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We consider the following problem

Problem 1. Given a black box oracle acting on a single qubit

Oθ =

(
1 0
0 eiθ

)
,

determine whether θ = θ0 or θ = θ1, where |θ1 − θ0| = ε.

We can of course solve this problem using the quantum phase estimation
(QPE) algorithm with query complexity O(ε−1). Ref. [1] shows this upper
bound is tight. However the QPE algorithm requires querying the oracle for a
total of O(ε−1) times in a coherent manner. This might not be possible with
near-term devices where the circuit depth is limited by the coherence time.

In this note we consider allowing only D queries to the oracle Oθ before all
the qubits are measured. We have the following lower bound

Theorem 2 (Main result). Consider the scenario in which we are allowed to
query Oθ in a coherent manner for at most D times, and before the (D + 1)-
th query all qubits need to be measured. In this scenario, in order to solve
Problem 1, we need to use on average Ω(D−1ε−2) queries to Oθ for some θ.

This lower bound is tight because a modification of Kitaev’s algorithm can
achieve this scaling. The proof is provided in Section 4.

1 Notations

Throughout this note, for a set of variables (x1, x2, . . . , xL), we will write ~xk =
(x1, x2, . . . , xk), k = 1, 2, . . . , L. For a joint distribution P of (X1, X2, . . . , XL),
we will write PXk

for the marginal distribution of Xk, and PXk| ~Xk−1
for the

conditional distribution of Xk on (X1, X2, . . . , Xk−1). To be more specific,
PXk| ~Xk−1

(xk|~xk−1) is the probability of Xk = xk conditional on X1 = x1, X2 =

x2, . . . , Xk−1 = xk−1. For convenience we define PXk| ~X0
= PXk

.

We write |~0〉 = |0〉 |0〉 · · · |0〉.
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2 The Hellinger distance

Definition 3 (The Hellinger distance). The Hellinger distance between two
distributions P and Q is defined as

H(P,Q) =

√
1

2

∑
x

(√
P (x)−

√
Q(x)

)2
.

As we can see this is reminiscent of the 2-norm (Euclidean) distance between
two quantum states. In fact we have the following relation

Lemma 4. Let |φ〉 =
∑
x φx |x〉 and |ψ〉 =

∑
x ψx |x〉. Let P and Q be the

distributions obtained by measuring |φ〉 and |ψ〉 respectively in the computational
basis, i.e. P (x) = |φx|2 and Q(x) = |ψx|2. Then

H(P,Q) ≤ 1√
2
‖ |φ〉 − |ψ〉 ‖.

The following lemma will be our main tool to bound the information we get
in multiple sequential experiments.

Lemma 5. Let P and Q be two distributions of the random variables (X,Y ).
We have

H2(P,Q) ≤ H2(PX , QX) + Ex∼ 1
2 (PX+QX)

[
H2
(
PY |X(·|x), QY |X(·|x)

)]
Proof. The proof is mainly a modification of the proof of Theorem 2.1 in Ref. [3].
We only prove for L = 2 and the rest follows by induction.

H2(P,Q) = 1−
∑
x,y

√
P (x, y)Q(x, y)

= 1−
∑
x,y

√
PX(x)PY |X(y|x)QX(x)QY |X(y|x)

= 1−
∑
x,y

PX(x) +QX(x)

2

√
PY |X(y|x)QY |X(y|x)

+
∑
x,y

(
PX(x) +QX(x)

2
−
√
PX(x)QX(x)

)
×
√
PY |X(y|x)QY |X(y|x).

We have ∑
y

√
PY |X(y|x)QY |X(y|x) = 1−H2

(
PY |X(·|x), QY |X(·|x)

)
,
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Therefore

H2(P,Q) = Ex∼ 1
2 (PX+QX)H

2
(
PX2|X(·|x), QX2|X(·|x)

)
+

1

2

∑
x

(√
PX(x)−

√
QX(x)

)2
×
∑
y

√
PX2|X(y|x)QX2|X(y|x).

Since by the Cauchy-Schwarz inequality∑
y

√
PX2|X(y|x)QX2|X(y|x) ≤ 1,

we have

H2(P,Q) ≤ Ex∼ 1
2 (PX+QX)H

2
(
PX2|X(·|x), QX2|X(·|x)

)
+H2 (PX , QX) .

By inductively applying this lemma, we have the following corollary

Corollary 6. Let P and Q be two distributions of the random variables (X1, X2, . . . , XL),
we have

H2(P,Q) ≤ E~xL∼ 1
2 (P+Q)

[
L∑
l=1

H2
(
P·| ~Xl−1

(·|~xl−1), Q·| ~Xl−1
(·|~xl−1)

)]

Proof. We simply use Lemma 5 repeatedly.

H2(P,Q) ≤ H2(P ~Xl−1
, Q ~Xl−1

)

+ E~xL−1∼ 1
2 (P ~XL−1

+Q ~XL−1
)

[
H2
(
PXL| ~XL−1

(·|~xL−1), QXL| ~XL−1
(·|~xL−1)

)]
≤ H2(P ~Xl−2

, Q ~Xl−2
)

+ E~xL−2∼ 1
2 (P ~XL−2

+Q ~XL−2
)

[
H2
(
PXL−1| ~XL−2

(·|~xL−2), QXL−1| ~XL−2
(·|~xL−2)

)]
+ E~xL−1∼ 1

2 (P ~XL−1
+Q ~XL−1

)

[
H2
(
PXL| ~XL−1

(·|~xL−1), QXL| ~XL−1
(·|~xL−1)

)]
≤ . . .

