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Abstract. The Grothendieck–Katz p-curvature conjecture predicts that an
arithmetic differential equation whose reduction modulo p has vanishing p-
curvatures for almost all p, has finite monodromy. It is known that it suffices
to prove the conjecture for differential equations on P1−{0, 1,∞}. We prove a
variant of this conjecture for P1−{0, 1,∞}, which asserts that if the equation
satisfies a certain convergence condition for all p, then its monodromy is trivial.
For those p for which the p-curvature makes sense, its vanishing implies our
condition. We deduce from this a description of the differential Galois group of
the equation in terms of p-curvatures and certain local monodromy groups. We
also prove similar variants of the p-curvature conjecture for an elliptic curve
with j-invariant 1728 minus its identity and for P1 − {±1,±i,∞}.

1. Introduction

The Grothendieck–Katz p-curvature conjecture was originally raised as a ques-
tion on linear homogeneous systems of first-order differential equations (see Con-
jecture (I) in [Kat72, Introduction] for more details)

dy

dx
= A(x)y.

Here A(x) is a square matrix of rational functions of x with coefficients in some
number field K and y is a vector-valued function. For all but finitely many primes
p of K, it makes sense to reduce this system modulo p and to define an invariant,
the p-curvature, in terms of the resulting system. According to the conjecture, if
almost all (that is, all but finitely many) p-curvatures vanish, then the original
system admits a full set of solutions in algebraic functions.

The conjecture generalizes to a smooth variety X equipped with a vector bundle
with an integrable connection (M,∇) defined over some number field K. It is
known that the general version of the conjecture reduces to the case when X =
P1
K − {0, 1,∞}. (See [Bos01, 2.4.1], [Kat82, Thm. 10.5], and [And04, 7.1.4]).
André [And04, Sec. 6] and Bost [Bos01, 2.4.2] proved the conjecture in the case

when the neutral connected component G◦alg of the algebraic monodromy group of
(M,∇) is a priori solvable. The key inputs are their generalizations, based on the
work of D. V. and G. V. Chudnovsky, of the classical Borel–Dwork criterion for the
rationality of formal power series.

In this paper, we apply Borel–Dwork type algebraicity results without assuming
a priori that G◦alg is solvable to prove a variant of the conjecture for P1

K −{0, 1,∞}
and for a certain elliptic curve minus a point. In our results, in addition to the
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assumption of vanishing p-curvature at almost all primes, we impose a condition
(∗)p on the p-adic radii of convergence of the horizontal sections of (M,∇) (see As-
sumptions 2.2.1, 6.1.3 for the precise statement) at every prime p where p-curvature
is either not defined or non-vanishing. When (M,∇) has an integral model at a
prime p so that one can make sense of its reduction mod p, the condition (∗)p is
implied by the vanishing of the p-curvature.

Theorem (Theorem 2.2.2). Let (M,∇) a vector bundle with a connection over
X = P1

K −{0, 1,∞}. If the p-curvature of (M,∇) vanishes for almost all p and the
condition (∗)p is satisfied for all other finite primes, then (M,∇) admits a full set
of rational solutions, that is, M∇=0 generates M as an OX-module.

One can also make sense of the condition (∗)p for vector bundles with connections
over smooth algebraic curves equipped with a flat model over OK such that there
is a smooth OK-point or with a semistable model over OK . However, the condition
(∗)p at a fixed prime p is not preserved under push-forward along finite maps from
the curve in question to P1 − {0, 1,∞}. Therefore, one cannot deduce from the
above theorem the same result for arbitrary algebraic curves. Nevertheless, when
X is an elliptic curve with j-invariant 1728 minus its identity point, we prove:

Theorem (Theorem 6.1.5). Let X ⊂ A2
Z be the affine curve defined by y2 = x(x−

1)(x + 1) and let (M,∇) be a vector bundle with a connection over X. If the p-
curvature of (M,∇) vanishes for almost all p and the condition (∗)p is satisfied for
all other finite primes, then (M,∇) is étale locally trivial. Namely, there exists a
finite étale map f : Y → X such that f∗(M,∇) is isomorphic to (OrkM

Y , d), where
d is the differential operator on regular functions.

Unlike the previous case, passing to a finite étale cover is necessary. We give an
example of an (M,∇) with Ggal equal to Z/2Z.

Katz has shown in [Kat82, Thm. 10.2] that if the p-curvature conjecture holds,
then for any vector bundle with an integrable connection (M,∇) on a smooth
variety X over K as above, the Lie algebra ggal of the differential Galois group Ggal

of (M,∇) is in some sense generated by the p-curvatures. Namely, let K(X) be
the function field of X. The p-curvature conjecture implies that ggal is the smallest
algebraic Lie subalgebra of gln(K(X)) such that for almost all p the reduction of
ggal mod p contains the p-curvature.

We use Theorem 2.2.2 to prove a result analogous to Katz’s theorem when X =
P1
K −{0, 1,∞}. Of course, this result (Theorem 2.2.6) involves a condition at every

prime p, but as a compensation we describe Ggal and not only its Lie algebra. In the
geometric case, namely when (M,∇) is the relative de Rham cohomology with the
Gauss–Manin connection, this extra local condition is often vacuous. We discuss
the example of the Legendre family (Remark 3.3.2) and show that a variant of our
result implies that ggal is generated by the p-curvatures, which recovers a result of
Katz.

The paper is organized as follows. In section 2 to 5, we will focus on the case
when X = P1

K − {0, 1,∞}. In section 6, we discuss the case when X is the affine
elliptic curve defined above.

In section 2, we formulate our main result for X = P1
K − {0, 1,∞} (Theorem

2.2.2), and in particular the condition (∗)p, which substitutes for the vanishing of
the p-curvature when it does not make sense to reduce (M,∇) mod p. We then
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use Theorem 2.2.2 to deduce a description of the differential Galois group following
Katz.

In section 3, we use a theorem of André ([And04, Thm. 5.4.3]) to prove that
a vector bundle with a connection (M,∇), as in Theorem 2.2.2, is étale locally
trivial on X. To do this, we apply André’s criterion to the formal horizontal
sections of (M,∇) centered at a specific point x0. We obtain a lower bound for
André’s analogue of their radii of convergence at archimedean places, using the
uniformization of P1

C−{0, 1,∞} by the unit disc, which arises from its interpretation
as the moduli space of elliptic curves with level 2 structure. The chosen point x0

corresponds to the elliptic curve with smallest stable Faltings height and we use
the Chowla-Selberg formula to deduce the lower bound. We also discuss in this
section some variants of our main theorem and an example of the Legendre family
mentioned above.

In section 4, we apply the rationality criterion of Bost and Chambert-Loir
([BCL09, Thm. 7.8]) to prove Theorem 2.2.2. We give a lower bound for the local
capacity of Ω, the image in P1

C − {0, 1,∞} of a standard fundamental domain for
Γ(2) under the uniformization mentioned above. Together with the algebraicity
of our formal solution proved in section 3, this allows us to apply the criterion in
[BCL09], and deduce that the solutions of (M,∇) are rational.

Section 5 is devoted to an interpretation of our computations in section 3 in terms
of the stable Faltings height, obtained by relating our estimate for archimedean
places to the Arakelov degree of the restriction of the tangent bundle to some
point.

In section 6, we prove our theorem when X is the affine elliptic curve in Theorem
6.1.5 using André’s criterion and ideas in section 3. As in section 2, we specify
the local convergence condition (∗)p at bad primes. Using the property of theta
functions and Weierstrass-℘ functions, we deduce from a result of Eremenko [Ere]
a lower bound of the archimedean radii.

In section 7, we first give an example of an (M,∇) over the affine elliptic curve
in section 6 such that its p-curvatures vanish for all p (with respect to a specific
chosen model of (M,∇) with good reduction everywhere) but its Ggal is Z/2Z.
More precisely, (M,∇) is the push-forward of (O, d) via the degree two self-isogeny
of the elliptic curve. In the second half, we discuss a variant of our main theorems
when X is A1 − {±1,±i} with the conclusion that (M,∇) has finite monodromy.
The proof relies on the result of Eremenko used in last section. We also give an
example to show that even when (M,∇) has good reduction everywhere and all its
p-curvatures vanish, it can still have local monodromies of order two around the
singular points ±1,±i,∞.
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2. Statement of the main results

Let K be a number field and OK its ring of integers. Without further indication,
we use X to denote P1

OK − {0, 1,∞} and use x to denote the natural coordinate
of X. Let M be a vector bundle with a connection ∇ : M → Ω1

XK
⊗M over XK .

For a finite place v of K lying over a prime p, let Kv be the completion of K with
respect to v and denote by Ov and kv the ring of integers and residue field of Kv.
For Σ a finite set of finite rational primes, we set OK,Σ = OK [1/p]p∈Σ ⊂ K.

2.1. The p-curvature and p-adic differential Galois groups.

2.1.1. Let X be a curve (flat scheme of relative dimension 1 with smooth geomet-
rically irreducible generic fiber) over OK such that for any finite place v of K, the
smooth locus of Xkv is non-empty. For Σ, as above, sufficiently large, (M,∇) ex-
tends to a vector bundle with connection (again denoted (M,∇)) over XOK,Σ . In
particular, if p /∈ Σ we can consider the pull back of (M,∇) to X ⊗ Z/pZ. If D is
a derivation on X ⊗ Z/pZ, so is Dp. Let ∇(D) be the map (D ⊗ id) ◦ ∇. Then on
X ⊗ Z/pZ, the p-curvature is given by (see [Kat82, Sec. VII] for details) 1

ψp(D) := ∇(Dp)−∇(D)p ∈ EndOX⊗Z/pZ(M ⊗ Z/pZ).

