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Abstract

This article is a survey of our work (joint with Davesh Maulik, Arul Shankar, and Salim
Tayou) on arithmetic intersection theory on GSpin Shimura varieties with applications to abelian
varieties, K3 surfaces, and the ordinary Hecke orbit conjecture.

1 Introduction

In [Cha18], François Charles proves the following beautiful theorem by arithmetic intersection theory
on the j-line. Let E,E′ denote two elliptic curves defined over a number field K. Then there are
infinitely many primes v of K such that EFv

and E′
Fv

are geometrically isogenous, where Fv denotes
an algebraic closure of the residue field Fv. Earlier work of Chai and Oort ([CO06]) proves an
analogous result in positive characteristic. In a series of papers [ST20,MST22, SSTT22,MST22b]
(joint with Davesh Maulik, Arul Shankar, and Salim Tayou), we generalize this work to the setting
of GSpin Shimura varieties, and deduce similar applications to the Picard ranks of K3 surfaces
and splitting of abelian varieties, both defined over global fields. Our results are in the setting of
abelian varieties and K3 surfaces having potentially good reduction everywhere, and the case of bad
reduction is finished in [Tay24]. In this paper, we give a survey of our joint work. For brevity, we
will state our main results in the setting of number fields in the introduction. The case of positive
characteristic and their consequences are discussed Section 4.
Abelian surfaces: Let A/K denote an abelian surface defined over a number field. Then there
are infinitely many primes v of K such that AFv

is isogenous to a product of elliptic curves.
K3 surfaces: Let X/K denote a K3 surface over a number field. Then there are infinitely many
primes v of K such that the Picard rank of XFv

is greater than the Picard rank of XK .
We prove all our theorems (both in the number field case, as well as in the case of positive

characteristic) using the framework of arithmetic intersection theory. Consider the setting of abelian
surfaces. Loosely speaking, A/K gives rise to an OK [1/N ]-valued point of the moduli space of
polarized abelian surfaces. The exceptional isomorphism between PSp4 and SO5 implies that we
may view the moduli space of polarized abelian surfaces as a GSpin Shimura variety! The sub-locus
of non-simple abelian surfaces is a countably infinite union of special divisors, each of which is a
GSpin Shimura variety in its own right. In order to show that AFv

is not simple for infinitely many
primes v, it suffices to show that the moduli point intersects this infinite union of special divisors
at infinitely many closed points. The setting of K3 surfaces is the same — the ambient space,
the moduli space of quasi-polarized K3 surfaces whose Picard groups contain a given quadratic
lattice, is a higher dimensional GSpin Shimura variety, and the (countably infinite family of) special
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divisors parameterizing K3 surfaces with extra line bundles are also GSpin Shimura varieties. As
will be clear, the higher dimensional cases require significantly new ideas as compared to the lower
dimensional cases. The overarching method is to use intersection-theoretic methods to prove that
an arithmetic curve (a number field valued point spreads out to an an arithmetic curve) mapping to
a GSpin Shimura variety has the property that infinitely many closed points map to some special
divisors.

The characteristic p settings of our theorems have an unexpected consequence to the ordinary
Hecke orbit problem (conjectured by Chai and Oort). Roughly speaking, we prove that the prime-
to-p Hecke orbit of an ordinary point in a mod p GSpin Shimura variety must be Zariski dense.
We remark that Daniel Bragg and Ziquan Yang use this theorem to prove an analogue of the
Néron–Ogg–Shafarevich conjecture for K3 surfaces [BY23].

Organization

In Section 2, we outline different heuristics, including one that suggests the existence of unlikely
intersections. In Section 3, we review the definitions and terminology for GSpin Shimura varieties
and special divisors. In Section 4, we precisely state all our theorems, describe the work of Charles
and Chai–Oort, and give detailed outlines of the proofs of our main theorems while focusing on
various obstructions and the ideas we use to overcome these difficulties. Finally, in Section 5, we
describe conjectures and other existing work related our theorems.
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2 Heuristics

2.1 Splitting of abelian surfaces

Let A/Q be an abelian surface. For simplicity, we assume that End(AQ) = Z. For every prime p,
let Ip denote the set of geometric isogeny classes of abelian surfaces defined over Fp. Therefore, for
every (large enough) prime p, we obtain an element of Ip by considering the mod p reduction of A.
The heuristic that suggests infinitude of primes of split reduction (and indeed, the order of growth
of the counting function of such primes) is to treat this assignment as a random map (where each
isogeny class x ∈ Ip is weighted by its size). There are precise expectations as to the size of each
isogeny class (see [ST18], [Bha], [Fu23]). Roughly speaking, the size of each ordinary isogeny class
is expected to be approximately p

3
2
±ϵ, the size of Ip is also expected to be p

3
2
±ϵ, and the number

of non-ordinary isogeny classes is expected to be O(p1+ϵ).1 The set of Fp-split isogeny classes in
Ip is expected to be around p1±ϵ. Therefore, one should expect A mod p is split with a probability

1Here by the expected size to be X, we mean that the size is bounded below and above by nonzero constant
multiples of X. This applies to the discussions in Sections 2.1 and 2.2.
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of about 1√
p . This suggests that there should be infinitely many primes of split reduction, and

indeed, the number of split primes less than X should equal X
1
2
±ϵ for any ϵ ≥ 0. Similarly, work

of Achter–Howe [AH17] on the number of split abelian surfaces over finite fields also suggests such
results.

2.2 Unlikely intersections

For A/Q as in Section 2.1, consider the question of primes p modulo which A is geometrically
isogenous to E2 for an elliptic curve E over Fp. As the number of isogeny classes of elliptic curves
over Fp is approximately p

1
2
±ϵ, one might be tempted to deduce that the probability that A mod p

is isogenous to E2 is around 1
p , which in turn would suggest that the prime counting function

should have order of growth O(log logX). However, data gathered by Edgar Costa suggests that
the number of primes bounded by X modulo which A is geometrically isogenous to E2 grows as
X1/2±ϵ! In other words, Costa’s data suggests that there are unlikely intersections. The Zilber–Pink
conjectures suggest that this behaviour should not be seen over C — specifically, given a generic
family of abelian surfaces A/C, where C is a complex algebraic curve, there ought to be only finitely
many points x ∈ C such that Ax is isogenous to a self-product of complex elliptic curves. We suspect
that this discrepancy arises because of abelian surfaces over Fp of the form E × Eσ, where E/Fp2

is an elliptic curve and Eσ is its Frobenius twist – in other words, abelian surfaces which are not
isogenous to E2 over Fp, but which are isogenous to E2 after passing to a quadratic extension.
Indeed, similar counts yield that the number of such isogeny classes should be around p1±ϵ.

2.3 Expected Picard rank jumps of K3 surfaces

Let X be a K3 surface over a number field K. The K3 surface X admits a smooth projective model
away from a finite set of primes S, which we denote by X/OK,S . Let p ⊂ OK,S be a non-zero prime
ideal, and let Fp be its residue field. There is an injective specialization map between Picard groups
Pic(XK) → Pic(XFp

). Therefore rkZ Pic(XFp
) ≥ rkZ Pic(XK).

The work of Charles [Cha14, Thm. 1]2 provided a full description of the geometric Picard rank
rkZ Pic(XFp

) at density 1 set of primes p (one may need to replace K by a finite extension) in
terms of the endomorphism field of the Hodge structure associated to the transcendental part of
H2

B(X(C),Q).3 More precisely, let T ⊂ H2
B(X(C),Q) denote the sub-Hodge structure defined to

be the orthogonal complement of the Néron–Severi group NS(XK) ⊂ H2
B(X(C),Q) with respect to

the intersection form. Note that for K3 surfaces, NS(XK) ∼= Pic(XK). The subspace T is usually
called the transcendental part of H2

B(X(C),Q). By [Zar83, Thms 1.5.1, 1.6], the endomorphism
algebra E of the Hodge structure T is either a totally real field or a CM field. We may view T as
an E-vector space. Charles’s theorem [Cha14, Thm. 1] shows that after possibly replacing K by a
finite extension:

1. If E is totally real and dimE T is odd, then rkZ Pic(XFp
) ≥ [E : Q] + rkZ Pic(XK) for all

primes p /∈ S and the equality holds for a density 1 set of primes.
2One input of the proof is the Tate conjecture for K3 surfaces over finite field, which was proved by Mada-

pusi [MP15], Ito–Ito–Koshikawa [IIK21] and Kim–Madapusi [KMP16,MP20]. Many others have contributed to the
conjecture including Charles [Cha16], Maulik [Mau14], and Nygaard–Ogus.[NO85].

3One chooses an embedding K → C to consider the complex manifold X(C) and the statement/result is indepen-
dent of the choice of the embedding.
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2. If E is either CM or dimE T is even, then rkZ Pic(XFp
) = rkZ Pic(XK) for a density 1 set of

primes.

In [SSTT22, Thm. 1.1] and [Tay24, Thm. 1.1], it is proved that even in case (2) above, there
are infinitely many primes p such that rkZ Pic(XFp

) > rkZ Pic(XK). Based on the discussions in
[Cha14, §3] and [Zar83, §§1-2], we have

Lemma 2.1. Let p be a prime such that rkZ Pic(XFp
) > rkZ Pic(XK) in case (2) above.

1. If E is CM, then rkZ Pic(XFp
) ≥ [E : Q] + rkZ Pic(XK);

2. If E is totally real and dimE T is even, then rkZ Pic(XFp
) ≥ 2[E : Q] + rkZ Pic(XK).

Proof. [Zar83, Thms. 2.2.1, 2.3.1] described the Hodge group (i.e., the special Mumford–Tate group)
of X acting on T as follows. Let [−,−] denote (−1) times the intersection form on T , which is a
nondegenerate symmetric bilinear form with signature (dimQ T, 2). If E is CM, we pick a totally
imaginary element ζ ∈ E and then there exists a unique (nondegenerate) Hermitian form (−,−) on T
viewed as an E-vector space such that [−,−] = TrE/Q(ζ(−,−)).4 Let E+ denote the maximal totally
real subfield of E. The Hodge group acting on T is ResE+/QU(T, (−,−)). If E is totally real, then
there exists a unique (nondegenerate) symmetric bilinear form (−,−) on T viewed as an E-vector
space such that [−,−] = TrE/Q(−,−). The Hodge group acting on T is ResE/Q SO(T, (−,−)).

By Tankeev [Tan90,Tan95], the Mumford–Tate conjecture holds for K3 surfaces and thus after
passing to a finite extension of K, the algebraic ℓ-adic monodromy group (i.e., the Zariski closure of
the image of the Galois representation) on TQℓ

⊂ H2
ét(XK ,Qℓ)(1) is either ResE+/QU(TQℓ

, (−,−))
or ResE/Q SO(TQℓ

, (−,−)). Here TQℓ
denotes the orthogonal complement of Pic(XK) ⊗ Qℓ ⊂

H2
ét(XK ,Qℓ)(1) with respect to the cup product; via the Betti-étale comparison isomorphism, TQℓ

is identified with T ⊗Qℓ.
By the Tate conjecture for K3 surfaces, rkZ Pic(XFp

) − rkZ Pic(XK) is exactly the multiplicity
of the eigenvalues of Frobp acting on TQℓ

with values being roots of unity. By the shape of the
algebraic ℓ-adic monodromy above, it must be at least [E : Q] if E is CM and 2[E : Q] if E is totally
real and dimE T is even.

We expect the equalities in Lemma 2.1 holds at the majority of the infinitely many places p
satisfying rkZ Pic(XFp

) > rkZ Pic(XK). First consider the CM case. The heuristics are that we may
view X as a K-point in a unitary Shimura variety associated to a Hermitian space over E/E+.
The above change of geometric Picard ranks happens exactly when the reduction of X lies on (the
natural integral model of) a special divisor but not a codimension 2 special cycle. We expect the
majority of reductions lying on special divisors to not lie on codimension 2 special cycles.5 In the
totally real case, the ambient Shimura variety containing the moduli point associated to X is a
GSpin Shimura variety associated to an even dimensional quadratic vector space over E. An Fp-
valued point of such a Shimura variety ought not to be contained in any special divisor. On the
other hand, every Fp-valued point of a GSpin Shimura variety associated to an odd dimensional

4It is more canonical to work with the skew-Hermitian form ζ(−,−), which is obtained from the above definition
without choosing a ζ as in [Zar83]; the choice is harmless as we only consider the associated unitary group here. We
choose to use the Hermitian form rather than the skew-Hermitian form to follow the convention of many related work
in literature on unitary Shimura varieties.

5Here we are vague about subtleties between the actual dimension and virtual dimension. By a codimension 2
special cycle we mean the special cycle obtained from a rank 2 sublattice in the Hermitian space.
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quadratic lattice is contained in a special divisor.6 Therefore if the reduction of the moduli point
associated to X lies on a special divisor mod p, it must lie on a co-dimension 2 special cycle. But a
codimension 2 special cycle is a GSpin Shimura variety associated to an even dimensional quadratic
space in its own right, and given that a random Fp-valued point of such a Shimura variety ought
not to be contained in a special divisor, we expect that the majority of reductions do not lie on
special cycles associated to rank 3 or higher lattices.

