Number Theory Final Exam, Spring 2014

Xinyi Yuan

May 2, 2014

- 1. (2 points) Write down a Weierstrass equation for each of the following elliptic curves:
 - (1) The cubic curve $X^3+Y^3=nZ^3$ in $\mathbb{P}^2_{\mathbb{Q}}$ with the distinguished point (1,-1,0). Here $n\in\mathbb{Q}^{\times}.$
 - (2) The normalization of the curve $y^2 = x(x-a)(x-b)(x-c)$ (viewed as a closed curve in $\mathbb{P}^2_{\mathbb{O}}$ by homogenizing the equation) with the distinguished point (x,y) = (0,0). Here $a,b,c \in \mathbb{Q}$, and 0,a,b,c are distinct.
- 2. (3 points) Let E be an elliptic curve over \mathbb{Q} , and $E^{(d)}$ be the quadratic twist of E by a non-square number $d \in \mathbb{Q}^{\times}$. Prove

$$L(E_K, s) = L(E, s) L(E^{(d)}, s),$$

 $\operatorname{rank} E(K) = \operatorname{rank} E(\mathbb{Q}) + \operatorname{rank} E^{(d)}(\mathbb{Q}).$

Here $K = \mathbb{Q}(\sqrt{d})$ is the quadratic field, and E_K is the base change of E to K. For the quadratic twist, recall that if E has an equation $y^2 = x^3 + a_2x^2 + a_4x + a_6$, then $E^{(d)}$ has an equation $dy^2 = x^3 + a_2x^2 + a_4x + a_6$. (Hint: Consider the action of $\operatorname{Gal}(K/\mathbb{Q})$ on E(K).)

3. (2 points) Let K be a field with $char(K) \neq 2$. Let E be an elliptic curve over K given by

$$y^2 = x^3 + ax + b, \quad a, b \in K.$$

 $y^2=x^3+ax+b,\quad a,b\in K.$ Let $\omega=\frac{dx}{2y}$ be a rational differential on E. Prove that ω is regular on E, and it is translation-invariant in the sense that $\tau_P^*\omega = \omega$ for any $P \in E(\overline{K})$. Here $\tau_P: E_{\overline{K}} \to E_{\overline{K}}$ denotes the translation map by P. (You can finish the problem by either explicit computation or abstract algebraic geometry.)

4. (3 points) Let K be a local field with $\operatorname{char}(K) \neq 2$. Denote by O_K the valuation ring, \wp the maximal ideal of O_K , and $k = \mathbb{F}_q$ the residue field. Let E be an elliptic curve over K given by

$$y^2 = x^3 + ax + b, \quad a, b \in O_K.$$

Assume that the discriminant $-16(4a^3+27b^2) \in O_K^{\times}$, so that the equation has good reduction \overline{E} over k. Let $\omega = \frac{dx}{2y}$ be the invariant differential on E. Prove

$$\int_{E(K)} |\omega| = q^{-1} |\overline{E}(k)|.$$

(The integration is of Tamagawa type. If you are not familiar with it, here is an explanation. Find a coordinate chart $\{f_{\alpha} | \alpha \in S\}$ of E(K) in the sense that, for any $\alpha \in S$, f_{α} is an injective map of the form:

$$f_{\alpha}: \wp \longrightarrow E(K), \quad t \longmapsto (X_{\alpha}(t), Y_{\alpha}(t)), \quad X_{\alpha}, Y_{\alpha} \in O_K[[t]].$$

Furthermore, assume that E(K) is the *disjoint* union of $f_{\alpha}(\wp)$ (when α takes all elements of S). Then define

$$\int_{E(K)} |\omega| := \sum_{\alpha \in S} \int_{\wp} |f_{\alpha}^* \omega / dt| dt.$$

Here $f_{\alpha}^*\omega/dt$ is a function on \wp , and $|f_{\alpha}^*\omega/dt|$ is the absolute value normalized by $|a|=q^{-\mathrm{ord}_{\wp}(a)}$. The Haar measure dt on \wp is normalized so that $\mathrm{vol}(\wp)=q^{-1}$. The definition is independent of the coordinate chart.)