In particular, ψp
(
d
dx

)
= −

(
∇
(
d
dx

))p
, where x is a (Zariski) local coordinate at

some smooth point of Xkv . Since ψp(D) is p-linear in D, for X = P1
OK −{0, 1,∞},

the equation ψp ≡ 0 is equivalent to −
(
∇
(
d
dx

))p ≡ 0.
In general, the ψp depends on the choice of extension of (M,∇) over XOK,Σ .

However, any two such extensions are isomorphic over XOK,Σ′ for some sufficiently
large Σ′.

2.1.2. From now on, X is P1
OK −{0, 1,∞}. Let L be a finite extension of K and w

a place of L over the finite place v. We view L as a subfield of Cp via w. Fix an
x0 ∈ X(OLw). Given a positive real number r ≤ 1, we denote by D(x0, r) the open
rigid analytic disc of radius r, with center x0. The set of Cp-points of the disc is

{x ∈ X(Cp) | |x− x0|p < r},

where the norm | · |p on Lw → Cp is normalized so that |p|p = p−1. More precisely,
this disc is the complement in P1

Lw
of the affinoid subdomain defined by the affinoid

algebra2 { ∞∑
k=0

ak(x− x0)−k ∈ Lw[[(x− x0)−1]] | lim
k→∞

|ak|pr−k = 0

}
.

Let M∨ be the dual vector bundle of M . It is naturally endowed with the
connection such that for any local sections m, l of M and M∨ respectively,

d〈l,m〉 = 〈∇M∨(l),m〉+ 〈l,∇M (m)〉.

1We could have defined the p-curvatures by considering derivations on Xkv for v a place of
K. For primes which are unramified in K, the two definitions are essentially equivalent, and the
present definition will allow us to formulate the inequalities which arise below in a more uniform
manner.

2This makes sense if one works with Berkovich spaces. If one works with classical rigid an-
alytic spaces, one may view D(x0, r), being ∪r′≤r,r′∈pQD(x0, r′), as an admissible open subset.
Nevertheless, for the discussion in this paper, it suffices to work with r ∈ pQ.
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Definition 2.1.3. If (V,∇) is a vector bundle with connection over some scheme
or rigid space, we denote by 〈V,∇〉⊗, or simply 〈V 〉⊗, if there is no risk of confusion
regarding the connection ∇, the category of ∇-stable sub quotients of all the tensor
products V ⊗m⊗ (V ∨)⊗n for m,n ≥ 0. If the scheme (resp. rigid space) over which
V is a vector bundle is connected (resp. has its associated Berkovich space to be
connected), then this is a Tannakian category.

Definition 2.1.4. Let Fw be the field of fractions of the ring of all rigid analytic
functions on D(x0, r){ ∞∑

k=0

ak(x− x0)k ∈ Lw[[(x− x0)]] | ∀r′ < r, lim
k→∞

|ak|p(r′)k = 0

}
and ηw : Spec(Fw)→ X the natural map. Consider the fiber functor

ηw : 〈M |D(x0,r)〉
⊗ → VecFw ; V 7→ Vηw .

The p-adic differential Galois group Gw(x0, r) is defined to be the automorphism
group Aut⊗ ηw of ηw.

In other words, Gw(x0, r) is the subgroup of GL(Mηw) which stabilizes all objects
in 〈M |D(x0,r)〉⊗.

For v|p a finite place of K, we will say that (M,∇) has good reduction at v if
(M,∇) extends to a vector bundle with connection on XOv . The following lemma
gives the basic relation between the p-curvature and the p-adic differential Galois
group.

Lemma 2.1.5. Let x0 ∈ X(OLw) and suppose that (M,∇) has good reduction at
v. If the p-curvature (defined in 2.1.1) vanishes, then the p-adic differential Galois
group Gw(x0, p

− 1
p(p−1) ) is trivial.

Proof. To show that Gw(x0, p
− 1
p(p−1) ) is trivial, we have to show that the restriction

of M to D(x0, p
− 1
p(p−1) ) admits a full set of solutions. It is well known that this is

the case when ψp ≡ 0, but for the convenience of the reader we sketch the argument.
See [Bos01, section 3.4.2, prop. 3.9] and [CL02, Lem. 7.6] for related arguments.

Assume there is an extension of (M,∇) to a vector bundle with connection
(M,∇) over XOv . If m0 is any section of M, then a formal section in the kernel
of ∇ is given by

m =

∞∑
i=0

∇
(
d

dx

)i
(m0)

(x− x0)i

i!
(−1)i.

Since ψp ≡ 0 (recall that this means the p-curvature vanishes on XOv ⊗ Z/pZ),
we have ∇( d

dx )p(M) ⊂ pM. Hence ∇( d
dx )i(m0) ⊂ p[

i
p ]M, where [ ip ] is the largest

integer no greater than i
p , and one sees easily that the series defining m converges

on D(x0, p
− 1
p(p−1) ). Since this map is identity when restricted to Mx0

, this map
defines a section of

M
∣∣
D(x0,p

− 1
p(p−1) )

→
(
M
∣∣
D(x0,p

− 1
p(p−1) )

)∇=0

.

�
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Remark 2.1.6. Let X0 be a smooth geometrically irreducible curve over K. Let v
be a finite place of K. Assume that X0,Ov is a spread out of X0 over Ov such that
X0,Ov is smooth at some point x0 ∈ X0,Ov (Ov). Then the v-adic neighborhood of
x0 in X0 is a disc of radius 1.

(1) Unlike the notion of p-curvature, the definition of Gw(x0, r) does not require
(M,∇) to have good reduction. It depends only on the choice of Ov-model
X0,Ov of X0 (which we of course always take to be P1

Ov − {0, 1,∞} when
X0 = P1

K − {0, 1,∞}), which is used to define D(x0, r), but not on how
(M,∇) is extended.

(2) If (M,∇) admits a Frobenius structure with respect to some Frobenius
lifting on X0,Ov , then Gw(x0, 1) is trivial whenever x0 ∈ X0,Ov (Ov). See
for example [Ked10, 17.2.2, 17.2.3].

2.2. The main theorem and a Tannakian consequence. From now on we set
x0 = 1+

√
3i

2 , which corresponds to the elliptic curve with smallest stable Faltings
height. In section 5, we will give a theoretical explanation of why this choice gives
the best possible estimates. We set Gw = Gw

(
1+
√

3i
2 , p−

1
p(p−1)

)
, and we take L to

be a number field containing K(
√

3i).
By Lemma 2.1.5, the p-adic differential Galois group Gw is trivial when the

vector bundle with connection (M,∇) has good reduction over v, and ψp ≡ 0. This
motivates the following assumption:

Assumption 2.2.1. The vector bundle with connection (M,∇) satisfies that
(1) ψp ≡ 0 for all but finitely many finite primes p, and
(2) for every finite prime p, we have (∗)p: the group Gw = {1} for all finite

places w of L above p.

By definition, (∗)p means that for every w|p, all horizontal sections of (M,∇)

centered at x0 have convergence radii to be at least p−
1

p(p−1) . By what we have
just seen, for all but finitely many p, the condition (1) makes sense, and implies
(2). Thus (2) is only an extra condition at finitely many primes. In particular, if
for all finite places, the p-curvatures are defined and vanish, then both conditions
are satisfied. As above, the definition does not depend on the extension of (M,∇)
to XOK,Σ or the choice of primes Σ.

Theorem 2.2.2. Let (M,∇) be a vector bundle with a connection over XK =
P1
K − {0, 1, ∞}. If Assumption 2.2.1 holds for (M,∇), then (M,∇) admits a full

set of rational solutions.

The proof of this theorem is the subject of sections 3, 4.

Remark 2.2.3. André has pointed out that, if one replaces (2) in Definition 2.2.1 by
the condition that the so called generic radii 3 of all formal horizontal sections of
(M,∇) are at least p−

1
p(p−1) , then the analogue of Theorem 2.2.2 admits an easier

proof. Indeed if w|p, and the w-adic generic radius is at least p−
1

p(p−1) , then by
[BS82, Sec. IV], p cannot divide the (finite by (1) and Katz’s theorem [Kat70, Thm.
13.0]) order of the local monodromies of the complex local system corresponding
to (MC,∇) around 0, 1 and ∞. If this condition holds for all w, then the local

3[Ked10, Def. 9.4.4] and see [Ked10, Prop. 9.7.5] for the geometric interpretation as the con-
vergence radius at a generic point.
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monodromies around 0, 1,∞ are all trivial and hence the global monodromy is
trivial.

Once one uses (1) to show that the local monodromies are finite, this argument
is ‘prime by prime’. We do not know if Theorem 2.2.2 admits a similar proof,
which avoids global arguments, although this seems to us unlikely. In any case, our
method allows us to deal with some cases when X is an affine elliptic curve or the
projective line minus more than three points. See Theorem 6.1.5 and Proposition
7.2.1. The conclusion of both results is that (M,∇) has finite monodromy and we
will give examples in section 7 with nontrivial monodromy. It seems unlikely that
these results can be proved with a ‘prime by prime’ argument.

Applying Lemma 2.1.5, we have the following corollary:

Corollary 2.2.4. If (M,∇) is defined over XZ and the p-curvature vanishes for
all primes, then (M,∇) admits a full set of rational solutions.

2.2.5. As in [Kat82], we can use our main theorem to give a description of the
differential Galois group of any vector bundle with a connection (M,∇) over XK .

Let K(X) be the function field of XK . Let ω be the fibre functor on 〈M〉⊗ given
by restriction to the generic point of XK . Write Ggal = Aut⊗ ω ⊂ GL(MK(X)) for
the corresponding differential Galois group (see [Kat82, Ch. IV] and [And04, 1.3,
1.4]).