We end this subsection by providing two examples to show that the bounds in Lemma 2.1 are
sharp. For (1), take X to be the Kummer surface associated to A2, where A is an elliptic curve with
complex multiplication by an imaginary quadratic field F . In this case, rkZ Pic(XK) = 20, T is a 2-
dimensional Q-vector space and its endomorphism algebra (as a Hodge structure) is F . At the primes
p such that A has ordinary reduction, rkZ Pic(XFp

) = 20. At the primes p where A has supersingular
reduction, rkZ Pic(XFp

) = 22 = 20 + [F : Q]. Note that this is also an example indicating that a
finite extension is necessary in Charles’s theorem. If F ̸⊂ K, then rkZ Pic(XFp

) = rkZ Pic(XK) only
for a set of primes having density 1/2. However, the set of primes of the finite extension FK/F
modulo which A has ordinary reduction has density 1.

For (2), take X to be the Kummer surface associated to an abelian surface A such that End0(AK)
is a real quadratic field (or product of two non-geometrically-isogenous elliptic curves). In this
case, rkZ Pic(XK) = 18, T is a 4-dimensional Q-vector space, and its endomorphism algebra (as
a Hodge structure) is Q. If p is a prime such that A mod p is an ordinary abelian surface and
rkZ Pic(XFp

) > rkZ Pic(XK), then rkZ Pic(XFp
) = 20 = 18 + 2[Q : Q]. By a theorem of Sawin

[Saw16], A has ordinary reduction at a density 1 set of primes over K. We also expect that
most primes in the set {p : rkZ Pic(XFp

) > rkZ Pic(XK)} are primes of ordinary reduction for A.
Therefore, the bound in Lemma 2.1 ought to be sharp.

3 Preliminaries

In this section, we review basic definitions, terminology, and notation for GSpin Shimura varieties,
special endomorphisms, and special divisors and their extensions to toroidal compactifications that
we need in the rest of the paper.

Let (L,Q) be a quadratic Z-lattice of signature (b, 2), b ≥ 1. Let V := L ⊗Z Q and let [−,−]
denote the bilinear form on V given by [x, y] = Q(x+ y)−Q(x)−Q(y). Let Ω (resp. Ω0) denote
the finite set of primes p such that L⊗ Zp is not a maximal (resp. self-dual) lattice in V ⊗Qp over
which Q is Zp-valued. By definition, Ω ⊂ Ω0. Let ZΩ denote the ring of Ω-integers. We recall the
canonical integral model of the GSpin Shimura variety associated to (L,Q) over SpecZΩ and the
definition of special divisors. The main references are [MP16], [AGHMP18, §4], and [HP20, §§4,6]
— see also [SSTT22, §2] and [MST22b, §2] for a brief summary. We also recall the integral models
of toroidal compactifications of GSpin Shimura varieties. The main references are [HP20, §§2, 4, 8]
and [BZ21, §§2-3] — see also [Tay24, §2] for a brief summary and a discussion about the extension
of special divisors to the boundary.

6The group theory that underlies this phenomenon is as follows. Consider a maximal torus defined over E inside
an odd-dimensional orthogonal group over E. Then the set of long roots associated to this maximal torus form a
Galois-stable set, and the group generated by this maximal torus and root-groups associated to the long roots is
an E-orthogonal group of type D. Indeed, this may be viewed as the geometric and group theoretic explanation of
Charles’s theorem (1).
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3.1. Let G := GSpin(V,Q) be the group of spinor similitudes of V , which is a reductive group over
Q. For p /∈ Ω0, let G(p) := GSpin(L ⊗ Z(p), Q), which is a reductive model for G over Z(p) and
naturally a subgroup of C(L⊗Z(p))

×, where C(−) denotes the Clifford algebra. The group G(R) acts
on the Hermitian symmetric domain DV = {z ∈ VC | [z, z] = 0, [z, z̄] < 0}/C× via GQ → SO(V ).
For [z] ∈ DV with z ∈ VC, let h[z] : ResC/RGm → GR denote the unique homomorphism which
induces the Hodge decomposition on VC given by

V 1,−1
C = Cz, V 0,0

C = (Cz ⊕ Cz̄)⊥, V −1,1
C = Cz̄.

Thus (G,DV ) is a Shimura datum with reflex field Q.
Let K ⊂ G(Af ) be a compact open subgroup contained in KL := G(Af ) ∩ C(L ⊗ Ẑ)×, where

C(L ⊗ Ẑ) denotes the Clifford algebra of (L ⊗ Ẑ, Q). Then we have the GSpin Shimura variety
S(GQ, DV )K over Q with S(GQ, DV )K(C) = G(Q)\DV ×G(Af )/K. If p /∈ Ω0 and Kp = G(p)(Zp),
then by [Kis10, Theorem 2.3.8], S(GQ, DV )K admits a canonical smooth integral model S(p) over
Z(p). Moreover, [AGHMP18, Theorem 4.4.6] constructed a flat normal Deligne–Mumford ZΩ-stack
S when K = KL, which coincides with the canonical smooth integral model S(p) at p /∈ Ω0. If
K ̸= KL, for the rest of the paper, we always enlarge Ω0 and Ω to include all primes ℓ such that
Kℓ ̸= KL,ℓ. Henceforth, we will use the terminology SQ to denote S(GQ, DV )K.

3.2. Let H denote the Clifford algebra C(L) equipped with the right action by itself via right
multiplication. Moreover, H⊗Q is equipped with the action of G by left multiplication. By picking
a suitable symplectic form on H, we have G → GSp(H⊗Q), which induces a morphism from (G,DV )
to a Siegel Shimura datum. Thus there is a Kuga–Satake abelian scheme Auniv → SQ whose first
Z-coefficient Betti cohomology HB is the local system induced by H (and its G-action). This
Kuga–Satake abelian scheme Auniv → SQ extends to an abelian scheme Auniv → S equipped with a
left C(L)-action by [AGHMP18, Theorem 4.4.6]. Let HdR,Hℓ,ét denote the first relative de Rham
cohomology of Auniv → S and ℓ-adic étale cohomology with Zℓ-coefficient of Auniv

ZΩ[1/ℓ]
→ SZΩ[1/ℓ],

and let Hcris denote the first relative crystalline cohomology of Auniv
Fp

→ SFp for p /∈ Ω0.
The action of L on H via left multiplication induces a G-equivariant map L⊗Q → EndC(L)(H⊗

Q), and thus we have a Z-local system LB over SQ with a natural embedding LB → EndC(L)(HB).
There are a Zℓ-lisse sheaf Lℓ,ét ⊂ EndC(L)(Hℓ,ét) over ZΩ[1/ℓ], a filtered vector bundle with con-
nection LdR ⊂ EndC(L)(HdR) over ZΩ0 , and an F -crystal Lcris ⊂ EndC(L)(Hcris) for p /∈ Ω0,
such that these embeddings along with LB → EndC(L)(HB) are compatible under Betti-de Rham,
Betti-étale, de Rham-crystalline comparison maps (see [MP16, Prop. 3.11, 3.12, Prop. 4.7]). By
[AGHMP18, §4.3], L?, ? = B, dR, (ℓ, ét), cris are equipped with a natural quadratic form Q given
by f ◦ f = Q(f) · Id for a section f of L?.

Definition 3.3 ([AGHMP18, Def. 4.3.1, §4.5]; [HP20, §6.4]). Let T denote an S-scheme.
If T is an SZΩ0

-scheme,

1. An endomorphism λ ∈ EndC(L)(Auniv
T ) is special if all cohomological realizations of λ lie in

the image of L? → EndC(L)(H?), where ? = B, dR, cris, (ℓ, ét).7

2. Assume that T ⊗ Fp ̸= ∅. Let Auniv
T [p∞] denote the p-divisible group associated to Auniv

T . An
endomorphism λ ∈ EndC(L)(Auniv

T [p∞]) is special if its crystalline realization lies in Lcris.

7We drop the ones which do not make sense.

6



In general, we choose for each p ∈ Ω0 \ Ω, an embedding of L into a lattice L⋄ self-dual at p
(and denote the universal family by A⋄,univ) and define special endomorphisms λ in the same way
as above using L?, where ? = B, dR, (ℓ, ét), cris for p /∈ Ω0, and for p ∈ Ω0 \ Ω, we observe that
naturally EndC(L)(Auniv

T ) ⊂ EndC(L⋄)(A
⋄,univ
T ) and further assume that λ lies in the image of L⋄

?.
When T ⊗ Fp ̸= ∅ and p ∈ Ω0 \ Ω, An endomorphism λ ∈ EndC(L)(Auniv

T [p∞]) is special if its
crystalline realization lies in L⋄

cris. Both definitions are independent of the choice of L⋄.

Remark 3.4. By [MP16, Lem. 5.2], for λ ∈ EndC(L)(Auniv
T ) special, we have λ ◦ λ = [Q(λ)] for

some Q(λ) ∈ Z≥0 and λ 7→ Q(λ) is a positive definite quadratic form on the Z-lattice of special
endomorphisms of Auniv

T .

Definition 3.5. For m ∈ Z>0, the special divisor Z(m) is the Deligne–Mumford stack over S with
functor of points Z(m)(T ) = {λ ∈ End(Auniv

T ) special |Q(λ) = m} for any S-scheme T . We use
the same notation for the image of Z(m) in S. By [HP20, Prop. 6.5.2], Z(m) is étale locally an
effective Cartier divisor. For p > 2 and b ≥ 3 or for p /∈ Ω0, the divisor Z(m) is flat over Z(p) and
hence Z(m)Fp is still an effective Cartier divisor of SFp . We denote Z(m)Q by Z(m).

3.6. If (V,Q) is anisotropic (this implies b ≤ 2), then by [MP19, Cor. 4.1.7], S is a proper Deligne–
Mumford stack over ZΩ. For the rest of this paragraph, we work with (V,Q) isotropic and recall the
description of toroidal compactifications of S. The construction of the integral model of toroidal
compactions is to glue together models for all primes p. Fix a prime p, we choose a suitable
embedding of the Shimura datum (G,DV ) to a Siegel Shimura datum8 (GSg, DSg) and shrink the
prime-to-p level to make K and the level KSg of the Siegel variety both neat. We choose a smooth
KSg-admissible complete finite rational polyhedral cone decomposition ΣSg of (GSg, DSg) satisfying
the no self-intersection property and it induces a smooth K-admissible complete finite rational
polyhedral cone decomposition Σ of (G,DV ) also satisfying the no self-intersection property.9 To
glue together, we take a common refinement of all the above Σ (we only need finitely many to cover
all p) and still denote it by Σ. By [MP19, 4.1.4, Thm. 4.1.5, Rmk. 4.1.6], the proper normal Deligne–
Mumford ZΩ-stack SΣ obtained as glueing together the Z(p)-models constructed as the normalization
of the Faltings–Chai integral compactification [FC90] of S(GSg, DSg)KSg in SQ is a compactification
of S extending the toroidal compactification SΣ

Q of SQ with respect to Σ over Q constructed in
[AMRT10,Pin90]. The integral compactification SΣ depends on the choice of Σ but is independent of
the choice of Hodge embedding (GSg, DSg), and the choice of cone decomposition ΣSg. The boundary
SΣ \ S is a Cartier divisor. Further, SΣ admits a stratification by locally closed substacks indexed
by K-isomorphism classes of toroidal stratum representatives (see [HP20, Def. 2.4.5, Def. 2.4.6]
or [MP19, 2.1.26]). Each stratum is flat over ZΩ and is given by quotient of integral model of
certain mixed Shimura variety by a finite group. The formal completion of SΣ along each boundary
component is of the same shape as that of SΣ

Q . In short, as long as we work with a sufficiently fine
cone decomposition Σ, the integral toroidal compactification SΣ exists and has the stratification
properties listed above.

Howard–Pappas [HP20, Prop. 8.1.2] provide the extension of automorphic vector bundles to
the integral toroidal compactification in the hyperspecial case. More precisely, given an algebraic

8Using previous notation, we may choose GSg = GSp(C(L⋄)).
9See for instance [HP20, §2.4], [MP19, §§2.1.17-2.1.23, 2.1.28] for the definition and see [MP19, Thm. 2.1.25],

[HP20, Remarks 2.4.9, 2.6.1] and the references cited in loc. cit. for the existence of such cone decomposition ΣSg

after maybe further shrinking the prime-to-p part of KSg. We also remark that these properties of cone decompositions
still hold if one needs to further refine Σ and ΣSg.
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representation of G on a Q-vector space N , consider the corresponding vector bundle with filtration
on SQ. Work of Harris and Harris–Zucker (see for instance [HZ01, §1]) constructs a canonical
extension of the vector bundle with filtration to SΣ

Q functorial in N . This is summarized in [HP20, §3,
Thm. 3.4.1]. By [HP20, Prop. 8.1.2], this canonical extension on SΣ

Q extends functorially to the
integral model SΣ

ZΩ0
. In particular, these results provide a canonical extension of the Hodge line

bundle on SQ to SΣ
ZΩ0

. In order to define the Hodge line bundle ω on SΣ, for each p ∈ Ω0 \ Ω,
[HP20] chose auxiliary self-dual lattices L⋄ ⊃ L at p, and define the Hodge line bundle on SΣ to
be the one obtained by pulling back the Hodge line bundle on a suitable integral model of toroidal
compactification of the GSpin Shimura variety associated to L⋄.

