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1 What is the Wave Equation?
Our goal in this expository paper is to study the solutions to the d-dimensional
wave equation

∂2u

∂x2
1

+ ...+
∂2u

∂x2
d

=
1

c2
∂2u

∂t2
(1)

This equation is a second order partial differential equation whose unknown
u = u(x, t) is a real-valued function with domain in Rd × R. Here c is a fixed
positive constant. It is no harm to assume c = 1 since we can rescale the variable
t if necessary.

The wave equation (1) describes the transmission of waves within some
medium. For example, when d = 1, it describes the motion of a vibrating
string. We refer to Chapter 1 of the book [2] by Stein and Shakarchi for a
derivation of the wave equation in this case.

In this expository paper, we focus on the Cauchy problem for the wave
equation. That is, we want to find a solution to the equation (1) subject to the
initial conditions

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x)

where f and g are known functions on Rd.

2 What is the Fourier Transform?
In order to solve the Cauchy problem, we introduce a useful tool called the
Fourier transform. Given a complex-valued function f with domain Rd, we
define its Fourier transform (at least formally) by

f̂(ξ) =

∫
Rd

f(x)e−2πix·ξ dx (2)

for ξ ∈ Rd.
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It is important to note that the above definition does not make sense for
all functions f . To resolve this issue, we introduce the Schwartz space S(Rd)
which consists of all infinitely differentiable functions f such that f and all of
its derivatives are rapidly decreasing. Here recall that a function g is rapidly
decreasing if for all positive integers k we have

sup
x∈Rd

|x|k|g(x)| < ∞.

If f ∈ S(Rd), then we can not only define f̂ but also prove several important
properties of f̂ . Here we only list those which will be used in this paper. For a
complete list of properties and their proofs - we refer to Section 6.2 of [2].

(i) f̂ is also a Schwartz function.

(ii) Fourier transform of derivatives.

((
∂

∂x
)αf)∧(ξ) = (2πiξ)αf̂(ξ). (3)

(iii) Fourier inversion formula.

f(x) =
1

(2π)d

∫
Rd

f̂(ξ)e2πix·ξ dξ. (4)

For simplicity, from now on we assume that f, g are Schwartz functions.

3 Fourier Transform of the Cauchy problem for
the Wave Equation

In this section we will solve the Cauchy problem for the wave equation

∆u =
∂2u

∂t2
(5)

with the initial conditions

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x) (6)

where f, g ∈ S(Rd). Here ∆ = ∂2

∂x2
1
+ ...+ ∂2

∂x2
d

is the Laplacian.
Now to solve the Cauchy problem, we take the Fourier transform of the wave

equation and its initial conditions with respect to the spatial variables x1, ..., xd.
This will convert the wave equation into a solvable ODE. In fact, by (3) we get
that (5) becomes

−4π2|ξ|2û(ξ, t) = ∂2û

∂t2
(ξ, t).
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This is an ODE whose solution is given by

û(ξ, t) = A(ξ) cos(2π|ξ|t) +B(ξ) sin(2π|ξ|t).

Now if we take the Fourier transform with respect to x of the initial conditions
of the Cauchy problem, we get that

û(ξ, 0) = f̂(ξ)

and
∂û

∂t
(ξ, 0) = ĝ(ξ).

If we solve for A(ξ) and B(ξ), we get that

A(ξ) = f̂(ξ)

and
2π|ξ|B(ξ) = ĝ(ξ).

Therefore,
û(ξ, t) = f̂(ξ) cos(2π|ξ|t) + ĝ(ξ)

sin(2π|ξ|t)
2π|ξ|

. (7)

Now we use the Fourier inversion formula (4). In conclusion, a solution to the
Cauchy problem (5) and (6) is formally defined as:

u(x, t) =

∫
Rd

[f̂(ξ) cos(2π|ξ|t) + ĝ(ξ)
sin(2π|ξ|t)

2π|ξ|
]e2πix·ξdξ. (8)

We can prove that this formula does indeed give a solution to the Cauchy prob-
lem. We refer to Theorem 6.3.1 in Stein-Shakarchi [2] for the proof.

One important thing to notice is that (8) is the unique solution to the Cauchy
problem (5) and (6). For simplicity, we omit the proof of the uniqueness, and
we refer our readers to Section 2.4 of [1].

4 Solution to the Cauchy problem for the Wave
Equation in 3-D

We now focus on the case d = 3. In order to simplify (8) in Section 3, we first
define the spherical mean of a function f . The spherical mean of a function in
S(R3) over the sphere of radius r = t centered at x, is defined by:

Mt(f)(x) =
1

4π

∫
S2
f(x− tσ) dσ(γ)

where dσ(γ) is the element of surface area for the unit sphere in R3. We can
interpret this spherical mean Mt(f) as the average value of f over the sphere
centered at x with radius t.
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Why do we introduce Mt(f)? In fact we have the following formula:

M̂t(f)(ξ) = f̂(ξ)
sin(2π|ξ|t)

2π|ξ|t
.