Let G be the smallest closed subgroup of GL(MK(X)) such that:
(1) For almost all p, the reduction of LieG mod p contains ψp.
(2) G⊗ Fw contains Gw for all w, where, as above, Fw is the field of fractions

of the ring of rigid analytic functions on D
(
x0, p

− 1
p(p−1)

)
.

Let g be the smallest Lie subalgebra of GL(MK(X)) such that for almost all p,
the reduction of g mod p contains ψp. As proved in [Kat82, Prop. 9.3], g is contained
in Lie Ggal. Moreover, Gw is contained in Ggal ⊗ Fw by definition. Hence G is a
subgroup of Ggal. We will see from the proof of the following theorem that (in the
presence of the condition (1)), to define G we only need to impose the condition
(2) at finitely many primes.

Theorem 2.2.6. Let (M,∇) be a vector bundle with a connection defined over
XK = P1

K − {0, 1, ∞}. Then G = Ggal.

Proof. We follow the idea of the proof of Theorem 10.2 in [Kat82]. See also [And04,
Prop. 3.2.2].

By a theorem of Chevalley, there exists W in 〈M〉⊗ and a line L′ ⊂ WK(X)

such that G is the intersection of Ggal with the stabilizer of L′. Let W ′ be the
smallest ∇-stable submodule of WK(X) containing L′. Then W ′ has a K(X)-basis
of the form {l, ∇l, · · · , ∇r−1l} where l ∈ L′, r = rkW ′, and we have written ∇il
for ∇( d

dx )i(l). Replacing W by W ′ ∩W, we may assume that WK(X) = W ′. Then
L = L′ ∩W is a line bundle in W.

As above, let g be the smallest algebraic Lie subalgebra of GL(MK(X)) such
that for almost all p the reduction of g mod p contains ψp. Let Σ be a finite set
of primes of Q such that (M,∇) extends to a vector bundle M with connection
∇ : M →M⊗ ΩXOK,Σ over XOK,Σ , and g mod p contains ψp for p /∈ Σ. We also
assume that Σ contains all primes p ≤ r.

Let U ⊂ XOK,Σ be a non-empty open subset such that l ∈ L|U , L and W ex-
tend to vector bundles with connection L and W respectively, in 〈M|U 〉⊗, and
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{l, ∇l, · · · , ∇r−1l} forms a basis of W. Let N := SymrW ⊗ (detW∨) with the in-
duced connection. The argument in [Kat82] implies that for p /∈ Σ, the p-curvature
of (N ,∇) vanishes. Let N := NXK∩U . We will use the condition (2) in the defini-
tion of G to show that Gw acts trivially on Nηw . We already know this for p /∈ Σ,
by Lemma 2.1.5. Thus we will only need to use (2) for p ∈ Σ. Assuming this for
a moment, we can apply Theorem 2.2.2 to (N,∇) and conclude that it has trivial
global monodromy. Hence Ggal acts as a scalar on W . In particular, Ggal stabilizes
L so, by the definition of L, Ggal = G.

Let D := D(x0, p
− 1
p(p−1) ). Recall that the category 〈M |D(x0,r)〉⊗ ⊗ Fw is ob-

tained from 〈M |D(x0,r)〉⊗ by taking the same collection of objects and tensoring
the morphisms by Fw. By the definition of L, the group Gw acts as a charac-
ter χ on Lηw . The morphism Lηw → Wηw is a map between Gw-representations.
By the equivalence of categories between 〈M |D(x0,r)〉⊗ ⊗ Fw and the category of
linear representations of Gw over Fw, this morphism is a finite Fw-linear combi-
nation of maps L|D → WD in 〈M |D(x0,r)〉⊗. In other words, there are a finite
number of ∇-stable line bundles Wi ⊂ WD, with Gw acting on Wi,ηw as χ such
that L|D ⊂

∑
Wi. In particular, l|D =

∑
ai ·wi, where ai ∈ Fw and wi ∈Wi. Since∑

Wi is ∇-stable, ∇nl ∈
∑
Wi and Gw acts as χ on ∇nl|D. As Wηw is generated

by {l, ∇l, · · · , ∇r−1l}|D, the group Gw acts as χ on Wηw . Hence Gw acts trivially
on Nηw . �

Using the same idea as in the last paragraph of the proof above, we have the
following lemma which is of independent interest.

Lemma 2.2.7. Let Hw ⊂ Ggal be the smallest closed subgroup such that Gw ⊂
Hw ⊗K(X) Fw. Then Hw is normal in Ggal.

Proof. We need the following fact (see [And92, Lem. 1]): Assume that G is a
algebraic group over some field E. Let H ⊂ G be a closed subgroup and V an
E-linear faithful algebraic representation of G. Then H is a normal subgroup of
G if for every tensor space V m,n := V ⊗m ⊗ (V ∨)⊗n, and for every character χ of
H over E, G stabilizes (V m,n)χ, the subspace of V m,n where H acts as χ. If G is
connected, then these two conditions are equivalent.

We apply this result to Hw ⊂ Ggal and V = MK(X). Let L ⊂ V m,n be a line,
and W ⊂ V m,n the smallest ∇-stable subspace containing L. It suffices to show
that, if Hw acts via χ on L, then Hw acts via χ on W. This shows that (V m,n)χ is
∇-stable, and hence that Ggal stabilizes (V m,n)χ.

As in the proof of the theorem above, Gw acts onW via χ. HenceHw is contained
in the subgroup of Ggal which acts on W via χ. �

3. Algebraicity: an application of André’s theorem

The main goal of this section is to prove a weaker version of Theorem 2.2.2.
Namely, that if (M,∇) is a vector bundle with a connection over XK = P1

K −
{0, 1, ∞} satisfying Assumption 2.2.1, then (M,∇) admits a full set of algebraic
solutions.

3.1. André’s algebraicity criterion.

3.1.1. As the coordinate ring of XK a principal ideal domain, M is free. Hence we
may view ∇ as a system of first-order homogeneous differential equations. Thus
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M ∼= OmXK and ∇( d
dx )y = dy

dx−A(x)y, where y is a section ofM , x is the coordinate
of X, and A(x) is an m×m matrix with entries in OXK = K[x±, (x− 1)±].

As above, we set x0 = 1
2 (1 +

√
3i). If y0 ∈ Lm, there exists y ∈ L[[x − x0]]m

such that y(x0) = y0 and ∇(y) = 0. Our goal is to show that if (M,∇) satisfies
Assumption 2.2.1, then y is algebraic.

3.1.2. Now let y ∈ K[[x]], and let v be a place of K. If v is finite, we denote by p the
characteristic of the residue field. Let | · |v be the v-adic norm normalized so that

|p|v = p−
[Kv :Qp]

[K:Q] if v is finite, and |x|v = |x|
− [Kv :R]

[K:Q]
∞ for x ∈ K, if v is archimedean,

where |x|∞ denotes the Euclidean norm on Kv.When there is no confusion, we will
also write | · | for | · |∞. For a positive real number R, we denote by Dv(0, R) the
rigid analytic z-disc of v-adic radius R. That is Dv(0, R) is defined by the inequality
|z|v < R.

We first state the definition of v-adic uniformization and the associated radius
Rv defined in André’s paper ([And04, Def. 5.4.1]).

Definition 3.1.3.

(1) For R ∈ R+, a v-adic uniformization of y by Dv(0, R) is a pair of meromor-
phic v-adic functions g(z), h(z) on Dv(0, R) such that h(0) = 0, h′(0) = 1
and y(h(z)) is the germ at 0 of the meromorphic function g(z).

(2) Let Rv be the supremum of the set of positive real R for which a v-adic
uniformization of y by Dv(0, R) exists. We call Rv the v-adic radius (of
uniformizability).

3.1.4. In order to state the algebraicity criterion, we need to introduce two con-
stants τ(y), ρ(y), which play similar roles as the global-boundedness condition in
the Borel–Dwork rationality criterion. Let y =

∑∞
n=0 anx

n. We define

τ(y) = inf
l

lim sup
n

∑
v, p≥l

1

n
sup
j≤n

log+ |aj |v,

ρ(y) =
∑
v

lim sup
n

1

n
sup
j≤n

log+ |aj |v,

where log+ is the positive part of log, that is log+(a) = log(a) if a > 1 and is zero
otherwise. The following is a slight reformulation of André’s criterion.

Theorem 3.1.5 ([And04, Thm. 5.4.3, Cor. 5.4.5]). Let y ∈ K[[x]] such that τ(y) =
0 and ρ(y) < ∞. For instance, y can be taken to be a (component of a) formal
solution of (M,∇) with vanishing p-curvatures for all but finitely many primes. Let
Rv be the v-adic radius of y. If

∏
all places v Rv > 1, then y is algebraic over K(x).

In our applications of this theorem, Rv will always be finite and non-zero and the
infinite product (independent of the choice of the order of multiplication) converges
to a finite number. In general, the v-adic radius Rv may be infinity and the product
of all but finitely many places may converge to zero. We refer the reader to André’s
paper for a precise definition of the infinite product in such situations. We remark
that we could have also used Thm. 6.1 and Prop. 5.15 in [BCL09] in place of André’s
Theorem.
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3.2. Estimate of the radii at archimedean places. In this subsection, w is
always an archimedean place. For any real number R, we use D(0, R) to denote the
complex analytic disc centered at 0 of radius R (with respect to Euclidean norm).
We begin with the following simple lemma.

Lemma 3.2.1. Suppose that φ : D(0, 1) → P1
C − {0, 1,∞} is a holomorphic map

such that φ(0) = x0 and φ′(0) 6= 0. Then for any the number field L where the
connection and the initial conditions x0, y0 are defined, the w-adic radius Rw of
each component of the formal horizontal section y of (M,∇) such that y(x0) = y0

is no less than |φ′(0)|w.