We will abuse notation and also denote the Zariski closure of the special divisor Z(m) in SΣ by
Z(m).

3.7. We now recall various results on modularity of the generating series of special divisors. These
results will be used in understanding the (arithmetic) intersections of an arithmetic 1-cycle with
special divisors, especially when dimS ≥ 3.

For simplicity, we first recall the theorem by Howard and Madapusi on the generating series of
special divisors in S. Since the pullback of the Hodge line bundle ω to the Hermitian symmetric

domain DV is the tautological line bundle, they endow ω with the metric ||z||2 = − [z, z̄]

4πe−Γ′(1)

and denote this metrized line bundle by ω̂. They also endow the special divisor Z(m) with a
Green function Φm defined by Bruinier [Bru02, (2.16) and the paragraphs above and below]. (More
precisely, we take s = 1/2 + b/4, β = 0 in the expression Φβ,m(v, s) defined in [Bru02, (2.16) and
the paragraph above].10 In loc. cit., Bruinier follows work of Borcherds [Bor98] and defines the
the regularized theta lifting of the Hejhal–Poincaré harmonic Maass form Fm of weight 1 − b/2
with respect to the dual of the unitary Weil representation whose principal part is e0q

−m. Here
{eβ}β∈L∨/L denotes the standard basis of C[L∨/L].)11 Let Ẑ(m) denote the arithmetic divisor
(Z(m),Φm) on S. Since Z(m) is étale locally a Cartier divisor and S is normal, we have that the
first arithmetic Chow group (of Q-divisors) ĈH

1
(S)Q is isomorphic to the group of isomorphism

classes of Q-line bundles P̂ic(S)Q and then we may view Ẑ(m) and ω̂ as elements in ĈH
1
(S)Q. (See

for instance [AGHMP17, §5.1] for details.)
By [HP20, Thm. 9.5.1], when b ≥ 3, the generating series

−ω̂ +
∑

m∈Z>0

Ẑ(m)qm

is a weight 1 + b
2 modular form with coefficients in ĈH

1
(S)Q.12 More precisely, for any Q-linear

10Here we mean exactly the regularized theta lifting defined using [Bru02, (2.16)]; in the rest of [Bru02, §2], the
notation Φβ,m(v, s) is used to denote a slightly different regularization, which is related to ϕm in our notation defined
in §4.3.

11The terms used in (2.16) in loc. cit. are defined in Def. 1.8, eqns (2.2), (2.14) — see [BY09, §§3.1, 4] for a
summary. See also [AGHMP17, §3.2], [SSTT22, §3.1], and references therein.

12More precisely, it is one component of a vector valued modular form with respect to the unitary Weil representation
of the metaplectic double cover Mp2(Z) of SL2(Z). The assumption b ≥ 3 is harmless for us as the proof of our main
results for b ≤ 2 does not need such modularity result. On the other hand, there are modularity results when b ≤ 2;
see for instance [BBGK07].
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map α : ĈH
1
(S)Q → C, we have

−α(ω̂) +
∑

m∈Z>0

α(Ẑ(m))qm

is a weight 1 + b
2 modular form.

The b ≥ 3 assumption above was only used in the treatment of the Green functions. For Z(m)
and ω in CH1(S)Q, Howard and Madapusi [HP20, Thm. 9.4.1] proved that for arbitrary b, the
generating series

−ω +
∑

m∈Z>0

Z(m)qm

is a weight 1 + b
2 modular form with coefficients in CH1(S)Q. Thus for p /∈ Ω0, since all Z(m) are

flat over Z(p), by intersecting the above generating series with SFp , we have

−ωFp +
∑

m∈Z>0

Z(m)Fpq
m

is a weight 1 + b
2 modular form with coefficients in CH1(SFp)Q.

We now recall the modularity result for toroidal compactification SΣ. Since the natural met-
rics on ω̂ and Green functions Φm (even after suitable adjustments due to correction terms using
boundary divisors) have singularities along the boundary, we need to work with the first arith-
metic Chow ring with pre-log-log forms ĈH

1
(SΣ,Dpre) introduced by Burgos Gil, Kramer, and

Kühn in [BGKK07, §7] (see [BBGK07, §1] for a detailed summary). In short, we will work with
ĈH

1
(SΣ,Dpre)Q := ĈH

1
(SΣ,Dpre)⊗Q (see [BBGK07, §1.4, Def. 1.15, §1.2] for the definition), the

group of the isomorphism classes of Q-Cartier divisors with Green functions satisfying certain growth
condition along the boundary (see [BBGK07, Defs. 1.2, 1.3]).13 Moreover, by [BBGK07, pp. 20-21],
ĈH

1
(SΣ,Dpre)Q is isomorphic to the arithmetic Picard group of isomorphic classes of Q-Hermitian

line bundles allowing pre-log singularity of the Hermitian metric along the boundary.
Bruinier and Zemel [BZ21, Thms. 1.2, 4.19, Cor. 4.15] analyzed the behavior of Φm along

boundary divisors and proved that after introducing suitable correction terms to Z(m) from bound-
ary divisors, Φm is pre-log-log along the boundary and the generating series of special divisors
(with correction terms from boundary divisors) is modular in CH1(SΣ

Q)Q.14 They also remarked
[BZ21, Rmk. 5.6] that with their correction terms, they also obtain the modularity of generating
series of special divisors in ĈH

1
(SΣ,Dpre)Q. See Tayou’s paper [Tay24, Thm. 3.1] for a detailed

discussion using inputs from the proof of the main theorem in [HP20, §9].
We now recall the precise statement of the modularity result following [BZ21] for b ≥ 3. [BZ21,

§§3.2, 3.3] provides an explicit description of SΣ
C and [BZ21, §§4.2-4.4] provides explicit formulae

for the coefficients of the correction terms arising from boundary divisors. Based on the summary
13Although in [BBGK07] they work with regular scheme, their whole discussion on the Archimedean places and

Green functions apply without changes to our normal stack SΣ once we restrict ourselves to Q-Cartier divisors.
14Strictly speaking, Bruinier and Zemel did not prove that the coefficients of the correction terms from the boundary

divisors are rational and thus only obtained their result in CH1(SΣ
Q )R. The rationality of coefficients is later proved by

Engel, Greer and Tayou [EGT]. In their paper, they also provide an alternative proof of the modularity of generating
series.

9



above, these results in [BZ21] hold without change to SΣ and SΣ
Fp

. See also [Tay24, §§2.2.1, 2.2.2,
4.5, 4.6].

Recall that SΣ admits a stratification indexed by K-isomorphism classes of toroidal stratum
representatives and thus the irreducible components in the boundary can be grouped in terms of
equivalence classes the corresponding cusp label representatives.15 Since SQ is a GSpin Shimura
variety, SΣ has the following two types of cusp label representatives: the admissible parabolic
subgroup P of G in a cusp label representative is the stabilizer of either an isotropic plane JQ ⊂ V
or an isotropic line IQ ⊂ V .

When P in the cusp label representative Φ is the stabilizer of an isotropic plane JQ, then the
boundary component in SΣ above this cusp is canonical.16 The multiplicity multJQ(m) of the
boundary divisor (being the Zariski closure in SΣ of the stratum associated to Φ) in the correction
term to Z(m) is given by

multJQ(m) :=
m

b− 2
|{v ∈ J⊥

L /J | Q(v) = m}|,

where J := JQ ∩ L, J⊥
L := J⊥

Q ∩ L. Thus J⊥
L /J is equipped with a quadratic form induced from Q

on V and it is a positive definite lattice (see [BZ21, Prop. 4.21, eqn. (4.28)]).17

When P in Φ is the stabilizer of an isotropic line IQ, the boundary components in SΣ above the
cusp Φ depend on the choice of the cone decomposition. More precisely, the irreducible boundary
divisors above a given Φ are indexed by K-isomorphism classes of rational rays R>0w in the open
convex cone CΦ (defined in [HP20, (2.4.1)]). By [BZ21, pp. 19-20], CΦ is a connected component of
{v ∈ (I⊥Q /IQ)⊗Q R | Q(v) < 0} (note that Q naturally induces a quadratic form on (I⊥Q /IQ)⊗Q R).

The multiplicity multIQ,R>0w of the boundary divisor in the correction term to Z(m) is given by

multIQ,R>0w(m) :=

√
−Q(w)

8
√
2π

ΦK
m

(
w√

−Q(w)

)
,

where K := (I⊥Q ∩L)/(IQ ∩L) and we choose w in the given ray R>0w to be the primitive element
in K ∩ CΦ. The function ΦK

m denotes the regularized theta lifting (using the Siegel theta function
associated to the lattice K) of the Poincaré series on K obtained naturally from Fm (see [BZ21,
Def. 4.18, eqn. (4.8)] — we omit their pKµ in our notation as we always work with µ = 0. The
discussions on Poincaré series and theta liftings in [Bru02, §§1.3-2.3] include the case of lattices of
signature (b− 1, 1) and thus apply to K here).

Note that the multiplicity only depends on JQ or (IQ,R>0w) in either case. Given an isotropic
plane JQ, let BJQ denote the boundary divisor consisting of all irreducible boundary divisors in SΣ

above the cusp label representatives which are K-isomorphic to a cusp label representative whose
admissible parabolic group is the stabilizer of JQ. Given a pair (IQ,R>0w) of an isotropic line and
a rational ray in its open convex cone, let BIQ,R>0w denote the boundary divisor consisting of all
irreducible boundary divisors in SΣ whose toroidal stratum representatives are K-isomorphic to a

15Geometrically speaking, the boundary components or cusps of the Baily–Borel compactification of S are indexed
by the set of equivalence classes of cusp label representatives [MP19, §5.2.4, Thm. 5.2.11]; here we consider the
boundary divisors in SΣ lying above a given cusp.

16Indeed, the boundary components above a given cusp depending on the choice of the cone decomposition in C∗
Φ

defined on [HP20, p. 201] and in this case, following for instance the discussions and notation in [HP20, §§2.4, 4.5],
we have C∗

Φ = R≥0 and the only possible cone decomposition is C∗
Φ = {0} ∪ R>0.

17Note that there is a slight difference in notation —- our m is the same as 2m in [BZ21].
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toroidal stratum representative whose admissible parabolic group is the stabilizer of IQ and the
rational polyhedral cone is R>0w. Define

ZΣ(m) = Z(m) +
∑
JQ

multJQ(m)BJQ +
∑

IQ,R>0w

multIQ,R>0w BIQ,R>0w,

where JQ and (IQ,R>0w) run through a set of representatives of K-isomorphism classes. Then
ẐΣ(m) := (ZΣ(m),Φm) is an arithmetic divisor (with pre-log-log form).

[BZ21, Thm. 1.2] and [Tay24, Thm. 3.1] show that the generating series

−ω̂ +
∑

m∈Z>0

ẐΣ(m)qm

is a weight 1 + b
2 modular form with coefficients in ĈH

1
(SΣ,Dpre)Q.

There are also other related works in the literature. Bruinier, Howard, Kudla, Rapoport and
Yang [BHK+20] consider the case of Shimura varieties associated to a Hermitian space over an
imaginary quadratic field of signature (n, 1). They establish the modularity of generating series
of special divisors in the canonical toroidal compactification of the Krämer integral model. In the
case when the Shimura variety has a regular proper integral model, Zhang’s work [Zha22, §2.5]
provides an alternative way to lift the special divisors on the generic fiber canonically to elements
in the Arakelov Chow group of the integral model, and deduces the modularity of the generating
series in the Chow group of the integral model from that of the generic fiber. Examples of such
Shimura varieties are GSpin varieties associated to self dual quadratic forms over a totally real field
F ̸= Q, where the quadratic form is indefinite at exactly one real place and has signature (b, 2) at
that place. For certain unitary Shimura varieties with signature (n, 1), (n+1, 0), . . . , (n+1, 0), Qiu
[Qiu] provides an explicit description of the extension of the special divisors on the generic fiber to
integral model following Zhang’s theory and proves a modularity result in this setting.

4 The main theorems and the ideas of proofs

4.1 Statements of the main theorems

Loosely speaking, the overarching result that we prove can be stated as follows. Let S be the integral
model of a GSpin Shimura variety recalled in §3.1, and consider a normal arithmetic curve C that
admits a finite map to S. We will assume that the image of this curve is not contained in Z(m) for
every m ∈ Z>0. We will work in two settings — the number field setting and the characteristic p
setting. In the number field setting, we will consider x ∈ S(K) (where K is a number field), which
induces a map C = SpecOK [ 1N ] → S (for a large enough integer N). In the characteristic p setting,
we will work with a smooth quasi-projective curve C/Fp and a finite map C → SFp

. In either
case, we will prove that infinitely many closed points of C are contained in

⋃
m∈Z>0

Z(m) using a
local-global argument that goes back to work of Chai–Oort [CO06] and Charles [Cha18]. We will
describe the overarching strategy and previous work [CO06,Cha18] in §4.2. As we will see from the
statements of the main theorems, results of this sort have immediate consequences to the splitting
of abelian surfaces and Picard ranks of K3 surfaces. This is because appropriate special divisors
inside the moduli spaces of polarized abelian surfaces (resp. polarized K3 surfaces) parameterize
split abelian surfaces (K3 surfaces with extra line bundles). We now state the main theorems.
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Theorem 4.1 ([ST20, Thm. 1]). Let K denote a number field, and suppose that A/K is an abelian
surface admitting real multiplication by some real quadratic field. Then there are infinitely many
non-Archimedean places v of K modulo which A is geometrically isogenous to the square of some
elliptic curve.

