Number Theory Final Exam, Spring 2014

Xinyi Yuan

May 2, 2014

1. (2 points) Write down a Weierstrass equation for each of the following elliptic curves:
(1) The cubic curve $X^{3}+Y^{3}=n Z^{3}$ in $\mathbb{P}_{\mathbb{Q}}^{2}$ with the distinguished point $(1,-1,0)$. Here $n \in \mathbb{Q}^{\times}$.
(2) The normalization of the curve $y^{2}=x(x-a)(x-b)(x-c)$ (viewed as a closed curve in $\mathbb{P}_{\mathbb{Q}}^{2}$ by homogenizing the equation) with the distinguished point $(x, y)=(0,0)$. Here $a, b, c \in \mathbb{Q}$, and $0, a, b, c$ are distinct.
2. (3 points) Let E be an elliptic curve over \mathbb{Q}, and $E^{(d)}$ be the quadratic twist of E by a non-square number $d \in \mathbb{Q}^{\times}$. Prove

$$
\begin{aligned}
L\left(E_{K}, s\right) & =L(E, s) L\left(E^{(d)}, s\right) \\
\operatorname{rank} E(K) & =\operatorname{rank} E(\mathbb{Q})+\operatorname{rank} E^{(d)}(\mathbb{Q})
\end{aligned}
$$

Here $K=\mathbb{Q}(\sqrt{d})$ is the quadratic field, and E_{K} is the base change of E to K. For the quadratic twist, recall that if E has an equation $y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$, then $E^{(d)}$ has an equation $d y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$. (Hint: Consider the action of $\operatorname{Gal}(K / \mathbb{Q})$ on $E(K)$.)
3. (2 points) Let K be a field with $\operatorname{char}(K) \neq 2$. Let E be an elliptic curve over K given by

$$
y^{2}=x^{3}+a x+b, \quad a, b \in K
$$

Let $\omega=\frac{d x}{2 y}$ be a rational differential on E. Prove that ω is regular on E, and it is translation-invariant in the sense that $\tau_{P}^{*} \omega=\omega$ for any $P \in E(\bar{K})$. Here $\tau_{P}: E_{\bar{K}} \rightarrow E_{\bar{K}}$ denotes the translation map by P. (You can finish the problem by either explicit computation or abstract algebraic geometry.)
4. (3 points) Let K be a local field with $\operatorname{char}(K) \neq 2$. Denote by O_{K} the valuation ring, \wp the maximal ideal of O_{K}, and $k=\mathbb{F}_{q}$ the residue field. Let E be an elliptic curve over K given by

$$
y^{2}=x^{3}+a x+b, \quad a, b \in O_{K}
$$

Assume that the discriminant $-16\left(4 a^{3}+27 b^{2}\right) \in O_{K}^{\times}$, so that the equation has good reduction \bar{E} over k. Let $\omega=\frac{d x}{2 y}$ be the invariant differential on E. Prove

$$
\int_{E(K)}|\omega|=q^{-1}|\bar{E}(k)|
$$

(The integration is of Tamagawa type. If you are not familiar with it, here is an explanation. Find a coordinate chart $\left\{f_{\alpha} \mid \alpha \in S\right\}$ of $E(K)$ in the sense that, for any $\alpha \in S, f_{\alpha}$ is an injective map of the form:

$$
f_{\alpha}: \wp \longrightarrow E(K), \quad t \longmapsto\left(X_{\alpha}(t), Y_{\alpha}(t)\right), \quad X_{\alpha}, Y_{\alpha} \in O_{K}[[t]]
$$

Furthermore, assume that $E(K)$ is the disjoint union of $f_{\alpha}(\wp)$ (when α takes all elements of S). Then define

$$
\int_{E(K)}|\omega|:=\sum_{\alpha \in S} \int_{\wp}\left|f_{\alpha}^{*} \omega / d t\right| d t .
$$

Here $f_{\alpha}^{*} \omega / d t$ is a function on \wp, and $\left|f_{\alpha}^{*} \omega / d t\right|$ is the absolute value normalized by $|a|=q^{-\operatorname{ord}_{\wp}(a)}$. The Haar measure $d t$ on \wp is normalized so that $\operatorname{vol}(\wp)=q^{-1}$. The definition is independent of the coordinate chart.)