Proof. Let z be the complex coordinate onD(0, 1). Consider the formal power series
φ∗y. The vector valued power series g = φ∗y is a formal solution of the differential
equations dg

dz = (φ′(z))A(φ(z))g, which is associated to the vector bundle with
connection (φ∗M,φ∗∇). Since D(0, 1) is simply connected, g arises from a vector
valued holomorphic function on D(0, 1) which we again denote by g.

Consider the holomorphic map

φ̃ : D(0, R)→ P1
C − {0, 1,∞}, x 7→ φ(x/φ′(0)).

We have that φ̃′(0) = 1 and the previous discussion shows that φ̃∗y converges on
D(0, R). Therefore, by Definition 3.1.3, we have that Rw ≥ |φ′(0)|w. �

3.2.2. Given x0, the upper bound (in terms of x0) of |φ′(0)| for all such φ in the
above lemma has been studied by Landau and other people. Based on the work
of Landau and Schottky, Hempel gave an explicit upper bound (see [Hem79, Thm.
4]) that can be reached when x0 = −1+

√
3i

2 . For the completeness of our paper, we
give some details on the computation of |φ′(0)|.

3.2.3. We recall the definition of θ-functions and their classical relation with the
uniformization of P1

C − {0, 1,∞}. Following the notation of [Igu62] and [Igu64], let

θ00(t) =
∑
n∈Z

exp(πin2t), θ01(t) =
∑
n∈Z

exp(πi(n2t+n)), θ10(t) =
∑
n∈Z

exp(πi(n+
1

2
)2t)

These series converge pointwise to holomorphic functions on the upper half plane
H, which we denote by the same symbols.

Lemma 3.2.4. ([Igu64, p. 243]) These holomorphic functions θ4
00, θ

4
01, θ

4
10 are mod-

ular forms of weight 2 and level Γ(2). Moreover, there is an isomorphism from the
ring of modular forms of level Γ(2) to C[X,Y, Z]/(X − Y − Z) given by sending
θ4

00, θ
4
01 and θ10 to X,Y and Z respectively.

3.2.5. Let λ =
θ4
00(t)

θ4
01(t)

: H → P1(C) and t0 = 1
2 (−1 +

√
3i). Then λ : H → P1(C) −

{0, 1,∞} is a covering map with Γ(2) as the deck transformation group ([Cha85],
VII, §7). In particular, the projective curve defined by v2 = u(u − 1)(u − λ(t)) is
an elliptic curve. Moreover, it is isomorphic to the elliptic curve C/(Z + tZ) (see
loc. cit.).

We need the following basic facts mentioned in [Igu62, p. 180] and [Igu64, p. 244]
in this section and section 5:

Lemma 3.2.6.
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(1) Let η be the Dedekind eta function defined by η = q1/24
∏

(1 − qn), where
q = e2πit. We have 28η24 = (θ00θ01θ10)8. In particular, the holomorphic
functions θ00, θ01, θ10 are everywhere nonzero on the upper half plane.

(2) The derivative λ′(t0) equals to πi( θ00(t0)θ10(t0)
θ01(t0) )4.

(3) The holomorphic function 1
2 (θ8

00 + θ8
01 + θ8

10) is the weight 4 Eisenstein form
of level SL2(Z) with constant term 1 in its Fourier expansion; the holomorphic
function 1

2 (θ4
00 + θ4

01)(θ4
00 + θ4

10)(θ4
01 − θ4

10) is the weight 6 Eisenstein form of
level SL2(Z) with constant term 1 in its Fourier expansion.

Lemma 3.2.7. The map λ sends t0 to x0.

Proof. Since the automorphism group of the lattice Z+t0Z, hence that of the elliptic
curve C/(Z+ t0Z) is of order 6, the automorphism group of the elliptic curve v2 =
u(u− 1)(u− λ(t0)) must also be of order 6. In particular, λ must send t0 to either
1
2 (1 +

√
3i) or 1

2 (1−
√

3i) (the roots of 0 = j(t0) = 28 (λ(t0)2−λ(t0)+1)3

λ(t0)2(λ(t0)−1)2 ). Moreover,
from the definition of θ, we can easily see that λ(t0) has positive imaginary part. �

Proposition 3.2.8. Let y be a component of a formal horizontal section of (M,∇).

Then R
[L:Q]

[Lw :R]
w ≥ 3Γ(1/3)6

28/3π3 = 5.632 · · · .

Proof. Consider the map λ◦α : D(0, 1)→ XC, where α : D(0, 1)→ H is a holomor-
phic isomorphism such that α(0) = t0, that is, α : z 7→ − 1

2 +
√

3i
2

z+1
1−z . We would

like to apply Lemma 3.2.1 to the map λ ◦ α, which maps 0 ∈ D(0, 1) to x0 since
λ(t0) = λ( 1

2 (−1 +
√

3i)) = x0 by Lemma 3.2.7.
Note that |x0| = |1 − x0| = 1, so we have |θ00(t0)| = |θ01(t0)| = |θ10(t0)|. By

Lemma 3.2.6, we have

|λ′(t0)| = |πi(θ00(t0)θ10(t0)

θ01(t0)
)4| = π|θ00(t0)|4 = π|28η24(t0)|1/6.

We now apply the Chowla–Selberg formula (see [SC67]) to Q(
√

3i):

|η(t0)|4=(t0) =
1

4π
√

3

(
Γ(1/3)

Γ(2/3)

)3

.

Then we have

|λ′(t0)| = π|28η24(t0)|1/6 =
π24/3

4π
√

3=(t0)

(
Γ(1/3)

Γ(2/3)

)3

.

We get

|(λ ◦ α)′(0)| = |λ′(t0)| · |α′(0)| = π24/3

4π
√

3=(t0)

(
Γ(1/3)

Γ(2/3)

)3

· 2=(t0) =
3Γ(1/3)6

28/3π3

by the fact Γ(1/3)Γ(2/3) = 2π√
3
. �

3.3. Algebraicity of formal solutions.

Proposition 3.3.1. Let (M,∇) be a vector bundle with a connection over P1
K −

{0, 1,∞}. If Assumption 2.2.1 holds for (M,∇), then (M,∇) is locally trivial with
respect to the étale topology of P1

K − {0, 1,∞}.
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Proof. Consider y ∈ L[[(x− x0)]]. By Proposition 3.2.8, we have∏
w|∞

Rw ≥ 5.632 · · · .

If w|p is a finite place of L, then since Gw is trivial, (M,∇) has a full set of
solutions over D(x0, |p|

1
p(p−1) ). In particular, y is analytic on D(x0, |p|

1
p(p−1) ). Hence∏

w|p

Rw ≥
∏
w|p

|p|
− 1
p(p−1)

w = p−
1

p(p−1) .

and
log(

∏
w

Rw) ≥ log 5.6325 · · · −
∑
p

log p

p(p− 1)
> 0.967 · · · .

Applying Theorem 3.1.5, we have that y is algebraic. Hence (M,∇) is étale
locally trivial. �

Remark 3.3.2. It is possible to define Gw using different radii such that the proof
of the above proposition continues to hold. Here are two examples:

(1) Set G′w := Gw(x0,
1
4 ) for all primes w|2 and G′w = Gw(x0, 1) for other w.

In this situation, we have the following estimate of the w-adic radii of a formal
solution.

log(
∏
w

Rw) ≥ log 5.6325 · · · − log 4 > 0.342 · · · .

Then Theorem 3.1.5 implies that, if (M,∇) is a vector bundle with connection
on XK such that ψp ≡ 0 for almost all p, and G′w = {1} for all w, then (M,∇)
has finite monodromy. This result cannot be proved ‘prime by prime’ because the
condition at w|2 is too weak to imply that 2 does not divide the order of the local
monodromies.

We define G′ in the same way as G in section 2.2.5 but replacing Gw by G′w.
Applying the same argument as in Theorem 2.2.6, we have LieG′ = LieGgal.

The equality LieG′ = LieGgal fails in general, if one drops condition (1) in
section 2.2.5, and defines G′ using just the analogue of condition (2) (that is with
Gw replaced by G′w). (The condition (1) is used to guarantee the assumption that
τ(y) = 0, ρ(y) <∞ in Theorem 3.1.5.)

Here is an example. We consider the Gauss–Manin connection on H1
dR of the

Legendre family of elliptic curves. Since the Legendre family has good reduc-
tion at primes w - 2, H1

dR admits a Frobenius structure at such primes, so that
Gw = {1} (see Remark 2.1.6). For w|2 we have Gw

(
x0,

1
4

)
= {1} by a direct com-

putation: as in section 5.2 below, we see that the matrix giving the connection lies
in 1

2 End(MOK ) ⊗ Ω1
XOK

and a formal horizontal section of a general differential
equation of this form will have convergence radius 1

4 . Hence, the smallest group
containing all p-adic differential Galois groups is trivial while LieGgal = sl2. In par-
ticular, G′ (defined with the condition (1)) is the smallest group containing almost
all ψp and we recover a special case of [Kat82, thm. 11.2].

(2) We now consider a variant of our result when X equals to P1 minus more
than three points. Let D be the union of {0} and all 8-th roots of unity and
let X = A1 − D. Let u0 be one of the preimages of x0 of the covering map
f : X → P1 − {0, 1,∞}, u 7→ x = − 1

4 (u4 + u−4 − 2). We may assume that the
number field L contains u0.
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We consider the following weaker version of p-curvature conjecture:

Proposition 3.3.3. Let (N,∇) be a vector bundle with connection over X. Assume
that the p-curvatures vanish for almost all p and that for any finite place w, all the
formal horizontal sections of (N,∇) converges over the largest disc around u0 in
XLw . Then (N,∇) must be étale locally trivial.