We remark that the above result falls into the intersection-theoretic framework mentioned above
because the moduli space of abelian surfaces with real multiplication is a GSpin Shimura variety,
and Fp-points of special divisors parameterize abelian surfaces isogenous to a self-product of elliptic
curves.

As will be clear later on in the section, the splitting of abelian surfaces whose geometric endo-
morphism ring is Z requires significantly new ideas. Indeed, the local estimates needed to carry
out the local-global strategy in the setting of Theorem 4.1 do not require the assumption that A is
defined over a number field. However, such local estimate is not true in general — even in the case
of abelian surfaces A with End(AK) = Z!18 Indeed, there exist abelian surfaces with supersingular
reduction over local fields which are arbitrarily well approximated (in the v-adic metric) by CM
abelian surfaces, and our local estimates using the ideas in the proof of Theorem 4.1 are simply
not good enough unless we use the fact that A is defined over a number field. The new input is
discussed in §4.6.2.

The characteristic p setting differs from the number field setting in the case of abelian surfaces.
For instance, the most general analogue of Theorem 4.1 is false! There exist non-isotrivial abelian
surfaces over global function fields which remain non-split modulo all but finitely many places.19

However, these counterexamples (and their higher dimensional counterparts) all occur only outside
the ordinary setting. As we will see, the generically ordinary versions of the number field results
still hold. While establishing local estimates is more challenging (the equi-characteristic p defor-
mation theory of abelian varieties and their endomorphisms is more complicated than the mixed
characteristic theory), there are no non-isotrivial ordinary abelian surfaces over local function fields
which are well-approximated by CM abelian surfaces. Therefore the local estimates we obtain do
not require the assumption that the abelian surface is defined over a global function field. We obtain
the following result.

Theorem 4.2 ([MST22, Thm. 1],[Tay24, Thm. 4.8]20). Let p ≥ 5 be a prime. Let C/Fp be a
smooth irreducible quasi-projective curve with a finite non-constant morphism to A2,Fp

whose image
is generically ordinary. Let A/k(C) denote the abelian surface over the function field of C induced
by this map.

1. Suppose that A has no extra endomorphisms. Then infinitely many Fp-points of C correspond
to non-simple abelian surfaces.

2. Suppose that A admits real multiplication by some field whose discriminant is relatively prime
to p. Then infinitely many Fp-points of C parameterize abelian surfaces isogenous to a self-
product of an elliptic curve.

18See Remark 4.10.
19See for instance [MST22, Rmk. 2].
20In order to obtain 1) in Theorem 4.2, we need to consider intersections with Z(m2). Even though Tayou’s

theorem is only stated for Z(m), the only input we need is the local estimate at the bad reduction points on C
given in Prop. 4.12 of loc. cit.. This bound is good enough to be combined with our proof in [MST22] to remove the
projectiveness assumption on C.
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As mentioned above, dealing with the higher dimensional case presents new challenges, which
requires a global input. We will discuss this in detail in §4.6, and end this subsection by stating our
main results. In the number field case, we prove the following result:

Theorem 4.3 ([SSTT22, Thm. 2.4],[Tay24, Thm. 4.1]). Let S be a GSpin Shimura variety and
let K be a number field. Let x ∈ S(K) denote a K-valued point of S. Consider the OK,S-valued
point of S (where S is a finite set of places of K) induced by x — we also denote the OK,S-valued
point by x. Then there exist infinitely many places v of K such that x mod v ∈

⋃
m∈Z>0

Z(m2).
Consequently:

1. Let X/K denote a K3 surface. Then there exist infinitely many places v of K such that the
Picard rank of XFv

is strictly greater than the Picard rank of XK . Here Fv denotes an algebraic
closure of the residue field Fv.

2. Let A/K denote an abelian surface. Then there exist infinitely many places v of K such AFv

is isogenous to a product of elliptic curves.

We also have the following function field result:

Theorem 4.4 ([MST22b, Thm. 1.2],[Tay24, Thm. 4.8]). Let S denote a GSpin Shimura variety
associated to a quadratic form self-dual at p, where p ≥ 5 is a prime. Let C/Fp be a smooth irre-
ducible quasi-projective curve with a finite non-constant morphism to SFp

whose image is generically
ordinary. Suppose further that the image of C is not contained in Z(m)Fp

for any m ∈ Z>0. Then
infinitely many Fp-points of C map to

⋃
m∈Z>0

Z(m)Fp
. Consequently, let X/k(C) denote a non-

isotrivial ordinary K3 surface and such that p does not divide the discriminant of the Picard lattice
of X. Then infinitely many Fp-points of C parameterize K3 surfaces whose geometric Picard ranks
are strictly greater than that of X.

The original versions of Theorems 4.2, 4.3 and 4.4 had everywhere potentially good reduction
hypotheses,21 and were proved in [MST22], [SSTT22] and [MST22b] respectively. This good reduc-
tion hypothesis was lifted in work of Tayou [Tay24]. Indeed, Tayou’s treatment of the boundary of
S simultaneously handles the number field and characteristic p settings. We will discuss Tayou’s
work in §4.8. Theorem 4.4 has the following consequence:

Theorem 4.5 ([MST22b, Thm. 1.4]). The ordinary Hecke orbit conjecture is true for SFp. Namely,
let x ∈ SFp(Fp) denote an ordinary point. Then the prime-to-p Hecke orbit of x is Zariski dense in
SFp.

In the following subsections, we will elaborate on the proofs of the above theorems, as well as
the extra challenges that arise in characteristic p, and the crucial global inputs needed to prove
Theorems 4.3 and 4.4.

4.2 Overarching strategy

Recall that C is a normal arithmetic curve which admits a finite map to S — i.e., C = SpecOK [1/N ]
(K is a number field), or C is an irreducible smooth curve over Fp. The basic strategy to prove the

21Work of Daniel Bragg and Ziquan Yang [BY23, Thm. 1.8 and the discussion below] shows that for p ≥ 3 and a
K3 surface X with a line bundle of degree prime to p, X has potentially good reduction at a place v above p if and
only if the Kuga–Satake abelian variety associated to X has potentially good reduction at v.
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results recalled in §4.1 is to define and estimate the intersection number (C.Z(m)) as m varies, and
to decompose this intersection number into a sum of local contributions iv(C.Z(m)), where v ∈ C
is a point.22 The local contribution at v is positive precisely when v ∈ Z(m). The theorem would
follow if one can prove that, as m → ∞,

iv(C.Z(m)) = o(C.Z(m)) (4.2.1)

for any fixed point v of C. Indeed, the assertion (4.2.1) would imply that for any finite set S of
points v ∈ C,

∑
v∈S iv(C.Z(m)) < (C.Z(m)) for m ≫S 1, which would then imply the existence of

a new point v ∈ C \ S with v ∈ Z(m) for some m.
As we will see later, in the number field version, we prove an average version of (4.2.1), averaged

over points of C. An averaged version of (4.2.1) is not true if C ⊂ SFp
, but we establish strong

enough local bounds and keep careful track of constants to prove our main results.
This strategy first appears in the setting of elliptic curves and the modular curve in work of

Chai–Oort [CO06] (in the characteristic p setting) and work of Charles [Cha18] (in the number field
case). We now elaborate on their work.

4.2.1 History: isogenies between elliptic curves

In [Cha18], Charles proves the following striking result.

Theorem 4.6 (Charles, [Cha18, Thm. 1.1]). Let E1, E2 denote two elliptic curves over a number
field K. Then there are infinitely many primes of K modulo which E1 and E2 are geometrically
isogenous.

The characteristic p analogue of Charles’s theorem was proved earlier by Chai and Oort. Both
approaches involve intersection theory on modular curves.

Theorem 4.7 (Chai–Oort, [CO06, Prop. 7.3]). Let C/Fp denote a quasi-projective curve, and
suppose that E1, E2/C are two non-isotrivial families of elliptic curves. Then there are infinitely
many points x ∈ C(Fp) such that E1,x is isogenous to E2,x.

Chai and Oort prove their result using intersection theory on X(1)×X(1), the moduli space of
pairs of elliptic curves. Chai and Oort prove that C intersects Hecke-translates of the diagonal ∆ ⊂
X(1)×X(1) at infinitely many points of C, taken over an infinite family of Hecke correspondences.
However, the family of correspondences they use are extremely particular to the setting of products
of modular curves in positive characteristic — indeed the family they use is Id×Frobn, n ∈ Z>0,
where Frob is the Frobenius on X(1).

In the number field setting of this problem, there are not any analogues of these specific Hecke
correspondences. Nevertheless, Charles considers the arithmetic intersection of j1 and T (j2), where
ji ∈ X(1) are the moduli points corresponding to (i.e. j-invariants of) the Ei and T varies over all
Hecke correspondences on X(1). More precisely, Charles endowed the divisor j1 in X(1) (over Z)
with a suitable Green function to make it into an Arakelov divisor ĵ1 and considers the Arakelov
height of T (j2) with respect to j1. This height is what we call the global intersection number.
To uniformize the notation with the characteristic p setting, we use the term (ĵ1, T (j2)) instead
of using more standard height notation. Charles uses work of Autissier [Aut03] to estimate the

22Right now, we ignore that C may not be proper and extra places/points need to be considered. We will provide
the precise definitions and details in §4.3.
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global intersection number (ĵ1, T (j2)). A key idea of Charles needed to bound the local intersection
multiplicities is the following. If there exist two Hecke correspondences T, T ′ with the property that
j1 is v-adically close (in an appropriately quantified sense) to some elements of T (j2) and of T ′(j2),
then j1 must be v-adically close to a CM point. He then uses the fact that CM points cannot
be too close (again, in a suitably quantified sense) to each other, to obtain sufficient bounds on
the local intersection multiplicities. We note that this case is analogous to the setting of abelian
surfaces with real multiplication. Indeed, a product of modular curves X(1)×X(1) is a degenerate
Hilbert modular surface, and Charles’ setting can be viewed as studying the Arakelov height of
Hecke translates of (j1, j2) with respect to the diagonal X(1) ⊂ X(1)×X(1). We refer the reader
to §4.4 for more about the case of real multiplication.

4.3 Definitions of the intersection numbers

Let C denote a regular arithmetic curve mapping finitely to S. We suppose that C is either a
smooth quasi-projective curve over Fq (where q is a power of p), or that C = SpecOK,S where K is
a number field and S is a finite set of primes. We assume that the generic point of C does not lie
on any special divisor Z(m).

Let v be a non-Archimedean place of C, and let m denote a positive integer. Let t ∈ OC denote
a uniformizing parameter at v.

Definition 4.8. The local intersection multiplicity iv(C.Z(m)) is defined as23

iv(C.Z(m)) =
∞∑
n=1

#{λ ∈ End(Auniv
OC/tn) special | Q(λ) = m} (4.3.1)

Note that this sum is actually a finite sum because for n ≫m 1, the set of λ ∈ End(Auniv
OC/tn)

special and Q(λ) = m is empty.
We would like to study ∑

v∈|C|

iv(C.Z(m)) log |Fv|,

where Fv is the residue field of the point/place v, as a global intersection number24. However
this only has good intersection theoretic properties when C is a smooth proper curve (admitting
a finite map to S), in which case this sum is indeed the total intersection number (C.Z(m)) in S.
Equivalently, as C must be a curve over Fq and the Z(m) we used in the proofs are flat over Zp,
this number is (up to a factor of log q) the classical intersection number (C.Z(m)Fp) in SFp .

We now define what we mean by the global intersection number in all other settings.25 If C
is a not necessarily projective curve over Fq, then the smooth projective compactification of C
(which we will also denote by C) admits a finite morphism to any compactification of S. We pick a
suitable toroidal compactification SΣ recalled in §3.6. Recall that we still use Z(m) to denote the

23This definition coincides with the usual local intersection multiplicity in both classical and arithmetic setting
using the moduli interpretation of Z(m).

24In the proofs in [MST22,MST22b] in the characteristic p setting, we consider the sum over all Fp-points of C of
the local intersection multiplicity iv(C.Z(m)) without the log |Fv| term — these two definitions are equivalent up to
a factor of log q.

25In the following discussion, we will not spell out that one might need to pass to a finite cover of C because of
stacky issues in order to have an extension to the compactification of S.
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Zariski closure of the special divisor in SΣ. Then the global intersection number to study in this
case is (C.Z(m)) in SΣ (the same as (C.Z(m)Fp) in SΣ

Fp
). Note that (C.Z(m)) is the sum of local

intersection multiplicities at all closed points of C. The local intersection multiplicities at points
in S is given in (4.3.1), and the local intersection multiplicities at points in the boundary SΣ \ S
have the usual intersection theoretic definition, which is sufficient for the purpose of this paper (see
§4.8.2 for details).

If C is SpecOK,S , then SpecOK (still denoted by C) admits a finite morphism to SΣ. The
definition of the local intersection multiplicities at non-Archimedean places of K is the same as
the characteristic p setting (i.e., (4.3.1) for primes of good reduction, and the intersection theoretic
definition for primes modulo which C specializes to the boundary of SΣ).

