Number Theory B Final Exam

Xinyi Yuan

May 2, 2013

1. (10 points) Let n be a positive integer. Prove that n is the area of a right-angle triangle with rational sides if and only if the elliptic curve

$$E: ny^2 = x^3 - x$$

over \mathbb{Q} contains a rational point of infinite order.

- 2. (10 points) For the elliptic curve $E: ny^2 = x^3 x$ over \mathbb{Q} , prove that $E(\mathbb{Q})$ is infinite if and only if $E(\mathbb{Q}(i))$ is infinite. (Hint: For any $P \in E(\mathbb{Q}(i))$, consider $P + \bar{P}$ and $P \bar{P}$. Here \bar{P} denotes the complex conjugate of P.)
- 3. (30 points) Let E be an elliptic curve over \mathbb{R} .
 - (1) Describe the structure of $E(\mathbb{R})/2E(\mathbb{R})$ in terms of the structure of $E(\mathbb{R})[2]$.
 - (2) Prove that $H^1(\mathbb{R}, E)$ is killed by multiplication by 2.
 - (3) Compute $H^1(\mathbb{R}, E)$ using the Kummer sequence

$$0 \longrightarrow E(\mathbb{R})/2E(\mathbb{R}) \longrightarrow H^1(\mathbb{R}, E[2]) \longrightarrow H^1(\mathbb{R}, E)[2] \longrightarrow 0.$$

- 4. (50 points) Let $k = \mathbb{F}_q$ be a finite field, and E be an elliptic curve over k.
 - (1) Denote by $\sigma \in \operatorname{Gal}(\bar{k}/k)$ the q-th power map. Show that for any $P \in E(\bar{k})$, there exists $Q \in E(\bar{k})$ such that $P = Q Q^{\sigma}$.
 - (2) Prove that $H^1(k, E) = 0$.
 - (3) Prove that any smooth and projective curve of genus one over k has a rational point over k. (Thus it is an elliptic curve.)
 - (4) Prove that any smooth and projective curve of genus one over a non-archimedean local field K with good reduction has a rational point over K. (Hint: Hensel's lemma)
 - (5) Prove that the curve $C: 3x^3 + 4y^3 + 5z^3 = 0$ defined over \mathbb{Q} is solvable over \mathbb{Q}_v for any place v of \mathbb{Q} .