By direct calculation, the w-adic distance from u0 to D is |2|
1
4
w when w is fi-

nite. Then our assumption means that all the formal horizontal sections of (N,∇)

centered at u0 converge over D(u0, |2|
1
4
w).

Proof of the proposition. By applying Theorem 3.1.5 to the formal horizontal sec-
tions around u0, one only need to show that

∏
w|∞Rw ≥ 21/4. Fix an archimedean

place w. Since the uniformization λ ◦ α : D(0, 1) → P1(C) − {0, 1,∞} factors
through f : A1(C)−D → P1(C)−{0, 1,∞}, then for the formal horizontal sections
of (N,∇), we have Rw ≥ |5.632 · · · |w/|f ′(u0)|w by the chain rule and Lemma 3.2.1.
A direct computation shows that

∏
w|∞ |f ′(u0)|w = 4 and then

∏
w|∞Rw ≥ 21/4

by the fact 5.6325... > 4 · 21/4. �

We now formulate another possible proof of this proposition. The idea is to
reduce the problem for (N,∇) over X to f∗(N,∇) over P1 − {0, 1,∞}. Over P1 −
{0, 1,∞}, the assumption on (N,∇) shows that for f∗(N,∇), the p-adic differential
group G′w := Gw(x0, 1) = 1 for w - 2. Although for w|2, the 2-adic differential
group G′w := Gw(x0, 2

−9/4) is not trivial, we still have Rw ≥ |2|9/4w by considering
the uniformization h(z) = − 1

4 (( z4 + u0)4 + ( z4 + u0)−4 − 2). More precisely, by the
assumption on (N,∇), we can take R = |4|w · |2|1/4w in Definition 3.1.3 and check
that |h′(0)|w = 1 and h(0) = x0. Then we apply André’s theorem and conclude
that f∗(N,∇) and hence (N,∇) admit a full set of algebraic solutions.

If one replaces the assumption in Proposition 3.3.3 by that the generic radii of
all formal horizontal sections of (N,∇) are at least |2|

1
4
w for all w finite, the results

in [BS82] does not apply directly due to the fact that the points in D are too close
to each other in Lw when w|2. However, one may modify the argument there,
especially a modified version of eqn. (3) in loc. cit., to see that the condition on
generic radii would imply trivial monodromy of (N,∇).

4. Rationality: an application of a theorem of Bost and
Chambert-Loir

In this section, we will first review the rationality criterion due to Bost and
Chambert-Loir for an algebraic formal function using capacity norms. Then we
will use the moduli interpretation of X to compute the capacity norm and verify
that in our situation this theorem is applicable.

4.1. Review of the rationality criterion. We will review the definition of adélic
tube adapted to a given point, the definition of capacity norms for the special case
we need, and the rationality criterion in [BCL09].

Definition 4.1.1. ([BCL09, Definition 5.16]) Let Y be a smooth projective curve
over OK [1/N ], and let (x0) be the divisor corresponding to a given point x0 ∈ Y (L)
for some number field L ⊃ K. For each finite place w of L, let Ωw be a rigid analytic
open subset of YLw containing x0. For each archimedean place w, we choose one
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embedding σ : L→ C corresponding to w and we let Ωw be an analytic open set of
Yσ(C) containing x0. The collection (Ωw) is an adélic tube adapted to (x0) if the
following conditions are satisfied:
(1) If w is an archimedean place, the complement of Ωw is non-polar (e.g. a finite

collection of closed domains and line segments); if w is real, we further assume
that Ωw is stable under complex conjugation.

(2) If w is a finite place, the complement of Ωw is a nonempty affinoid subset;4

(3) for almost all finite places w, Ωw is the tube of the specialization of x0 in the
special fiber of Y. That is, Ωw, is the open unit disc with center at x0.

We call (Ωw) a weak adélic tube if we drop the condition that Ωw is stable under
complex conjugation when w is real.

4.1.2. Now let Y = P1
OK . The weak adélic tube that we will use can be described

as follows:
(1) For an archimedean place w, Ωw will be an open simply connected domain

inside P1
C − {0, 1,∞}.

(2) For a finite place w, Ωw will be chosen to be an open disc of form D(x0, ρw).
(3) For almost all finite places w, ρw = 1.

4.1.3. For Ωw as above, Bost and Chambert-Loir have defined the local capacity
norms || · ||cap

w (see [BCL09, Chapter 5]). These are norms on the line bundle Tx0
X

over Spec(OL). The Arakelov degree5 of Tx0
X with respect to these norms plays

the same role as log(
∏
Rw) in section 3. This degree can be computed as a local

sum after choosing a section of this bundle. We will use the section d
dx , in which

case one has the following simple description of local capacity norms:
(1) For an archimedean place w, let φ : D(0, R) → Ωw be a holomorphic isomor-

phism that maps 0 to x0, then || ddx ||
cap
w = |Rφ′(0)|−1

w (see [Bos99, Example
3.4]).

(2) For a finite place w, || ddx ||
cap
w = ρ−1

w (see [BCL09, Example 5.12].

Now, we can state the rationality criterion:

Theorem 4.1.4. ([BCL09, Theorem 7.8]) Let (Ωw)be an adélic tube adapted to
(x0). Suppose y is a formal power series over X centered at x0 satisfying the
following conditions:
(1) For all w, y extends to an analytic meromorphic function on Ωw;
(2) The formal power series y is algebraic over the function field K(X).

(3) The Arakelov degree of Tx0
X defined as

∑
w

− log(|| d
dx
||cap
w ) is positive.

Then y is rational.

Corollary 4.1.5. The theorem still holds if we only assume that (Ωw) is a weak
adelic tube.

Proof. The idea is implicitly contained in the discussion in [Bos99, section 4.4]. We
only need to prove that y is rational over XL′ , where L′/L is a finite extension

4In this paper, we only need to work with affinoids in rigid analytic spaces. We remark that
the theorems that we cite remain true if one works with Berkovich spaces thanks to the work of
Thuillier[Thu05].

5See section 5.1 for the definition of the Arakelov degree of an Hermitian line bundle. In
[BCL09], they construct an integral model of X such that the local capacity norms coincide with
the norms defined by the integral structure.
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which we may assume does not have any real places. Let w be a place of L and w′
a place of L′ over w.

If w is archimedean, choose an embedding σ′ : L′ → C corresponding to w′ which
extends a chosen embedding σ : L → Lw corresponding to w. We have a natural
identification Yσ′(C) = Yσ(C), and we take Ωw′ := Ωw. If w is a finite place, we set
Ωw′ = Ωw ⊗Lw Lw′ .

Since L′ does not have any real places, the weak adélic tube (Ωw′) is an adélic
tube. The first two conditions in Theorem 4.1.4 still hold and the Arakelov degree
of Tx0X with respect to (Ω′w) is the same as that of Tx0X with respect to (Ωw).
We can apply Theorem 4.1.4 to y over XL′ and conclude that y is rational. �

4.2. Proof of the main theorem. Let y be the algebraic formal function which
is one component of the formal horizontal section y of (M,∇) over XK .

Lemma 4.2.1. Let y be as above. Then this formal power series centered at x0

has convergence radius equal to 1 for almost all finite places.

Proof. Since the covering induced by y is finite étale over XL, by Proposition 3.3.1,
it is étale over XOw at x0 for almost all places. For such places, we have ρw = 1 by
lifting criterion for étale maps. �

4.2.2. We now define an adélic tube (Ωw) adapted to x0. For an archimedean place
w, we choose the embedding σ : L → C corresponding to w such that σ(x0) =

(1 +
√

3i)/2. Let Ω̃ be the open region in the upper half plane cut out by the
following six edges (see the attached figure): <t = − 3

2 , |t + 2| = 1, |t + 2
3 | = 1

3 ,
|t+ 1

3 | =
1
3 , |t−1| = 1, and <t = 1

2 . This is a fundamental domain of the arithmetic
group Γ(2) ⊂ SL2(Z).

We define Ωw to be λ(Ω̃). Here λ : H → P1(C)−{0, 1,∞} is the map defined in
3.2.5.

For w finite, we choose Ωw to be D(x0, 1) if y is étale over XOw at x0; otherwise,
we choose Ωw to be D(x0, p

− 1
p(p−1) ).
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The collection (Ωw) is a weak adélic tube and y extends to an analytic (in
particular meromorphic) function on each Ωw by Lemma 4.2.1, Lemma 3.2.1, and
Lemma 2.1.5.

Lemma 4.2.3. The Arakelov degree of Tx0
X with respect to the adélic tube (Ωw)

defined above is positive.

Proof. We want to give a lower bound of (|| ddx ||
cap
w )−1, the capacity of Ωw. Let a =

− 3
2 +
√

7
2 i. On the line <(t) = − 3

2 , the point a is the closest point to t0 = 1
2 (−1+

√
3i)

with respect to Poincaré metric because the geodesic passing through a and t0 is
perpendicular to the vertical line =t = −3/2. The stabilizer of t0 in SL2(Z) has
order 3, and permutes the geodesics <t = − 3

2 , |t+
2
3 | =

1
3 , |t−1| = 1, and this action

preserves the Poincaré metric. Using this, together with the fact that the distance
to t0 is invariant under z 7→ −1 − z̄, one sees that the distance from any point on
the boundary of Ω̃ to t0 is at least that from a to t0. Since α : D(0, 1)→ H (defined
in the proof of Prop. 3.2.8) preserves the Poincaré metrics, α−1(Ω̃) contains a disc
with respect to the Poincaré radius equal to the distance from t0 to a.