We now discuss the suitable Archimedean term. For simplicity, we first consider the case when
SpecOK lies in S. As recalled in §3.7, on S, each special divisor Z(m) is equipped with a Green func-
tion Φm and we may consider the Arakelov height (C.(Z(m),Φm)) of C with respect to (Z(m),Φm)
as the global intersection number. More precisely,

(C.(Z(m),Φm)) =
∑

v non-Archimedean

iv(C.Z(m)) log |Fv|+
∑

σ:K↪→C
Φm(Cσ),

where iv(C.Z(m)) is defined in (4.3.1) and Cσ denotes the C-point on S obtained via σ : K ↪→ C.
However, Φm(Cσ) grows much faster than both (C.(Z(m),Φm)) and iv(C.Z(m)) (for a fixed v on
average over m) as m → ∞ (see [SSTT22, Prop. 3.2, Thm. 5.7, Thm. 6.1, Thm. 7.1]). Therefore, to
make the Archimedean term behave similar to the non-Archimedean term iv(C.Z(m)), we consider
a different Green function. Following Bruinier’s work [Bru02, Prop. 2.11], we write Φm = ϕm−Cm,
where ϕm is the regularized theta lifting using Bruinier’s regularization defined in [Bru02, (2.15) and
the paragraph below] and Cm is a constant which is the derivative of a certain Fourier coefficient
of Eisenstein series.26 Note that ϕm is also a Green function for Z(m) in S and we have

(C.(Z(m), ϕm)) =
∑

v non-Archimedean

iv(C.Z(m)) log |Fv|+
∑

σ:K↪→C
ϕm(Cσ). (4.3.2)

In the proofs of the number field setting, we refer to (C.(Z(m), ϕm)) as the global intersection
number and ϕm(Cσ) as the Archimedean contribution. As we will see in the rest of this section, on
average over m (away from a very small bad set of m) as m → ∞, we have

iv(C.Z(m)) = o((C.(Z(m), ϕm))), ϕm(Cσ) = o((C.(Z(m), ϕm))). (4.3.3)

In the general case C = SpecOK → SΣ, the above mentioned functions Φm, ϕm are Green
functions (pre-log-log along the boundary) for

Z(m)Σ = Z(m) +
∑
JQ

multJQ(m)BJQ +
∑

IQ,R>0w

multIQ,R>0w BIQ,R>0w

26In [Bru02], he sometimes assumes that b ≥ 3. We will not remark on which parts in [Bru02] hold true for b ≤ 2
and will instead refer the reader to [BY09] as a reference for Green functions arising from regularized theta liftings.
Moreover, we also remark that in the proofs of main theorems recalled in §4.1 for b ≤ 2, one uses an alternative way
to obtain Green functions with similar asymptotic on growth as ϕm discussed at the end of this subsection.
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in §3.7. We have

(C.(Z(m)Σ, ϕm)) =
∑

v non-Archimedean

iv(C.Z(m)) log |Fv|+
∑

σ:K↪→C
ϕm(Cσ) (4.3.4)

+
∑
JQ

multJQ(m)(C.BJQ) +
∑

IQ,R>0w

multIQ,R>0w(C.BIQ,R>0w). (4.3.5)

We use (C.Z(m)) to denote
∑

v non-Archimedean iv(C.Z(m)) log |Fv|, the sum of local intersection
numbers at all non-Archimedean places, with similar definitions for (C.BJQ) and (C.BIQ,R>0w).
Note that (C.BJQ), (C.BIQ,R>0w) are both independent of m and thus the asymptotic estimates only
involve multJQ(m),multIQ,R>0w. See §4.8.1 for details.

We remark that if one only needs to work with Hecke translates of a fixed finite set of Z(m0)’s
(as in [Cha18,ST20]27), one can use Hecke translates to pullback Green function on Z(m0) to obtain
Green functions on its Hecke translates pullback, which is also (a union of) special divisors. The
asymptotic estimates, as the degree of the Hecke correspondence goes to ∞, behave in the same
way as ϕm above as m → ∞. Therefore by a slight abuse of notation, we still use ϕm to denote the
Green function used in §4.4 obtained by pullback via Hecke correspondences.

4.4 Splitting of abelian surfaces over number fields: the case of real multipli-
cation

In this section, we will describe the proof of Theorem 4.1. Let A/K denote an abelian surface
over a number field admitting real multiplication by F . Without loss of generality, we assume that
OF ⊂ End(A). Then A corresponds to a moduli point x ∈ SΣ(OK), where S is the integral model
of the Hilbert modular surface associated to F and SΣ is a toroidal compactification. We will use
the notation x ∈ SΣ(OK) instead of C → SΣ. We can and will assume that xK does not lie on any
Z(m) (indeed, A mod v would be isogenous to a self-product of elliptic curves for all places of good
reduction if xK ∈ Z(m) — see [ST20, §5.2.2]).

While our proof in [ST20] is in terms of the Arakelov intersection of the Hecke orbit of x with
a fixed finite sum of suitable special divisors, we will recast the proof in the context of considering
the Arakelov intersection of x with a suitable sequence of special divisors.

4.4.1 Estimating the global intersection

Unlike in the higher dimensional (or characteristic p) case, we adapt Autissier’s work [Aut05] and
Borcherds theory to our setting to estimate the Arakelov intersection (x, (Z(m), ϕm)) (for appropri-
ately chosen m). In particular, we prove that for appropriate choices of m, the Arakelov intersection
(x, (Z(m), ϕm)) ≫ m logm. The precise statement is [ST20, Proposition 5.1.6].28

27From the statements of the theorems in [SSTT22,Tay24], it may appear to the reader that one may only work
with a suitable infinite sequence of Z(m) (such as the Hecke translates of a fixed Z(m0)). However, our proof uses a
so-called global height input to bound the local intersection multiplicities discussed in §4.6.2 and we need asymptotic
estimate of (C.(Z(m)Σ, ϕm)) for all m ∈ Z>0.

28We remark that the statement in loc. cit. is about the average Faltings height of a set of abelian surfaces
isogenous to A. That result can be used in conjunction with Borcherds theory (summarized in the special case we
need in [ST20, Lem. 5.1.1]) to deduce the estimate on (x,Z(m)) provided here. More precisely, Borcherds theory
relates the Faltings height of x to the Arakelov intersection of x with a fixed finite sum of special divisors. Therefore,
the sum of the Faltings heights of x in a Hecke orbit of certain degree p is, up to a multiple of a fixed constant, the
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To prove Theorem 4.1, we prove that given any finite set S of places v, there exists an infinite
sequence of (suitably chosen) positive integers m such that iv(x.Z(m)) = o(m logm) for all non-
Archimedean places v ∈ S, and such that ϕm(xσ) = o(m logm) for all Archimedean places σ of
K.

We use a suitable sequence of integers mi such that Z(mi) is a compact divisor in SQ.29 This
allows us to ignore the boundary of S in SΣ as all the intersections happen in S. In fact, we choose
mi = rpi, where r is from a fixed finite set of positive integers (as the set is finite and we will focus
on asymptotics, so by abuse of notation, we dropped the subscript i in r), and the pi are primes
which split as a product of principal prime ideals in OF .

In the next two subsubsections, we describe how we establish the bounds for Archimedean and
non-Archimedean places respectively.

4.4.2 Bounding the contribution from Archimedean places.

The strategy to bound the Archimedean contribution is as follows. We will work with a suitably
large auxiliary integer N to keep track of the sizes of quantities involved.

Step 1 Let m be a suitably chosen integer (see §4.4.1 for the description) in the range [N1/2, N ]
such that ϕm(xσ) ≍ m logm,30 then xσ is very close to a formal analytic component of Z(m)
relative to the hyperbolic metric on S(C) (see [ST20, Lemma 3.1.3] for the precise definition).31

Here, xσ ∈ S(C) is the C-point induced by the Archimedean place σ. This reduction step is
essentially the proof of [ST20, Thm. 3.2.1] using the equidistribution of Hecke orbits in S(C)
(see [COU01]).

Step 2 Let m1 and m2 be two suitably chosen integers in the range [N1/2, N ] such that ϕmi(x
σ) ≍

mi logmi. Then there exists a special point (i.e., CM point) y on S(C) which satisfies the
following properties:

• The point y is close to xσ relative to the hyperbolic metric on S(C) ([ST20, Lemma
3.1.5]).

• The lattice of special endomorphisms of y has rank 2 and thus gives rise to a positive
definite binary Z-coefficient quadratic form Qy. This quadratic form represents m1,m2

(see loc. cit.).

Arakelov intersection of x with the Hecke translate of the same degree of this fixed finite sum of special divisors.
Since the Hecke translate of special divisors is a finite union of special divisors Z(m) with m ≍ p, there must be at
least one such m such that (x, (Z(m), ϕm)) ≫ m logm. We would like to mention that the idea of relating Faltings
height with arithmetic intersection with special divisors using Borcherds theory has already appeared in Yang’s work
on special case of Clomez conjecture for abelian surfaces [Yan10].

29There are many compact special divisors in Hilbert modular surfaces (see for instance [ST20, Prop. 2.1.2,
Cor. 2.1.3]). The inputs from Borcherds theory are robust enough that we may work exclusively with compact
divisors (see [ST20, Lemma 5.1.1] for the precise statement).

30The asymptotic is understood as N → ∞ — for instance, see [ST20, Thm. 3.2.1] for a precise formulation. Note
that loc. cit. is formulated in terms of the sum of the Green function for a fixed finite sum of special divisors evaluated
on points in a Hecke orbit. However, the fact that we define the Green function for Z(m) in terms of the pullback
under a Hecke correspondence implies that this sum is exactly the value of the Green function of Z(m) at x.

31More precisely, as recalled in [ST20, §2.1.1], the preimage of Z(m) in H2 (here H denotes the upper half plane) is
a union of geodesics and we refer to these geodesics as “formal analytic components” of Z(m). [ST20, Lemma 3.1.3]
shows that having a point in the Hecke orbit of xσ of degree p being close to Z(m0) is equivalent to xσ close to a
formal analytic component of Z(pm0) and thus we can translate the statements on points in the Hecke orbit as in
[ST20] to the results on x as stated in this subsubsection.
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• The discriminant of Qy is O(N2) ([ST20, Proof of Lemma 3.1.6]).

Step 3 Let m′
1,m

′
2 be another pair of positive integers satisfying the hypotheses of Step 1. Then

the special point y′ constructed as above is the same as the point y ([ST20, Lemma 3.1.6]).
Consequently Qy represents m′

1 and m′
2.

Step 4 The set of integers represented by a positive definite binary quadratic form has density zero.
As the set of integers mi that we work with is also density zero, we cannot directly use this
fact to establish our bounds. Instead, we use a quantitative result to show that among integers
m ∈ [N1/2, N ] that we consider, the proportion of those m which are not represented by Qy is
approaching 1 as N → ∞ since discQyN → ∞, where yN is the (unique) CM point associated
to N . ([ST20, Claim 3.1.9]).

The strategy outlined above yields that as the auxiliary parameter N grows to infinity, our
initial point x satisfies ϕm(xσ) is o(m logm) for most suitable integers m ∈ [N1/2, N ]. The precise
statement is [ST20, Theorem 3.2.1].

4.4.3 Bounding the non-Archimedean contribution

Our bounds for iv(x,Z(m)), where v is a p-adic place, are purely local, i.e., we do not need to
assume that x is defined over a number field. For ease of exposition, we assume that x ∈ S(W ),
where W is the ring of integers of an unramified extension of Qp.32 Let A/W denote the abelian
surface induced by the point x. We introduce the following notation:

1. Let An denote the abelian surface mod pn, and let Gn = An[p
∞].

2. Let Ln denote the lattice of special endomorphisms of An, and let Λn denote the Zp-lattice
of special endomorphisms of Gn. We note that from Definition 3.3, an endomorphism of Gn

is a special endomorphism if and only if it is an element of L1 ⊗ Zp. The Serre–Tate lifting
theorem yields that Ln = Λn ∩ L1, where the intersection occurs in Λ1.

3. Let G = A[p∞], and let Λ denote the Zp-module of special endomorphisms of G . We note
that Λ = ∩nΛn, and this intersection can be non-zero even though we have ∩nLn = {0} from
our assumption on xK /∈ ∪m∈Z>0Z(m).

4. Let µ1(n) ≤ µ2(n) ≤ · · · ≤ µrkLn(n) denote the successive minima of the quadratic lattice Ln.

We need to prove that iv(x,Z(mi)) = o(mi logmi) for a suitable sequence of positive integers
mi. That corresponds to establishing the following bound:

∞∑
n=1

#{λ ∈ Ln : Q(λ) = mi} = o(mi logmi).

The main term of the LHS is entirely controlled by the ranks and discriminants of the lattices
involved. Indeed, we prove the following result:

32The proof for the general case (namely with ramified extensions) is essentially the same as far as one keeps track
of the ramification index and we refer the reader to [ST20, §4] for details.
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Theorem 4.9. The ranks of Λ and L1 are bounded above by 2 and 4 respectively, with equality
holding only if A1 is supersingular. Furthermore, there exists some positive integer n0 such that
Λn+n0 = Λ+ pnΛn0 for all n ≥ 0. In particular, all Ln’s have the same rank.

Proof. The first claim is [ST20, Lemma 4.3.2] and the second claim is [ST20, Theorem 4.1.1] proved
using Grothendieck–Messing theory. The last claim follows from the second claim and that Ln =
Λn ∩ L1.