We refer to [2] for the proof. Compare this formula with (7) above. We see that

û(ξ, t) =
∂

∂t
(tM̂t(f)(ξ)) + tM̂t(g)(ξ).

By the Fourier inversion formula (4), we conclude that the solution of the Cauchy
problem for the wave equation in 3-D

∆u =
∂2u

∂t2
subject to u(x, 0) = f(x) and ∂u

∂t
(x, 0) = g(x)

is given by
u(x, t) =

∂

∂t
(tMt(f)(x)) + tMt(g)(x). (9)

We refer to Theorem 6.3.6 in [2].
We can write (9) in a more explicit way. In fact,

u(x, t) =
1

|S(x, t)|

∫
S(x,t)

[tg(y) + f(y) +∇f(y) · (y − x)] dσ(y). (10)

Here S(x, t) denotes the sphere of center x and radius t, and |S(x, t)| denotes
its area. This formula is called the Kirchoff’s formula. For simplicity we skip
its proof here, and we refer our readers to Section 2.4 of [1].

5 Solution to the Cauchy Problem for the Wave
Equation in 2-D

Now, interestingly enough, the solution to the wave equation in 3-D leads to
the solution of the wave equation in 2-D. This technique of using the solution
of the wave equation in a higher odd dimension to find the solution to the wave
equation in an even dimension is called the method of descent. This method
works as follows.

Suppose u = u(x, y, t) is a solution to the wave equation in 2-D such that
u(x, y, 0) = f(x, y) and ∂

∂tu(x, y, 0) = g(x, y). Define ũ(x, y, z, t) = u(x, y, t)

and define f̃ and g̃ in a similar way. Then, we notice that ũ is a solution the
wave equation in 3-D such that f̃ and g̃ are its initial data. While f̃ and g̃ are
not necessarily Schwartz functions, we formally apply (10) to express ũ in terms
of f̃ and g̃. This gives us an expression for u in terms of f, g. Finally we prove
that such an expression does give a solution to the wave equation in 2-D.

Using the method of descent, we get the following result which is Theorem
6.3.7 in [2]. If we define the corresponding means by:

M̃t(F )(x) =
1

2π

∫
|y|≤1

F (x− ty)(1− |y|2)−1/2dy,
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then we can get a solution to the Cauchy problem for the wave equation in 2-D
(with f, g ∈ S(R2)) as follows:

u(x, t) =
∂

∂t
(tM̃t(f)(x)) + tM̃t(g)(x). (11)

As in the 3-D case, we can write (11) in a more explicit way. In fact,

u(x, t) =
1

2|B(x, t)|

∫
B(x,t)

tf(y) + t2g(y) + t∇f(y) · (y − x)

(t2 − |x− y|2)1/2
dy. (12)

Here B(x, t) denotes the disk of center x and radius t, and |B(x, t)| denotes
its area. This formula is called the Poisson’s formula. We refer our readers to
Section 2.4 of [1].

Here in the 2-D case, the solution u(x, t) depends on f and g in whole disk
whereas in the 3-D case the solution depends just on the values of the initial
data near the boundary of that disk.

6 Huygens Principle and Finite Speed of Prop-
agation

In this section, we discuss some properties of the solutions to the wave equation.
First, we can observe the phenomenon known as Huygens principle through the
solutions to the 1-D and 3-D wave equation. The 1-D and 3-D solutions are
respectively:

u(x, t) =
f(x+ t) + f(x− t)

2
+

1

2

∫ x+t

x−t

g(y) dy

and

u(x, t) =
1

|S(x, t)|

∫
S(x,t)

[tg(y) + f(y) + ∆f(y) · (y − x)] dσ(y).

In the 1-D case, the solution at (x, t) is dependent only on the values of f
and g in the interval between [x− t, x+ t]. This is observed as follows1:

1All figures in this section are from [2].
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In the 3-D case, the solution at (x, t) is dependent on the values of f and g
in a neighborhood of the sphere with center x and radius r = t. This situation
produces a cone called the backward light cone originating at (x, t)

In addition, if we narrow our view of the data to a point x0 in the plan t = 0,
we can observe the forward light cone shown as follows

The cones that depict the u(x, t) solutions to the 1-D and 3-D wave equation
allow us to observe the Huygens principle, which is a phenomenon that allows
us to visualize the bending of waves when it enters a medium where it’s speed
is either increased or reduced in the faster or slower medium. It is also worth
noting that in 2-D we still have Huygens principle - we just replace a sphere
with an open disk in 2-D and we get a similar result.

Another important aspect that is connected to the results above is the finite
speed of propagation. If we have an initial entrance at x = x0, after a finite time
t, the effects of Huygens principle will have propagated only inside the ball with
center x0 and radius r = t.

For a more detailed discussion of these two properties, we refer our readers
to [1] and [2].

References
[1] Lawrence C. Evans. Partial differential equations. Graduate studies in

mathematics: v. 19. American Mathematical Society, 2010.

[2] Elias M. Stein and Rami Shakarchi. Fourier analysis : an introduction.
Princeton lectures in analysis: 1. Princeton University Press, 2003.

6