In D(0, 1), a disc with respect to Poincaré metric is also a disc in the Euclidean
sense. Hence α−1(Ω̃) contains a disc of Euclidean radius

|α−1(a)| = |(a− t0)/(a− t̄0)| = 0.45685 · · · .

Since λ maps the fundamental domain Ω̃ isomorphically onto Ωw, by 4.1.3, the local
capacity (|| ddx ||

cap
w )−1 is at least |(a− t0)/(a− t̄0)| · |λ′( 1

2 (−1 +
√

3i))|.
By 4.1.3, we have − log(|| ddx ||

cap
w ) ≥ − log p

p(p−1) when w|p. Recall in Proposition
3.2.8 we have |λ′( 1

2 (−1 +
√

3i))| = 5.632 · · · , hence the Arakelov degree of Tx0
X is∑

w

− log(|| d
dx
||cap
w ) > log(5.6325 · · · × 0.45685 · · · )−

∑
p

log p

p(p− 1)
> 0.184 · · · .

�

Now we are ready to prove Theorem 2.2.2:

Proof. Applying Proposition 3.3.1, we have a full set of algebraic solutions y.
Choosing the weak adélic tube as in 4.2.2 and applying Corollary 4.1.5 (the as-
sumptions are verified by 4.2.2 and Lemma 4.2.3), we have that these algebraic
solutions are actually rational.

This shows that (M,∇) has a full set of rational solutions over XL. Since for-
mation of ker(∇) commutes with the finite extension of scalars ⊗KL, this implies
that (M,∇) has a full set of rational solutions over XK . �

5. Interpretation using the Faltings height

In this section, we view XZ[ 1
2 ] as the moduli space of elliptic curves with level 2

structure. Let λ0 ∈ X(Q̄) and E the corresponding elliptic curve. Using the
Kodaira–Spencer map, we will relate the Faltings height of E with our lower bound
for the product of radii of uniformizability (see section 3) at archimedean places of
the formal solutions in ÔXK ,λ0

. We will focus mainly on the case when λ0 ∈ X(Z̄)
and sketch how to generalize to λ0 ∈ X(Q̄) at the end of this section. In this
section, unlike the previous sections, we will use λ as the coordinate of X.
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5.1. Hermitian line bundles and their Arakelov degrees.

5.1.1. Let K be a number field, and OK its ring of integers. Recall that an Hermit-
ian line bundle (L, || · ||σ) over Spec(OK) is a line bundle L over Spec(OK), together
with an Hermitian metric || · ||σ on L⊗σ C for each archimedean place σ : K → C.

Given an Hermitian line bundle (L, || · ||σ), its (normalized) Arakelov degree is
defined as:

d̂eg(L) :=
1

[K : Q]

(
log(#(L/sOK))−

∑
σ:K→C

log ||s||σ

)
,

where s is any section.
For a finite place v over p, the integral structure of L defines a norm || · ||v on

LKv . More precisely, if sv is a generator of LOKv and n is an integer, we define
||pnsv||v = p−n[Kv:Qp]. We obtain a norm on Ov by viewing it as the trivial line
bundle. We will use || · ||v for the norms on different line bundle as no confusion
would arise. We may rewrite the Arakelov degree using the p-adic norms:

d̂eg(L) =
1

[K : Q]

(
−
∑
v

log ||s||v

)
,

where v runs over all places of K. It is an immediate corollary of the product
formula that the right hand side does not depend on the choice of s.

5.1.2. Let E be an elliptic curve over a number field K, and denote by e : SpecK →
E and f : E → SpecK the identity and structure map respectively. For each
σ : K → C, we endow e∗Ω1

E/K = f∗ΩE/K with the Hermitian norm given by ||α||σ =

( 1
2π

´
σE
|α ∧ ᾱ|)

εσ
2 , where εσ is 1 for real embeddings and 2 otherwise.

This can be used to define the Faltings height of E, which we recall precisely only
in the case when E has good reduction over OK . Denote by f : E → SpecOK the
elliptic curve over OK with generic fibre E, and again write e for the identity section
of E . The norms ||α||σ make e∗Ω1

E/ Spec(OK) = f∗Ω
1
E/ Spec(OK) into a Hermitian line

bundle, and we define the (stable) Faltings height by

hF (Eλ) = d̂eg(f∗Ω
1
E/ Spec(OK)).

Notice that hF (Eλ) does not depend on the choice of K. Here we use Deligne’s
definition for convenience [Del85, 1.2]. This differs from the original definition by
Faltings (see [Fal86]) by a constant log(π).

In general, the elliptic curve E would have semi-stable reduction everywhere
after some field extension. We assume this is the case and E has a Neron model
f : E → SpecOK which endows f∗Ω1

E/ Spec(OK) a canonical integral structure. With
the same Hermitian norm defined as above, we have a similar definition of Faltings
height in the general case. See [Fal86] for details. As in the good reduction case,
this definition does not depend on the choice of K.

5.1.3. We will assume that λ0 and λ0 − 1 are both units at each finite place.
Given such a λ0, consider the elliptic curve Eλ0

over Q(λ0) defined by the equation
y2 = x(x− 1)(x− λ0). Then Eλ0 has good reduction at primes not dividing 2, and
potentially good reduction everywhere, since its j-invariant is an algebraic integer.
Let K be a number field such that (Eλ0

)K has good reduction everywhere. We
denote by Eλ0

the elliptic curve over OK with generic fiber Eλ0
.
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5.1.4. To express our computation of radii in terms of Arakelov degrees, we endow
the OK-line bundle Tλ0(XOK ), the tangent bundle of XOK at λ0, with the structure
of an Hermitian line bundle as follows. For each archimedean place σ : K → C, we
have the universal covering λ : H → σX, introduced in 3.2.5. The SL2(R)-invariant
metric dt

2=(t) on the tangent bundle of H induces the desired metric on the tangent
bundle via push-forward. As in the proof of Proposition 3.2.8, our lower bound on
the radius of the formal solution is |2=(t0)λ′(t0)|εσ = || ddλ ||

−1
σ , where t0 is a point

on H mapping to λ0. It is easy to see the left hand side does not depend on the
choice of t0. Under the assumptions in 5.1.3, the tangent vector d

dλ is an OK-basis
vector for the tangent bundle Tλ0(XOK ), and we have

d̂eg(Tλ0
X) =

1

[K : Q]
(−

∑
σ:K→C

log || d
dλ
||σ) ≤ 1

[K : Q]
log(

∏
σ

Rσ),

where the Rσ are the radius of uniformization discussed in section 3.2.

5.2. The Kodaira–Spencer map. Consider the Legendre family of elliptic curves
E ⊂ P2

Z[ 1
2 ]
×XZ[ 1

2 ] over XZ[ 1
2 ] given by y2 = x(x− 1)(x−λ). We have the Kodaira–

Spencer map ([FC90, Ch. III,9],[Kat72, 1.1]):

KS : (f∗Ω
1
E/XZ[ 1

2
]
)⊗2 → Ω1

XZ[ 1
2

]
, α⊗ β 7→ 〈α,∇β〉,(5.2.1)

where ∇ is the Gauss–Manin connection and 〈·, ·〉 is the pairing induced by the
natural polarization.

5.2.2. Following Kedlaya’s notes ([Ked, Sec. 1,3]), we choose {dx2y ,
xdx
2y } to be an

integral basis of H1
dR(E/X)|λ0

and compute the Gauss–Manin connection:

∇dx
2y

=
1

2(1− λ)

dx

2y
⊗ dλ+

1

2λ(λ− 1)

xdx

2y
⊗ dλ.

The Kodaira–Spencer map then sends (dx2y )⊗2 to 1
2λ(λ−1)dλ.

This computation shows:

Lemma 5.2.3. Given v a finite place not lying over 2, the Kodaira–Spencer map
(5.2.1) preserves the Ov-generators of (f∗Ω

1
E/XZ[ 1

2
]
)⊗2|λ0

and Ω1
XZ[ 1

2
]
|λ0

when λ0 and

λ0 − 1 are both v-units.

5.2.4. For the archimedean places σ, we consider f∗Ω1
σE/ SpecC with the metrics

||α||σ defined in section 5.1, and we endow Ω1
XZ
|λ0

the Hermitian line bundle struc-
ture as the dual of the tangent bundle.

To see the Kodaira–Spencer map preserves the Hermitian norms on both sides,
one may argue as follows. Notice that the metrics on (f∗Ω

1
σE/ SpecC)⊗2 and Ω1

XZ

are SL2(R)-invariant (see for example [ZP09, Remark 3 in Sec. 2.3]). Hence they
are the same up to a constant and we only need to compare them at the cusps. To
do this, one studies both sides for the Tate curve. See for example [MB90, 2.2] for
a related argument and Lemma 3.2.6 (2) for relation between θ-functions and Ω1

X .

Here we give another argument:

Lemma 5.2.5. The Kodaira–Spencer map preserves the Hermitian metrics:

||(dx
2y

)⊗2||σ = || dλ

2λ0(λ0 − 1)
||σ.
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Proof. Let dz be an invariant holomorphic differential of C/(Z⊕t0Z), where λ(t0) =
λ0. By the theory of the Weierstrass-℘ function, we have a map from the complex
torus to the elliptic curve

u2 = 4v3 − g2(t0)v − g3(t0)

such that dz maps to dv
u . Here g2 is the weight 4 modular form of level SL2(Z)

with 4π4

3 as the constant term in its Fourier series and g3 is the weight 6 modular
form with 8π6

27 as the constant term. Using Lemma 3.2.6 (3), we see that the right
hand side has three roots: π2

3 (θ4
00(t0)+θ4

01(t0)),−π
2

3 (θ4
00(t0)+θ4

10(t0)), π
2

3 (θ4
10(t0)−

θ4
01(t0)). Hence this curve is isomorphic to y2 = x(x− 1)(x− λ0) via the map

(5.2.6) x =
v − 1

3π
2(θ4

00(t0) + θ4
01(t0))

−π2θ4
01(t0)

, y =
u

2(−π2θ4
01(t0))3/2

,

and we have
dx

2y
= πiθ2

01(t0)
dv

u
= πiθ2

01(t0)dz.