Theorem 4.9 is not sufficient to establish the required bounds, because it is a priori possible
that Λ is very well approximated by sublattices M ′

n of L1 having small discriminant. Indeed, there
could exist an integer n, and a sublattice L′ ⊂ L1, such that L′ ≡ Λ mod pN with N arbitrarily
large relative to n — if this were to happen, we would have that L′ ⊂ Ln′ for every n′ ≤ N . This
would imply that if λ ∈ L′ satisfied Q(λ) = m, then iv(x,Z(m)) ≫ N . Equivalently, while the
index of Ln in L1 grows rapidly with n (order of growth p2n), it is still possible that some of the
successive minima (in this case, µ1(n), µ2(n)) grow extremely slowly. Note that the fact that Λ has
rank at most 2 implies that µ3(n), µ4(n) grow exponentially in n. We are going to prove that most
of m are not representable by L′ as above. To achieve this, let λ1(n), λ2(n) denote the two linearly
independent vectors of Ln with lengths µ1(n), µ2(n) respectively.33

Fix some auxiliary integer N , which will eventually grow to infinity. We now outline our strategy:

Step 1 Consider the set of suitable integers m ∈ [N1/2, N ] (here suitable means in the sense of §4.4.1)
represented by Ln for n, where we set n to approximately equal C logN , where C is a large
absolute constant. Since µ3(n), µ4(n) grow exponentially in n, then m must be represented
by L′

n, which is the lattice spanned by λ1(n), λ2(n).

Step 2 Recall that ∩nLn = 0. Therefore µ1(n) tends to infinity, as does the discriminant of L′
n. Since

the rank of Λ, and therefore that of L′
n, is at most 2. By the same argument as in Step 3 and

Step 4 in §4.4.2, the proportion of suitable m ∈ [N1/2, N ] not represented by L′
n grows to 1.

(We remark that here we make crucial use of the rank 2 fact, which fails in higher dimensional
case. In other words, we cannot use this method to rule out a density approaching 0 set of m
satisfying the hypothesis in Step 1. See §4.6.1 for details.)

Step 3 To conclude, by working with the most suitable m ∈ [N1/2, N ] given in Step 2, we conclude
that m is not representable by Ln with n ≥ C logN (here C is the constant in Step 1) and
hence

iv(x,Z(m)) =

C logN∑
n=1

#{λ ∈ Ln : Q(λ) = mi}.

This strategy is carried out in [ST20, Theorem 4.3.4] and philosophically speaking, this result bounds
the error term of iv(x,Z(m)) for most suitable m.

The main term in the local intersection multiplicity
∑C logN

n=1 #{λ ∈ Ln : Q(λ) = mi} is con-
trolled by Theorem 4.9 via a direct application of geometry-of-numbers argument. This is carried
out in [ST20, Theorem 4.3.3] (see also §4.6.2 Step 3 for a similar argument).

33Note that the case when rkLn = 4 is the key case in our proof and the reader shall feel free to stick to this case.
We adopt the convention that terms with µi(n) with i > rkLn are ignored.
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Remark 4.10. We remark that Λ having rank 2 is equivalent to the moduli point x being the p-adic
limit of a sequence of CM points (indeed, with each CM point being isogenous to a self-product
of elliptic curves). In the case of A2, i.e., the question of splitting of abelian surfaces with trivial
endomorphism ring, the point x being the p-adic limit of such CM points would imply that the
Zp-lattice of special endomorphisms of the p-divisible group associated to x would have rank 3.

Remark 4.11. We remark that similar results hold for all GSpin Shimura varieties associated to
integral quadratic forms with signature (2, 2). Roughly speaking, there are three cases. The first is
when the quadratic form is split over Q. The Shimura variety is a product of modular curves, and
this is just Charles’ result. The second is when the maximal isotropic Q-subspace of the quadratic
form is one-dimensional. This corresponds to the case of Hilbert modular surfaces — namely the
case just discussed in this section. Finally, the last remaining case is when the quadratic form is
anisotropic. The Shimura variety is compact in this setting. The methods of [ST20] completely
go through in this case — indeed, the use of Borcherds theory to find compact special divisors is
unnecessary as every special divisor is automatically compact.

4.5 Splitting of abelian surfaces over function fields

In this section, we will describe the proof of Theorem 4.2. We will focus on the case when A/k(C)
has no extra endomorphisms. It suffices to prove that the image of C intersects

⋃
m∈Z>0

Z(m2)
at infinitely many points, and the strategy will be the same local-global strategy. We set up the
following notation. Let P ∈ C denote a closed point, and let t ∈ OC denote some uniformizing
parameter at P . We will also use A/Fp[[t]] to denote the abelian surface restricted to the formal
neighbourhood of C at P . Analogous to Section 4.4.3, let:

• An denote A mod tn and Gn = An[p
∞],

• Ln be the lattice of special endomorphisms of An, and Λn denote the Zp-lattice of special
endomorphisms of Gn.

4.5.1 Differences with the number field case.

There several differences (some of which add significant difficulties) when compared to the proof of
Theorem 4.1.

1. The intersection theoretic framework is classical and the residue characteristic of the closed
points do not grow. Consequently, the global intersection number (C.Z(m2)) grows as m3

and not m3 logm, as m → ∞.

2. The local intersection numbers at supersingular points P have order of growth iP (C.Z(m2)) ≍
m3. Therefore unlike in the number field case, we have to keep track of coefficients of leading
order terms for the local and global intersection numbers, and prove that the sum of local
coefficients is strictly smaller than the global coefficient. In particular, a characteristic p
analogue of Theorem 4.9 with an unspecified n0 is not sufficient to bound iP (C.Z(m2)) for
supersingular P .

3. The equicharacteristic p deformation theory of special endomorphisms (and endomorphisms
in general) is more difficult than its mixed characteristic analogue, because Grothendieck–
Messing theory no longer applies. This is because the ideal (t) ⊂ Fp[[t]] does not admit
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divided powers, and therefore Grothendieck–Messing theory does not apply. Moreover, the
analogue of Theorem 4.9 (with t in place of p, even with an unspecified n0) is not even true!
(See [MST22b, §5.3] for details.) This compounds the second difficulty, because we now have
to more precisely compute a quantity in a more difficult setting.

4. As the abelian surface is not isotrivial and generically ordinary CM abelian varieties in char-
acteristic p are all defined over finite fields, A/Fp[[t]] is not the t-adic limit of CM abelian
schemes over Fp[[t]], unlike the setting of Remark 4.10. Consequently, the rank of Λ is at most
2.34 It is precisely this feature that enabled us to prove Theorem 4.2 in the setting of A2 using
purely local methods to estimate the local intersection numbers iP (C,Z(m2)) — i.e., we do
not need to use the fact that A/Fp[[t]] descends to the global field k(C).

5. The fact that we sum over squares complicates the geometry-of-numbers arguments needed.

4.5.2 Bounding local intersection multiplicities

We now detail how we overcome some of these added difficulties. As the hardest case is of su-
persingular points, we henceforth assume that the image of P in A2 is supersingular. In order to
compute precise constants for the global intersection number, we use arithmetic Borcherds theory
following Howard–Madapusi [HP20] (recalled in §3.7), work of Bruinier–Kuss [BK01], Siegel mass
formula, and local density estimates using work of Hanke [Han04], to explicitly compare the Fourier
coefficients of the generating series −(C.ω) +

∑
m∈Z>0

(C.Z(m))qm with that of the theta series
associated to the lattice of special endomorphisms associated to a superspecial35 abelian surface.
This is done in [MST22, Section 4], and the precise comparison result is a combination of §§4.1.4,
4.2.1, Lemmas 4.3.2 and 4.4.6 of loc. cit.36

In order to estimate the main term of iP (C,Z(m2)), we must precisely estimate the discriminant
of Ln in terms of n and the starting data of A/Fp[[t]]. We do this by using work of Kisin [Kis10,
Sections 1.4-1.5] to write out the F -crystal Lcris (see §3.2 for definition) over Fp[[t]]. This is a module
L with semilinear Frobenius over the ring W (Fp)[[t]]. We then use the group-theoretic description of
Frobenius to explicitly calculate the Frobenius invariant sections in L⊗W (Fp)[1/p][[t]]. This gives
us precise control over the discriminant of Ln. This is the technical heart of the paper, and is done
in [MST22, Sections 5 and 6] and the appendix of [MST20, Appendix A], and the precise statements
are [MST22, Definition 5.1.1, Theorem 5.1.2, and Proposition 5.1.3] and [MST20, Theorem A.0.1].

A crucial aspect of our calculation is that our estimate of the ratio Disc(Ln)/Disc(L1) is in terms
of37 the vanishing of the Hasse invariant restricted to SpecFp[[t]]. This dependence is precisely what
allows us to compare the coefficients of leading order terms of iP (C.Z(m)) and (C.Z(m)). Indeed,
upon comparing with the m-th Fourier coefficient q(m) of the Eisenstein series in Bruinier–Kuss (see
for instance [MST22, §4.1.4] for the definition of E0), the leading order term of (C.Z(m)) is seen
to equal (C.ω)q(m). Recall from §3.7 that ω is the Hodge bundle. On the other hand, the divisor
class H of the Hasse invariant is (p − 1)ω. Since the vanishing locus of the Hasse invariant is the
non-ordinary locus, the total number of non-ordinary points with multiplicities (the multiplicities

34The rank of Λ being equal to 2 would imply that the Fp[[t]]-valued moduli point associated to A is the t-adic
limit of Fp[[t]]-points contained in special divisors Z(m) with varying m.

35An abelian variety is said to be superspecial if it is isomorphic to a self-product of supersingular elliptic curves.
36The sizes of the Fourier coefficients are asymptotic to the Fourier coefficients of the corresponding Eisenstein

series; Lemma 4.4.6 in loc. cit. gives the comparison of the Fourier coefficients of the corresponding Eisenstein series.
37Of course, the ratio also depends on n.
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are given by the order of vanishing of the Hasse invariant) is (p− 1)(C.ω). Therefore, we have the
following estimate:

(C.Z(m)) ∼ q(m)

p− 1
(C.H) =

∑
P∈C

q(m)

p− 1
iP (C.H) (4.5.1)

Note that the sum above is over non-ordinary points of C, which also include supersingular points.
Therefore, (4.5.1) allows us to compare the coefficients of leading order terms of

∑
P∈C iP (C.Z(m))

and (C.Z(m)), by comparing the coefficients of leading order terms of iP (C.Z(m)) and q(m)
p−1 iP (C.H)

at a fixed supersingular point P ∈ C.
A feature crucial to this comparison is the dichotomy between superspecial and supergeneric

points (here we refer to nonsuperspecial supersingular points as supergeneric). The quantity
Disc(L1) is smaller at superspecial points than at supergeneric points and so iP (C.Z(m)) is larger
at superspecial points than at supergeneric points. Since Disc(L1) is large enough at supergeneric
points, our estimate of the discriminant of Ln mentioned above is sufficient to show that the main
term in iP (C.Z(m)) is smaller than q(m)

(p−1) iP (C.H).
We notice that the vanishing locus of the Hasse invariant (i.e. the non-ordinary locus) is singular

at superspecial points (and this is also reflected in our local calculation referred as the existing of
a special endomorphism with very rapid decay — see [MST22, Definition 5.1.1, Theorem 5.1.2]).
It is this that yields the fact that q(m)

p−1 iP (C.H) is larger than the main term in iP (C.Z(m)) at a
superspecial point P . More precisely, the vanishing order of the Hasse invariant is at least twice38

as large as the smallest n for which Ln ̸= L1; the contribution from all n with Ln = L1 is a
good approximation of iP (C.Z(m)) for p ≫ 1. To summarize, in order to show that the main
term in iP (C.Z(m)) is smaller than the proportion in the global intersection number associated to
a supersingular point on C, we use the distinct features of superspecial and supergeneric points,
namely the first is a singular point in the non-ordinary locus and the second has larger Disc(L1).

The proof of [MST22b, Prop. 7.17]39 shows how we use these two features to prove that the sum
of the main terms in iP (C.Z(m)) over all supersingular points P on C is at most α(C.Z(m)) for
some absolute constant 0 < α < 1 as m → ∞. See also [MST22b, §3.4] for a heuristic argument
highlighting these two features (note that here we do not distinguish whether we work with all m
or only squares as the method and heuristics in the computation of the main term is the same in
both cases).

In order to deal with the error terms of iP (C.Z(m2)), we use a carefully refined version of the
strategy carried out in [ST20, Theorem 4.3.4] to account for the fact that we are summing over
squares. Of course, our argument only works because Λ has rank at most 2 (see Remark 4.10). See
[MST22, Prop. 9.1.3] for the input to treat squares and §9.2 in loc. cit. for the proof — see also
Remark 4.13 (3) for the number field case.

To summarize, the above discussions indicate how we prove that the sum of iP (C.Z(m)) over
all supersingular points P on C is at most α(C.Z(m)) for some absolute constant 0 < α < 1. Note
that (2) in Section 4.5.1 is only for supersingular points. Indeed, we prove that on average over m,
iP (C.Z(m)) = o((C.Z(m))) (see [MST22, §9.3]) and thus we conclude our argument as in §4.4 to
obtain Theorem 4.2.