Here we regard H2
(
PXl| ~Xl−1

(·|~xl−1), QXl| ~Xl−1
(·|~xl−1)

)
as a random variable

that is measurable with respect to the sigma algebra generated by ~Xl−1. There-
fore all expectation evaluations of the form E~xl−1∼ 1

2 (P ~Xl−1
+Q ~Xl−1

) can be re-

placed by E~xL∼ 1
2 (P+Q). Thus we have proved the corollary.
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3 An abstract characterization of phase estima-
tion algorithms

A phase estimation algorithm can be characterized in the following way. We use
quantum circuits Ul(θ), l = 1, 2, . . . , L, each of which queries Oθ for a total of
Dl times, where Dl ≤ D. Starting from U1(θ), we prepare the state U1(θ) |~0〉,
and measure in the computational basis to obtain a random variable X1. We
then use the measurement result to determine the next quantum circuit U2(θ)
to be used, and obtain a random variable X2 by measuring U2(θ) |~0〉. We do
this for all the L circuits.

As we can see, the circuit we use depends on measurement results from
before. This is the main difficulty in obtaining the lower bound, as otherwise
the result in Refs. [2], which shows the quantum counting cannot be non-trivially
accelerated through parallelization, already gives a lower bound.

Because of this dependence, we denote the l-th circuit to be used by Ul( ~Xl−1; θ).

This circuit uses Oθ for a total of Dl( ~Xl−1) times. Given X1 = x1, X2 =
x2, . . . , Xl−1 = xl−1, Xl is generated from the conditional distribution PXl| ~Xl−1

(·|~xl−1; θ).

At the end of the algorithm, we will have the random variables (X1, X2, . . . , Xl)
obeying the distribution P (·; θ), which is

P (~xl; θ) =

L∏
l=1

PXl| ~Xl−1
(xl|~xl−1; θ). (1)

We then determine whether θ = θ0 or θ = θ1 through the values of these random
variables.

Note that the above framework accounts for repeating the procedure because
if we need to repeat then we only need to include the circuits used in repetitions
into the circuits {Ul( ~Xl−1; θ)}. The expected total number of queries to Oθ is∑L
l=1 EDl( ~Xl−1).

4 Proof of the main result

In this section we prove Theorem 2. In order to be able to distinguish between
θ = θ0 and θ = θ1 with probability at least 2/3 we need

H(P (·; θ0), P (·; θ1)) = Ω(1). (2)

We first upper bound the Hellinger distance between the pairs of conditional
distributions PXl| ~Xl−1

(·|~xl−1; θ0) and PXl| ~Xl−1
(·|~xl−1; θ1), and then upper bound

the left-hand side of (2) through Lemma 6. By Lemma 4, we have

H
(
PXl| ~Xl−1

(·|~xl−1; θ0), PXl| ~Xl−1
(·|~xl−1; θ1)

)
≤ 1√

2
‖Ul( ~Xl−1; θ0) |~0〉 − Ul( ~Xl−1; θ1) |~0〉 ‖

≤ 1√
2
‖Ul( ~Xl−1; θ0)− Ul( ~Xl−1; θ1)‖
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As Ul( ~Xl−1; θ0) and Ul( ~Xl−1; θ1) only differ in Oθ, and ‖Oθ0 − Oθ1‖ ≤ ε, we
have

‖Ul( ~Xl−1; θ0)− Ul( ~Xl−1; θ1)‖ ≤ Dl( ~Xl−1)ε.

Therefore

H
(
PXl| ~Xl−1

(·|~xl−1; θ0), PXl| ~Xl−1
(·|~xl−1; θ1)

)
≤ 1√

2
Dl(~xl−1)ε.

By Corollary 6 we have

H2(P (·; θ0), P (·; θ1)) ≤ ε2

2

L∑
l=1

E~xL∼ 1
2 (P (·;θ0)+P (·;θ1))

[
D2
l (~xl−1)

]
.

Therefore by (2) we have

1

2

L∑
l=1

(
E~xL∼P (·;θ0)D

2
l (~xl−1) + E~xL∼P (·;θ1)D

2
l (~xl−1)

)
= Ω(ε−2).

Since Dl ≤ D,

D

L∑
l=1

(
E~xL∼P (·;θ0)Dl(~xl−1) + E~xL∼P (·;θ1)Dl(~xl−1)

)
≥

L∑
l=1

(
E~xL∼P (·;θ0)D

2
l (~xl−1) + E~xL∼P (·;θ1)D

2
l (~xl−1)

)
= Ω(ε−2).

Therefore the total number of queries satisfies

L∑
l=1

(
E~xL∼P (·;θ0)Dl(~xl−1) + E~xL∼P (·;θ1)Dl(~xl−1)

)
= Ω(D−1ε−2).

This shows that the expected total number of queries for either θ0 or θ1 is lower
bounded by Ω(D−1ε−2), which proves Theorem 2.
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