Hence

||(dx
2y

)⊗2||σ = |π2θ4
01(t0) · ( 1

2π

ˆ
E(C)

|dz ∧ dz̄|)|εσ = |πθ4
01(t0)=(t0)|εσ .

On the other hand, using Lemma 3.2.6 (2), we have

|| dλ

2λ0(λ0 − 1)
||1/εσσ =

∣∣∣∣2=(t0)|λ′(t0)|
2λ0(λ0 − 1)

∣∣∣∣ =

∣∣∣∣=(t0)πθ4
00(t0)θ4

10(t0)

θ4
01(t0)λ0(λ0 − 1)

∣∣∣∣ = |πθ4
01(t0)=(t0)|.

�

Proposition 5.2.7. If λ0 and λ0 − 1 are both units at every finite places, we have
d̂eg(Tλ0X) = −2hF (Eλ0) + log 2

3 .

Proof. By lemma 5.2.3 and lemma 5.2.5, we have

−d̂eg(Tλ0
X) =d̂eg(Ω1

XOK
|λ0

)

=
1

[K : Q]
(−
∑
v

log || dλ

2λ(λ− 1)
||v)

=
1

[K : Q]
(−
∑
v|∞

log || dλ

2λ(λ− 1)
||v −

∑
v finite

log || dλ

2λ(λ− 1)
||v)

=
1

[K : Q]
(−
∑
v|∞

log ||(dx
2y

)⊗2||v −
∑
v - 2,∞

log ||(dx
2y

)⊗2||v

−
∑
v|2

log ||1/2||v)

=2hF (Eλ0
) +

1

[K : Q]

∑
v|2

log ||(dx
2y

)⊗2||v − log 2.

(5.2.8)

Now we study ||(dx2y )⊗2||v given v|2. The sum 1
[K:Q]

∑
v|2 log ||(dx2y )⊗2||v does not

change after extending K, hence we may assume that Eλ0 over Ov has the Deuring
normal form u2 + auw + u = w3 (see [Sil09] Appendix A Prop. 1.3 and the proof
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of Prop. 1.4 shows in the good reduction case, a is a v-integer). An invariant
differential generating f∗Ω1

Eλ0
/ SpecOK [ 1

3 ]
is dw

2u+aw+1 .

Because both dw
2u+aw+1 and dx

2y are invariant differentials, we have ||dx2y ||v =

||∆1/∆2||
1
12
v || dw

2u+aw+1 ||, where ∆1 and ∆2 are the discriminant of the Deuring nor-
mal form and that of the Legendre form respectively. Since E has good reduction,
||∆1||v = 1 (see the proof of loc. cit.). Hence ||dx2y ||v = || dw

2u+aw+b ||v · ||1/16||1/12
v =

||2||−1/3
v .
Hence d̂eg(Tλ0

X) = −2hF (Eλ0
)− 2

3 log 2 + log 2 = −2hF (Eλ0
) + log 2

3 . �

Remark 5.2.9. One may also use the formula of Faltings heights of elliptic curves
due to Silverman ([Sil86, Prop. 1.1]) and Lemma 3.2.6 to deduce the above formula.

5.2.10. As pointed out by Deligne ([Del85, 1.5]), the point 1+
√

3i
2 corresponds to

the elliptic curve with smallest height. Hence, our choice 1+
√

3i
2 gives the largest

d̂eg(Tλ0X) among those λ0 such that λ0 and λ0 − 1 are units at every prime.

5.3. The general case. For the general case when λ0 ∈ X(Q̄), using a similar
argument as in section 5.2, we have

1

[K : Q]
(−

∑
σ:K→C

log || d
dλ
||σ) ≤ −2hF (Eλ0) +

log 2

3

+
1

[K : Q]

( ∑
v finite

log+ ||λ0||v + log(|Nmλ0(λ0 − 1)|)
)

(5.3.1)

and equality holds if and only if λ0 ∈ X(Z̄2). We remark that the difference between
the general case and the case in section 5.2 is the contribution of finite places. From
Silverman’s formula ([Sil86, Prop. 1.1]), one observes that this contribution comes
from the discriminant of the elliptic curve and is closely related to the valuations of
λ0 and λ0−1. As discussed in 5.1.4, the left hand side is the sum of the logarithms
of our estimates of the radii of uniformizability at archimedean places.

We also need to modify the estimate of the radii at finite places in Lemma 2.1.5.
A possible estimate for Rv is p−

1
p(p−1) ·min{||λ0||v, ||λ0 − 1||v, 1}. One explanation

of the factor min{||λ0||v, ||λ0−1||v, 1} is that we cannot rule out the possibility that
one has local monodromy at 0, 1,∞ merely from the information of p-curvature at
v.

Compared to the case when λ0 ∈ X(Z̄), our estimate for the sum of the loga-
rithms of the archimedean radii increases by at most 1

[K:Q] (
∑
v finite log+ ||λ0||v +

log(|Nmλ0(λ0 − 1)|)), while the estimate for the sum of logarithms of the radii
at finite places becomes smaller by

∑
v max{log+ ||λ−1

0 ||v, log+ ||(λ0 − 1)−1||v}. An
explicit computation shows that the later is larger than the former. Hence the
estimate for the product of the radii does not become larger than the case when
λ0 ∈ X(Z̄).

6. The affine elliptic curve case

Let X ⊂ A2
Z be the affine curve over Z defined by the equation y2 = x(x −

1)(x+1). The generic fiber XQ is an elliptic curve (with j-invariant 1728) minus its
identity point. Given a vector bundle with connection over XK , we first formulate
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a suitable p-adic convergence condition of its formal horizontal sections and then
state our result in section 6.1. The proof is given in section 6.2.

6.1. Formal horizontal sections and p-curvatures.

6.1.1. We fix x0 = (0, 0) ∈ X(Z) and denote by (x0)K and (x0)kv the images of x0 in
X(K) and X(kv). Let y : X → A1

Z be the projection to the y-coordinate. It is easy
to check that this map is étale along x0 and hence induces isomorphisms between the
tangent spaces Tx0X

∼= T0A1
Z and between the formal schemes X̂K/(x0)K

∼= Â1
K/0.

In particular, we have an analytic section sv of the projection y from D(0, 1) ⊂
A1(Kv) to X(Kv) such that sv(0) = x0 for any finite place v by the lifting criterion
for étale maps. By definition, the image sv(D(0, 1)) is the open rigid analytic disc in
X(Kv) which is the preimage of (x0)kv under the reduction map X(Kv)→ X(kv).

By choosing a trivialization of M in some neighborhood of (x0)K , we can view
a formal horizontal section m of (M,∇) around (x0)K as a formal function in

̂OXK ,(x0)K

r ∼= ÔA1
K ,0

r
, where r is the rank of M . We denote f ∈ ÔA1

K ,0

r
to be

the image and the goal of this section is to prove that the formal power series f is
algebraic.

Let U be X − {(0, 1), (0,−1)}. It is a smooth scheme over Z. Our chosen point
x0 is a Z-point of U and sv(D(0, 1)) ⊂ U(Kv). For v|p a finite place of K, we
say that (M,∇) has good reduction at v if (M,∇) extends to a vector bundle with
connection on UOv . The following lemma is similar to Lemma 2.1.5.

Lemma 6.1.2. Suppose that (M,∇) has good reduction at v. If the p-curvature ψp
vanishes6, then the formal function f is the germ of some meromorphic function
on the disc D(0, p−

1
p(p−1) ) ⊂ A1.

Proof. Let (M,∇) be an extension of (M,∇) over XOv . Since y is étale, the
derivation ∂

∂y is regular over some Zariski open neighborhood V̄ of x0 ∈ X ⊗
Z/pZ. Let V ⊂ X(Kv) be the preimage of V̄ under reduction map. Since the p-
curvature vanishes, we have ∇( ∂∂y )p(M|V ) ⊂ pM|V . Notice that sv(D(0, 1)) ⊂ V .
Then the proof of Lemma 2.1.5 shows the existence of horizontal sections of M on
sv(D(0, p−

1
p(p−1) )). Via a local trivialization of M and the isomorphism of formal

neighborhoods of x0 and 0, we see that f is meromorphic over D(0, p−
1

p(p−1) ). �

The following assumption is similar to Assumption 2.2.1.

Assumption 6.1.3. The vector bundle with connection (M,∇) satisfies that
(1) the p-curvature ψp vanishes for all but finitely many finite primes p, and
(2) all formal horizontal sections around x0, when viewed as formal functions in
ÔA1

K ,0

r
, are the germs of some meromorphic functions on D(0, p−

1
p(p−1) ) for all

finite places v.

Remark 6.1.4. The second condition does not depend on the choice of local trivi-
alization of M . Moreover, for each v, this condition remains the same if we replace
the projection y by any map g : WOv → A1

Ov such that WOv is a Zariski open
neighborhood of (x0)Ov in XOv and that g is étale.

Theorem 6.1.5. Let (M,∇) be a vector bundle with connection over XK . If
Assumption 6.1.3 holds for (M,∇), then (M,∇) is étale locally trivial.

6This means ψp ≡ 0 on XOv ⊗ Z/pZ as in section 2.1.1.
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Remark 6.1.6. This theorem cannot be deduced from applying Theorem 2.2.2 to
the push-forward of (M,∇) via some finite étale map from an open subvariety of
the affine elliptic curve to P1

K − {0, 1,∞}. Unlike the P1
K − {0, 1,∞} case, the

conclusion here allows the existence of (M,∇) with finite nontrivial monodromy.
See section 7.1.