38This is true as p → ∞. See the definition of very rapid decay for the precise statement.
39Here we give a reference to our later paper as this part of the computation in [MST22] is mixed with other

estimates in [MST22, §9.2].
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4.6 The general case

In this subsection, we describe the proofs of Theorems 4.3 and 4.4, mainly focusing on the extra
difficulties and the new ideas required to overcome them. Recall that S is the integral model of the
GSpin Shimura variety SQ associated to an integral quadratic form with signature (b, 2) (see §3.1).

4.6.1 Transcendental examples

We will first briefly describe an example of a (transcendental) point y ∈ S(W (Fq)), where q = pr,
that has large local intersection multiplicities with Z(m) for many values of m. Here dimSQ = b
is sufficiently large. More specifically, we will construct y such that there exists an infinite se-
quence {mi}∞i=1 that has the property ip(y,Z(m)) ≫ m

b
2 logm (we will see in §4.6.2 that m

b
2 logm

is the asymptotic of the global intersection number defined in §4.3) for a density-one set of in-
tegers m in the interval [mi,m

2
i ]. Indeed the example also has the property that the function

d(M) =
#{m<M :m

b
2 logm=o(ip(y.Z(m)))}

M satisfies lim supM→∞ d(M) = 1. Let Λ be the Zp-lattice of
special endomorphisms of the p-divisible group associated to y and let L1 be the Z-lattice of special
endomorphisms of the abelian variety associated to yFq as in Section 4.4.3. It is possible to choose
the point y (for example, using Serre–Tate coordinates) such that Λ has large rank and is p-adically
well approximated by Z-sublattices of L1. More specifically, it is possible to find a point y and a
sequence of saturated sublattices L′

i ⊂ L1 having discriminants Di such that L′
i ≡ Λ mod pNi , where

Ni is (for example) asymptotic to ee
Di . Let λi ∈ L′

i with Q(λi) = mi. Then ip(y,Z(mi)) ≥ Ni.
Assuming that Λ has large enough rank, it is easy to arrange for L′

i to represent a density-one set of
integers having size around eDi . Therefore, if mi is one of these integers, we see that ip(y,Z(mi))

is at least ≍ emi . Therefore we have ip(y,Z(mi)) ≫ m
b
2
i logmi. Here is what happens in terms of

the lattices LNi . The analogue of Theorem 4.9 is still true (see Theorem 4.12). This theorem gives
extremely good control on the discriminants of LNi . However, the discriminant of a lattice only
gives a first-order approximation of the number of lattice points with bounded norm. In order to
get good bounds, one needs to effectively lowerbound the successive minima of LNi . In the example
outlined above, LNi contains lower-rank sublattices (namely, L′

i) having small discriminants. There-
fore, the first several successive minima of LNi can be extremely small, even though the discriminant
itself is very large. This construction is carried out in detail in [SSTT22, Section 7.3].40 For the
characteristic p case, see [MST22b, Section 3.5]. Similarly, there exists points y ∈ S(C) such that
the Archimedean intersection of y with Z(mi) is large relative to mi.41

4.6.2 The global input

Our exposition will mainly focus on the number field case with b ≥ 3 (for b = 2, see Remark 4.11).
As in Section 4.4, we will use the notation x ∈ S(OK,S). A place v will denote a place of K not in
S with residue characteristic p, and we postpone the case of when v ∈ S to Section 4.8. We also
assume that xK /∈ ∪m∈Z>0Z(m). Otherwise, since every Z(m) is a GSpin Shimura variety, we may
work with the smallest S that has the property that xK does not lie on any special divisor.

For the ease of notation, we assume that x ∈ S(OK) and therefore consider the arithmetic
intersection of x with Ẑ(m) in S. In the general case, we work in a suitable SΣ, after an analysis of

40The construction there also indicates that rkΛ ≥ 5 is what we mean by rank large enough.
41Note that as indicated in Remark 4.13 (2), the main term in ϕm behaves similarly to the local intersection number

at non-Archimedean places.
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boundary components in ZΣ(m). The discussion on local intersection multiplicities in the setting of
x ∈ S(OK) will still hold in the general case for primes of good reduction and Archimedean places
(see §4.8.1).

Recall from §§3.7,4.3, Ẑ(m) = (Z(m),Φm) and Φm = ϕm−Cm. By the modularity of generating
series of Ẑ(m) recalled in §3.7, we have (x.Ẑ(m)) = O(mb/2). Using explicit formula for Cm in
[BK03], [SSTT22, Prop. 5.2] shows that Cm ≍ mb/2 logm. Therefore the global intersection number

(x.(Z(m), ϕm)) ≍ mb/2 logm. (4.6.1)

The first input to bound iv(x.Z(m)) is the following analogue of Theorem 4.9. Notation as in
§4.4.3 and we also work with the unramified case for the ease of exposition. Let Ln denote the lattice
of special endomorphisms of x mod pn, and let Λn denote the Zp-lattice of special endomorphisms of
the p-divisible group associated to x mod pn. We have Ln = Λn ∩L1, where the intersection occurs
in Λ1. Let Λ denote the Zp-module of special endomorphisms of the p-divisible group associated to
xW (Fp)

.

Theorem 4.12. The ranks of Λ and L1 are bounded above by b and b+2 respectively, with equality
holding only if x mod p is supersingular. Furthermore, there exists some positive integer n0 such
that Λn+n0 = Λ+ pnΛn0 for all n ≥ 0. In particular, all Ln’s have the same rank.

The example in Section 4.6.1 unequivocally demonstrates that in the general case, it is not
possible to bound local intersection multiplicities (even on average) using purely local arguments.
We expect that iv(x,Z(mi)) = o((x.Z(mi))), for any increasing sequence of integers mi which satisfy
Z(mi) ̸= ∅, where x ∈ S(K), K is a number field, and v is a non-Archimedean place of K.42 This
turns out to be an extremely interesting question in transcendence which we will discuss in Section
5.1. However, showing that the example of y ∈ S(W (Fq)) in 4.6.1 cannot be defined over a number
field is easier than proving that iv(x,Z(mi)) = o((x.Z(mi))). Indeed, by [SSTT22, Theorem 5.8
(ii)], the local intersection multiplicity

iv(x.Z(m)) ≪ mb/2 logm. (4.6.2)

On the other hand, iv(y.Z(m)) is exponential in m for an infinite set of integers m (indeed, for a
set of integers having upper density 1). It follows that y must be a transcendental point.

The intuition behind (4.6.2) is that the local intersection multiplicity must be bounded by the
global intersection number. Indeed, by Equations (4.3.2) and (4.6.1), and that iv(x.Z(m)) ≥ 0 for
all non-Archimedean v, the bound (4.6.2) follows from a lower bound on ϕm(xσ) for all Archimedean
places σ. A good enough such bound follows from [SSTT22, Prop. 5.4]. We also remark that as
iv(C.Z(m)) ≥ 0 holds for all places in the case of function fields, we directly obtain iv(C.Z(m)) ≪
mb/2. (Note that since the Hodge line bundle ω is ample on SFp and its minimal/Baily–Borel
compactification, (C.ω) > 0 and then by modularity results in §3.7, we have (C.Z(m)) ≍ mb/2.)

As remarked in §4.6.1, Theorem 4.12 gives a good control on DiscLn and hence gives the first-
order approximation of iv(x.Z(m)) =

∑∞
n=1#{λ ∈ Ln : Q(λ) = m}. We now describe how the

bound Equation (4.6.2) is leveraged to bound the error terms of iv(x.Z(m)) in the proof of Theorem
4.3. We remark that if we only want to prove that x and ∪m∈Z>0Z(m) intersect at infinitely many

42As we see from Section 4.5, this is not true over function fields when v corresponds to certain supersingular
points.
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primes (not the stronger statement with ∪m∈Z>0Z(m2)), the following argument is sufficient to
control local intersection at v and we do not need Theorem 4.12.

The key idea is to use Equation (4.6.2) for every m to obtain strictly better bounds on average,
i.e., to prove that ∑

m<M

iv(x.Z(m)) = o(
∑
m<M

mb/2 logm). (4.6.3)

Recall the setup in Section 4.4.3. Let µi(n) denote the ith successive minima of Ln. We assume that
x mod v is supersingular (this is the key case and all other cases follow from the same argument).
Then dimLn = b+ 2. Recall that the local intersection number is iv(x.Z(m)) =

∑∞
n=1#{λ ∈ Ln :

Q(λ) = m} as x /∈ Z(m). We implement our idea in the following steps:

Step 1 Use Equation (4.6.2) to obtain lower bounds on µi(n). Let λn ∈ Ln denote a vector such that
µ1(n)

2 = Q(λn) = m0. Since λn ∈ Ln ⊂ Ln′ for n′ < n, we have that iv(x.Z(m0)) ≥ n,
and thus m

b/2
0 logm0 ≫ n. Therefore, we have that (µ1(n)

2)b/2 log(µ1(n)
2) ≫ n and thus

µ1(n) ≫ n1/(b+ϵ) (the ϵ is to account for the log term). Then by definition

µi(n) ≫ µ1(n) ≫ n1/(b+ϵ). (4.6.4)

This is the content of [SSTT22, Lemma 7.6].

Step 2 We use Equation (4.6.4) to truncate the sum
∑∞

n=1#{λ ∈ Ln : Q(λ) = m} effectively in
terms of m. Indeed, {λ ∈ Ln : Q(λ) = m} ≠ ∅ implies µ1(n)

2 ≤ m and thus n ≪ m
b+ϵ
2 .

In other words, there exists a large constant C1 (only depending on x and v) such that
iv(x.Z(m)) =

∑N
n=1#{λ ∈ Ln : Q(λ) = m}, with N = [C1m

b+ϵ
2 ].

Step 3 The bounds on average are deduced from the following calculation. For ease of notation, let
ai(n) =

∏i
j=1 µj(n). Then by [EK95], we have

[C1M
b+ϵ
2 ]∑

n=1

#{λ ∈ Ln : Q(λ) ≤ M} ≪
b+2∑
i=1

[C1M
b+ϵ
2 ]∑

n=1

M i/2

ai(n)
. (4.6.5)

Substituting the bounds ai(n) ≫ n
i

b+ϵ from Equation (4.6.4), we obtain that the inner sum
for i ≤ b + 1 is bounded above by O(M

b+1
2 ), and for i = b + 2, it is bounded by O(M

b+2
2 ).

On the other hand,
∑M

m=1m
b/2 logm ≫ M

b+2
2 logM ! Therefore, the individual bounds of

mb/2 logm on iv(x.Z(m)) translate into a strictly better bound on average!

The above discussion provides the input to the proofs of Theorems 4.3 and 4.4. The following
remark discusses other inputs to finish the proofs.

Remark 4.13. 1. There is a geometric reason that buttresses the fact that the global bounds on
individual m give strictly better bounds on average. Loosely speaking, suppose there were
“several” integers mi, having roughly the same size, such that x was v-adically close enough to
Z(mi) to make the global bounds on iv(x.Z(mi)) in Equation (4.6.2) sharp. Then x must also
be v-adically close to ∩Z(mi) — a special subvariety having high codimension. However, given
mi having roughly the same size, one would expect the high codimensional special subvariety
∩Z(mi) also be contained in Z(m), where now m = o(mi) — this would result in x being
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v-adically close to Z(m) in a way that would violate the global bound, as m = o(mi). Of
course, this does not translate directly into a proof, but it is precisely this geometry that
underlies the calculation outlined above.

2. For Archimedean places, something similar happens. In order to overcome the transcendental
obstructions at Archimedean places σ, we again use the existence of global bounds for every
ϕm(xσ) to obtain strictly better bounds on average. We remark that the Archimedean setting
shares intrinsic features with the non-Archimedean setting discussed above. The key quantity
to be estimated is ([SSTT22, Prop. 5.4, (5.7)])

A(m,x) = 2
∑
λ∈L

Q(λ)=m
|Q(λx)|≤m

log
( m

|Q(λx)|

)
,

where L is the quadratic lattice used to define S in §3.1, the preimage43 of xσ in DV (V =
L ⊗ Q) determines a negative definite plane in L ⊗ R and λx denotes the projection of λ to
this plane. A λ ∈ L with Q(λ) = m gives a component of the preimage of Z(m) in DV

and log
(

m
|Q(λx)|

)
measures how close the preimage of xσ is to this component. Therefore

A(m,x) is indeed analogous to the local intersection number in the non-Archimedean case.
The main term of A(m,x) is bounded using the circle method in [SSTT22, Proposition 6.2].
Our calculation at the non-Archimedean place motivates our method to bound the error term
of A(m,x). Despite the fact that the same geometry underlies both the Archimedean and non-
Archimedean cases, the Archimedean calculation is more subtle and involved than that in the
non-Archimedean cases, and is carried out in [SSTT22, Proposition 6.4]. In sum, we prove that
away from a thin set of bad m’s, the Archimedean local contribution ϕm(xσ) = o(mb/2 logm),
which combined with Equation (4.6.3), proves Theorem 4.3.

