{char}(k) \neq 3$. The point $O=(1,-1,0)$ makes the curve an elliptic curve.

- Prove that three points on the curve add to zero if and only if they are colinear. (Think: what do we need to prove?)
- Prove that the inverse of a point (X, Y, Z) is (Y, X, Z).
- Prove that

$$
[2](X, Y, Z)=\left(-Y\left(X^{3}+a Z^{3}\right), X\left(Y^{3}+a Z^{3}\right), X^{3} Z-Y^{3} Z\right) .
$$

- Write down a Weierstrass equation of E.

3. Let E be an elliptic curve over \mathbb{R}. What can you say about the structure of $E(\mathbb{R})$ as a Lie group? (Hint: Over \mathbb{C}, we have $E(\mathbb{C})=\mathbb{C} / \Lambda$.)
4. Let E_{1}, E_{2} be elliptic curves over a field k. Let ℓ be a prime not equal to the characteristic of k. Prove that the natural map

$$
\operatorname{Hom}_{k}\left(E_{1}, E_{2}\right) \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell} \longrightarrow \operatorname{Hom}_{\mathbb{Z}_{\ell}}\left(T_{\ell}\left(E_{1}\right), T_{\ell}\left(E_{2}\right)\right)
$$

is injective.
5. Let E be an elliptic curves over a field k. Let ℓ be a prime not equal to the characteristic of k. Assume $\operatorname{End}_{k}(E) \neq \mathbb{Z}$. Prove that the image of the representation

$$
\operatorname{Gal}\left(k^{\mathrm{sep}} / k\right) \longrightarrow \operatorname{GL}\left(T_{\ell}(E)\right)
$$

is an abelian group.
6. Let E_{1}, E_{2} be elliptic curves over a finite field k. Prove that E_{1} and E_{2} are isogenous if and only if $\# E_{1}(k)=\# E_{2}(k)$. Can we conclude that $E_{1}(k)$ is isomorphic to $E_{2}(k)$ as finite groups in that case?
7. Let k be a field of characteristic $p>0$.

- Prove that there are only finitely many supesingular elliptic curves over k (up to isomorphisms).
- For $p=2,3$, write down all supersingular elliptic curves over k.

8. Let E be an elliptic curves over a field k of characteristic $p>0$. Assume that $j(E) \notin \overline{\mathbb{F}}_{p}$, or equivalently, $E_{\bar{k}}$ is not defined over $\overline{\mathbb{F}}_{p}$. Prove that $\operatorname{End}_{k}(E)=\mathbb{Z}$.
9. Consider the elliptic curve $E: y^{2}=x^{3}-x$ over \mathbb{Q}. Find all primes $p>3$ so that the reduction of E modulo p is a supersingular elliptic curve over \mathbb{F}_{p}. Alternatively, do the same problem for $E^{\prime}: y^{2}=x^{3}+1$.