6.2. Estimate at archimedean places and algebraicity. Let σ : K → C be
an archimedean place. Let φ : D(0, 1)→ X(C) be a uniformization map such that
φ(0) = x0. We have the following lemma whose proof is the same as that of Lemma
3.2.1:

Lemma 6.2.1. The σ-adic radius Rσ (see Definition 3.1.3) of the formal functions
f in 6.1.1 would be at least |(y ◦ φ)′(0)|σ.

Let t0 = 1+i
2 . A direct manipulation of the definition shows λ(t0) = −1, where

λ is defined in 3.2.5. Let F : D(0, 1)→ C− (Z+ t0Z) be a uniformization map such
that F (0) = 1

2 .

Lemma 6.2.2 (Eremenko). The derivative |F ′(0)| = 2−3/2π−3/2Γ(1/4)2 = 0.8346...

Proof. From [Ere, Sec. 2], we have F ′(0) = 25/2

B(1/4,1/4) |(λ
−1)′(i)|7, where B is Beta

function. By Lemma 3.2.6, the Chowla-Selberg formula ([SC67])

(6.2.3) |η(i)| = 2−1π−3/4Γ(1/4),

and θ4
00(i) = 2θ4

01(i) = 2θ4
10(i), we have

|(λ−1)′(i)| = |πi(θ01(i)θ10(i)

θ00(i)
)4| = π|η(i)|4 =

Γ(1/4)4

24π2
.

We obtain the desired formula by noticing that B(1/4, 1/4) = π−1/2Γ(1/4)2. �

Lemma 6.2.4. Let α be the constant 2(−π2θ4
01(t0))3/2 and ℘ be the Weierstrass-℘

function. We have y ◦ φ = α−1℘′ ◦ F , up to some rotation on D(0, 1).

Proof. The map g := (℘, ℘′) maps C − (Z + t0Z) to the affine curve u2 = 4v3 −
g2(t0)v − g3(t0). Let s be the isomorphism from this affine curve to X(C) given
by (5.2.6). Since both s ◦ g(1/2) and x0 are the unique point fixed by the four
automorphisms of X(C), we have s ◦ g(1/2) = x0. Hence s ◦ g ◦ F (0) = x0 = φ(0)
and then the uniformizations s ◦ g ◦F and φ are the same up to some rotation. We
have y ◦ φ = y ◦ s ◦ g ◦ F = α−1℘′ ◦ F by (5.2.6). �

Proposition 6.2.5. The σ-adic radius R
[K:Q]

[Kσ :R]
σ ≥ 2−5/2π−2Γ(1/4)4 = 3.0949 · · · .

Proof. Differentiate both sides of (℘′(z))2 = 4(℘(z))3−g2(t0)℘(z)−g3(t0), we have

℘′′(1/2) = 6℘(1/2)2 − g2(t0)/2 = −g2(t0)/2,

where the second equality follows from that

℘(1/2) = π2(θ4
00(t0) + θ4

01(t0))/3 = π2θ4
01(t0)(λ(t0) + 1)/3 = 0.

By Lemma 3.2.6 and θ4
00(t0) = −θ4

01(t0) = θ4
10(t0)/2, we have

|g2(t0)| = 4π4

3
· 1

2
|θ8

00(t0) + θ8
01(t0) + θ8

10(t0)| = 4π4|θ8
01(t0)|.

7The choice of λ there is different. We have λ(i) = 2 here.
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Then by Lemma 6.2.4 the absolute value of the derivative of y ◦ φ at 0 would be

|α−1℘′′(1/2) · F ′(0)| = 2−1π−3|θ01(t0)|−6 · 2π4|θ01(t0)|8 · |F ′(0)|

= π|θ01(t0)|2 · 2−3/2π−3/2Γ(1/4)2 (by Lemma 6.2.2)

= 2π · 2−2π−3/2Γ(1/4)2 · 2−3/2π−3/2Γ(1/4)2

= 2−5/2π−2Γ(1/4)4 = 3.0949 · · · ,

(6.2.6)

where the third equality follows from

|θ01(t0)| = 2−1/12|θ00(t0)θ01(t0)θ10(t0)|1/24 = 21/4|η(t0)| = 21/2|η(i)|,

and (6.2.3). �

Proof of Theorem 6.1.5. By Proposition 6.2.5, we have the following estimate of v-
adic radii at archimedean places of f in paragraph 6.1.1:

∏
v|∞Rv ≥ 3.0949 · · · . By

Definition 6.1.3, we have the following estimate of the v-adic radii at finite places
of f : log(

∏
v-∞Rv) ≥ −

∑
p

log p
p(p−1) = −0.761196 · · · . Hence

log(
∏
v

Rv) ≥ log 3.0949 · · · − 0.761196 · · · = 0.3685 · · · > 0.

We conclude by applying Theorem 3.1.5. �

7. Examples

In this section, we first give an example of (M,∇) with good reduction and
vanishing p-curvature for all p but with nontrivial global monodromy over the affine
elliptic curve in section 6. Then we discuss a variant of our main theorems with X
being the affine line minus all 4-th roots of unity.

7.1. An example with vanishing p-curvature for all p and nontrivial Ggal.
Let K be Q(

√
−1), X ⊂ A2

Z be the affine curve defined by y2 = x(x − 1)(x + 1),
E be the elliptic curve defined as the compactification of XK , and f : E → E be
a degree two self isogeny of E. We will also use f to denote the restriction of f to
XK\{P}, where P is the non-identity element in the kernel of f .

Let (M,∇) be f∗(OXK\{P}, d). By definition, Ggal is Z/2Z.

Proposition 7.1.1. The vector bundle with connection (M,∇) satisfies Assump-
tion 6.1.3.

Proof. Notice that f extends to a degree two étale cover from E to E over Z[ i2 ].
For p - 2, we endow (M,∇) with the natural integral structure of (OX , d) via
push-forward and then the p-curvature of (M,∇) coincides with that of f∗(M,∇)
by the fact that p-curvatures remain the same under étale pull back8. Hence the
p-curvature of (M,∇) vanishes as f∗(M,∇) is trivial.

For p|2, we write (M,∇) out explicitly. Without loss of generality, we may
assume that f from the curve y2 = x(x− 1)(x+ 1) to the curve s2 = t(t− 1)(t+ 1)
is given by t = − i

2 (x − 1
x ) and s = 1+i

4
y
x (x + 1

x ). Locally around (t, s) = (0, 0),

8Because p 6= 2 is unramified inK and (M,∇) has good reduction at p, the notion of p-curvature
here is classical.
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1, x is an OXK basis of f∗OXK and this basis gives rise to a natural Zariski local
extension of (M,∇) over XOp

. Direct calculation shows that

∇(1) = 0,∇(x) =
2s

(t2 − 1)(3t2 − 1)
ds+

2st(1 + 2i)

(t2 − 1)(3t2 − 1)
xds.

Therefore, ∇(f1 +f2x) ≡ df1 +xdf2 (mod 2) and the p-curvature of (M,∇) vanishes.
�

Remark 7.1.2. In the above proof, we show that there is an extension of (M,∇)
over UOK such that its p-curvatures are all vanishing. However, given the argument
for p - 2, in order to apply Theorem 6.1.5, we do not need to construct an extension
of (M,∇) but only need to check that x, locally as a formal power series of s,
converges on D(0, 2−1/2) for v|2. This is not hard to see: x, as a power series of t,
converges when |t|v < |2|v; and t, as a power series of s, converges when |s|v < |2|1/2v

and the image of |s|v < |2|1/2v is contained in |t|v < |2|v.

7.2. A variant of the main theorems. In this section, we will prove a variant
of the main theorems when X = A1

Q − {±1,±i}. Similar to Theorem 6.1.5, the
conclusion is that (M,∇) has finite monodromy and we give an example with
nontrivial finite monodromy.

To define the p-adic convergence conditions for bad primes, we take x0 = 0. We
say (M,∇) satisfies (∗)p if all its horizontal sections centered at x0 have p-adic
convergence radii no less than p−

1
p(p−1) .

Proposition 7.2.1. Let (M,∇) be a vector bundle with connection over XK with
p-curvature vanishes for almost all primes and satisfying (∗)p for all other finite
primes p. We further assume that the formal horizontal sections around x0 converge
over D(x0, 1) for v|15. Then (M,∇) is étale locally trivial.

Proof. By Lemma 6.2.2, we have R∞ ≥ 2 · 0.8346 · · · . By the assumptions on finite
places, we have log(

∏
v-∞Rv) ≥ −

∑
p 6=3,5

log p
p(p−1) = −0.4976 · · · . Then we conclude

by applying Theorem 3.1.5. �

Example 7.2.2. Let s be (1 − x4)1/2. It is the solution of the differential equation
ds
dx = −2x3

1−x4 . Consider the connection on OX given by ∇(f) = df + 2x3

1−x4 dx. It has
p-curvature vanishing for all p: ∇(f) ≡ df (mod 2) and ∇(f) ≡ df + (p+ 1) 2x3

1−x4 dx

(mod p) with solution s ≡ (1 − x4)(p+1)/2 (mod p) when p 6= 2. . In conclusion,
(OX ,∇) satisfies the assumptions in the above proposition while it has nontrivial
monodromy of order two.

Remark 7.2.3. If we replace our assumption by similar conditions on generic radii,
the above example shows that one could have order two local monodromy around
±1,±i. The reason is [BS82, III eqn. (3)] does not hold in this situation and a
modification of their argument would show that an order two local monodromy is
possible.
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