Number Theory B Final Exam

Xinyi Yuan

May 2, 2013

1. (10 points) Let n be a positive integer. Prove that n is the area of a rightangle triangle with rational sides if and only if the elliptic curve

$$
E: n y^{2}=x^{3}-x
$$

over \mathbb{Q} contains a rational point of infinite order.
2. (10 points) For the elliptic curve $E: n y^{2}=x^{3}-x$ over \mathbb{Q}, prove that $E(\mathbb{Q})$ is infinite if and only if $E(\mathbb{Q}(i))$ is infinite. (Hint: For any $P \in E(\mathbb{Q}(i))$, consider $P+\bar{P}$ and $P-\bar{P}$. Here \bar{P} denotes the complex conjugate of P.)
3. (30 points) Let E be an elliptic curve over \mathbb{R}.
(1) Describe the structure of $E(\mathbb{R}) / 2 E(\mathbb{R})$ in terms of the structure of $E(\mathbb{R})[2]$.
(2) Prove that $H^{1}(\mathbb{R}, E)$ is killed by multiplication by 2 .
(3) Compute $H^{1}(\mathbb{R}, E)$ using the Kummer sequence

$$
0 \longrightarrow E(\mathbb{R}) / 2 E(\mathbb{R}) \longrightarrow H^{1}(\mathbb{R}, E[2]) \longrightarrow H^{1}(\mathbb{R}, E)[2] \longrightarrow 0
$$

4. (50 points) Let $k=\mathbb{F}_{q}$ be a finite field, and E be an elliptic curve over k.
(1) Denote by $\sigma \in \operatorname{Gal}(\bar{k} / k)$ the q-th power map. Show that for any $P \in E(\bar{k})$, there exists $Q \in E(\bar{k})$ such that $P=Q-Q^{\sigma}$.
(2) Prove that $H^{1}(k, E)=0$.
(3) Prove that any smooth and projective curve of genus one over k has a rational point over k. (Thus it is an elliptic curve.)
(4) Prove that any smooth and projective curve of genus one over a nonarchimedean local field K with good reduction has a rational point over K. (Hint: Hensel's lemma)
(5) Prove that the curve $C: 3 x^{3}+4 y^{3}+5 z^{3}=0$ defined over \mathbb{Q} is solvable over \mathbb{Q}_{v} for any place v of \mathbb{Q}.