3. In order to treat the case of squares (which we need for Theorem 4.3 (2)), we need the level
of control on Disc(Ln) given by Theorem 4.12. Indeed, to compare with the proof in §4.4.3,
instead of making use of the special fact rkΛ ≤ 2 in the b = 2 case to truncate the sum, we
use Equation (4.6.4) and the arguments in Steps 2-3 to show that

M∑
m=1

iv(x,Z(m)) =

[C2 logM ]∑
n=1

#{λ ∈ Ln : Q(λ) ≤ M}+O(X
b+1
2 )

and we conclude the proof of the local bound in [SSTT22, pp. 40-41] using Theorem 4.12.

4. In the characteristic p case, recall that (C.Z(m)) ≍ mb/2. Therefore, a bound of O(M
b+2
2 )

obtained in Step 3 above is not good enough to prove Theorem 4.4. Note that this only
happens when rkLn = b+ 2, i.e., for local intersection multiplicities at supersingular points.
However, note that the argument in Steps 2-3 shows that from (4.6.5), we have

M∑
m=1

iv(x,Z(m)) =
M (b+2)/2

ab+2(n)
+O(M

b+1
2 ).

Therefore, we need to prove strong control on ab+2(n) ≍ D(Ln), analogous to the case of
Theorem 4.2. This is carried out in [MST22b, Sections 5 and 6].

43Choose one preimage here. Note that the total sum A(m,x) is independent of the choice.
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5. An added complication in Theorem 4.4 that does not arise in the setting of Theorem 4.2 is that
we need to obtain a tractable description of the F -crystal Lcris in the formal neighbourhood
of a supersingular but not superspecial point. To overcome this difficulty, we carefully analyze
work of Ogus [Ogu79] where he characterizes F -crystals associated to supersingular K3 surfaces
in terms of “characteristic subspaces”.44 This is carried out in [MST22b, Section 4].

4.7 The Hecke orbit conjecture

Let S ′
Q ⊂ Ag be a Shimura variety of Hodge type with reflex field E. Let p be a prime of E

with residue characteristic p and we assume that S ′
Q has good reduction at p and let S ′ denote the

canonical integral model constructed in [Kis10]. We assume that the special fiber SFp intersects the
ordinary locus of Ag,Fp . Define S ′,ord

Fp
to be the intersection of S ′

Fp
with the ordinary locus of Ag,Fp .

The ordinary Hecke orbit conjecture of Chai–Oort posits that the prime-to-p Hecke orbit of any
ordinary point x ∈ S ′,ord

Fp
is Zariski dense in S ′

Fp
. In [Cha95], Chai proves that the prime-to-p Hecke

orbit of an ordinary point x ∈ Ag(Fp) is Zariski dense. Chai’s beautiful argument can broadly be
summarized as follows:

1. Let x ∈ Ag(Fp) denote an ordinary point, such that the corresponding abelian variety A
is isogenous to Eg where E is some elliptic curve. Using a careful analysis of the formal
neighbourhood of ordinary points in terms of Serre–Tate coordinates, Chai proves that the
prime-to-p Hecke orbit of any subvariety containing x must be Zariski dense. This step involves
proving that any ordinary Hecke-stable subvariety of Ag must be “formally linear", namely its
formal completion at any ordinary point must be a formal subtorus of the Serre–Tate torus.
Chai also crucially uses the fact that End(AFp

)⊗Zp = End(AFp
[p∞]) for A as above. Abelian

varieties (and the associated moduli points) with this property are called hypersymmetric.

2. Chai makes the following observation: every abelian variety over Fp has CM, and therefore
also has real multiplication. Therefore, every x ∈ Ag must be contained in a Hilbert modular
variety. Chai then proves the ordinary Hecke orbit conjecture for Hilbert modular varieties.
The setting of Hilbert modular varieties is more tractable than the setting of Ag because
every point is hypersymmetric with respect to the Hilbert modular variety. More precisely, let
F denote the degree g totally real field defining the Hilbert modular variety, and let A/Fp

denote any abelian variety having real multiplication by F . Then, we have EndF (A)⊗Qp =
EndF (A[p∞]) ⊗ Qp. Here, the subscript F refers to endomorphisms that commute with the
real multiplication.

3. The previous step reduces the main theorem to proving that the prime-to-p Hecke orbit of a
Hilbert modular variety is Zariski dense. But every Hilbert modular variety contains ordinary
points isogenous to Eg! This concludes Chai’s proof.

Our proof of Theorem 4.5 in the setting of the GSpin Shimura variety S is completely different
from Chai’s proof in the setting of Ag. Let Y ⊂ SFp denote a closed Hecke-stable generically ordinary
subvariety. Our proof has the following outline. Using an argument of Chai ([Cha95, Section 2]) at
the zero-dimensional cusp and the description of the toroidal compactification at one-dimensional

44In fact, Ogus’ work can be used to give an explicit description of affine Deligne–Luztig varieties associated to
orthogonal and Gspin Shimura varieties.
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cusps of compactifications of S, we prove that Y = SFp if Y is not proper, i.e., if the closure of Y
in the Baily–Borel compactification of S contains any boundary points.

Otherwise, Y must contain a proper generically ordinary curve C ⊂ Y and by monodromy
considerations, we may choose such a curve C which is not contained in any special divisor Z(m).
By [MST22b, Theorem 1.2], we have that C, and therefore Y , must intersect Z(m) at an ordinary
point for some m relatively prime to p.45 We induct on the dimension of S (using the fact that
Z(m) is a lower-dimensional Gspin Shimura variety) to show that Y must contain Z(m)Fp . Then,
monodromy considerations again imply that the prime-to-p Hecke orbit of Z(m)Fp is Zariski dense
in SFp , whence the theorem follows. This entire argument is carried out in [MST22b, Section 8].

Remark 4.14. Since then, van Hoften has proved the ordinary Hecke orbit conjecture for Shimura
varieties of Hodge type building on Chai’s original method [vH23]. Crucial to van Hoften’s proof
is D’Addezio’s proof of the parabolicity conjecture [D’A23]. Again using D’Addezio’s work on the
parabolicity conjecture, van Hoften and D’Addezio (in [DvH22]) also prove Chai–Oort’s Hecke orbit
conjecture for all Newton strata with mild restrictions on p.

4.8 Bad reduction

We now give a brief sketch of Tayou’s proof [Tay24]. As explained before, when b ≤ 2, either the
Shimura variety is the product of modular curves treated in the work of Charles and Chai–Oort,
or we can choose to only work with compact Z(m) in S and thus we do not need to worry about
intersection happens at boundary. Thus we focus on the b ≥ 3 case here. We consider C as before
now in a toroidal compactification SΣ with respect to a refined enough rational polyhedral cone
decomposition (we will require this cone decomposition to not only satisfy the conditions in §3.6
but also some extra conditions depending on the generic point of C to be specified later).

4.8.1 Global intersection and Archimedean contribution

The same argument as in §4.6.2 using modularity results in §3.7 yields that (C.(ZΣ(m), ϕm)) ≍
mb/2 logm for all m in the number field case and (C.ZΣ(m)) ≍ mb/2 for all m in the characteristic
p case. By [SSTT22, Prop. 5.4, Thm. 6.1] on the estimate of ϕm (see Remark 4.13 3)), we conclude
that the sum of non-Archimedean local intersection multiplicities (C.ZΣ(m)) ≍ mb/2 logm for all
m not in a set Sbad ⊂ Z>0 of logarithmic asymptotic density zero.

Recall the definition of ZΣ(m) from §3.7. Thus, we have (here we write the formula for the
number field case and note that the characteristic p case is similar)

(C.Z(m)) = (C.Z(m)Σ)−
∑
JQ

multJQ(m)(C.BJQ)−
∑

IQ,R>0w

multIQ,R>0w(C.BIQ,R>0w).

By the definition of multJQ(m) in §3.7, since J⊥
L /J is a rank b−2 positive definite quadratic lattice,

we have multJQ(m) ≍ m
b
2
−1+ϵ = o(mb/2) and thus

∑
JQ

multJQ(m)(C.BJQ) ≍ m
b
2
−1+ϵ = o(mb/2)

(see [Tay24, §4.5] for details). For multIQ,R>0w, [Tay24, Prop. 4.13, §4.6] showed that multIQ,R>0w =

m
b−1
2

+ϵ = o(mb/2) and thus
∑

IQ,R>0w
multIQ,R>0w(C.BIQ,R>0w) = o(mb/2). The proof can be com-

pared with the estimate of Rx(0,m) in [SSTT22, §§5.3, 5.3.1]. The proof ingredients include the
45In this paper, for simplicity, we outlined a proof on infinite intersection with ∪m∈Z>0Z(m) and the same proof

applies to ∪m∈Z>0,p∤mZ(m) and see [MST22b] for details.
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explicit formula of regularized theta lifting as in [Bru02, Thm. 2.14] and an equidistribution result
on v ∈ K with Q(v) = m (see [Tay24, Prop. 4.14] for the precise statement in this case). Therefore,
we conclude that (C.Z(m)) ≍ mb/2 logm for all m not in a set Sbad ⊂ Z>0 of logarithmic asymptotic
density zero in the number field case and (C.Z(m)) ≍ mb/2 for all m in the characteristic p case.

4.8.2 local intersection at non-Archimedean places

The discussion in §4.6.2 holds verbatim in proving that the local intersection number iv(C.Z(m))
(in the function field case when v is not supersingular) at good reduction places is on average (over
m) o(C.Z(m)) and the total supersingular contribution of local intersection number is on average
α(C.Z(m)) + o(C.Z(m)) for some positive constant α < 1 (since the entire supersingular locus lies
in SFp). Therefore to finish the proof, one only needs to show that the local intersection number
iv(C.Z(m)) at bad reduction places is on average o(C.Z(m)) (see [Tay24, Props. 4.7, 4.12] for the
precise statements).

We first discuss the case when the reduction of C at v lies in a boundary divisor whose admissible
parabolic is the stabilizer of an isotropic plane JQ. The desired estimate of iv(C.Z(m)) is proved
in [Tay24, §§5.1.1, 5.2.1, 2.2.4, 2.3.1, 2.4.1], which we now briefly describe. The formal completion
of Z(m) along this boundary divisor consists of components indexed by {λ ∈ J⊥

L /J | Q(λ) = m}
and each component admits an explicit description given in [Tay24, Prop. 2.4 and the paragraphs
above]. We define the following analogy of the lattice of special endomorphism of the abelian variety
mod tn (here t denotes a uniformizer): let

Ln = {λ ∈ J⊥
L /J | C mod tn lies in the component in the formal completion of Z(Q(λ)) associated to λ};

by definition, {Ln} is a decreasing sequence of sets and iv(C.Z(m)) equals to, up to a multiple of
constant,

∑∞
n=1#{λ ∈ Ln | Q(λ) = m}.46 Using the explicit description of the components in the

formal completion of Z(m), Tayou proved that Ln’s are decreasing lattices of the same rank. By
definition, the rank is at most b− 2 and hence the same argument in §4.6.2 applies to this sequence
of lattices and obtain the desired bound on iv(C.Z(m)).

We now discuss the case when the reduction of C at v lies in a boundary stratum whose
admissible parabolic is the stabilizer of an isotropic line IQ (note that the boundary stratum in
this case may not necessarily be a divisor). As in the previous case, if the special Z(m) hits
this boundary stratum, then m is representable by (K,Q). The key difference is that (K,Q) is
indefinite and we cannot directly copy the proof in the above case.47 In order to obtain positive
definite lattices as before, we need to work with a sufficiently refined Σ so that all the bad reduction
points of C lie in a boundary divisor stratum. This is achieved in [Tay24, Prop. 4.2]. Briefly
speaking, the formal completion of C at v provides a rational ray R>0w in CΦ and we just need to
refine Σ to include all these finitely many rays (from the finitely many bad reduction places) and

46Unlike the good reduction case, the definition of Ln here is merely a reorganization of the local intersection
number without using any moduli interpretation of Z(m). It may be possible to provide a moduli interpretation of
Z(m) along the boundary and define Ln as the lattice of special endomorphisms of the log abelian variety using the
work of Madapusi [MP19, §3] and the work of Kajiwara, Kato, and Nakayama [KKN], but we do not pursue this
direction here.

47Although there are extra conditions depending on the rational polyhedral in the toroidal stratum representative,
one does not expect to obtain a positive lattice in general. Consider for instance the smooth compactification of A2

given by the Deligne–Mumford compactification of M2. When the reduction is totally degenerate, every Z(m) hits
this boundary stratum of totally degenerate points. Indeed, the corresponding quadratic form is x2 + yz of signature
(2, 1).
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thus the reductions of C all lie in boundary divisors.48 Now given a boundary divisor associated
to (IQ,R>0w), by [Tay24, Prop. 2.5], the formal completion of Z(m) along this boundary divisor
consists of components indexed by the finite set {λ ∈ K ∩ w⊥ | Q(λ) = m} and each component
admits an explicit description.49 Once we have positive definite lattices of rank at most b− 1, the
rest of the argument is similar to the above case (see [Tay24, §§5.1.2, 5.2.2] for details).

4.9 Function fields: beyond the ordinary case

The non-ordinary settings of Theorems 4.2 and 4.4 are significantly more complicated. Indeed, the
most general theorems are not even true! Here are two types of counter-examples:

1. Consider a one-parameter family A/C of supersingular abelian surfaces. Let X/C denote the
family of Kummer K3 surfaces associated to A. The generic Picard rank of X is the same as the
Picard rank of any specialization of X. More generally, consider any family of supersingular
K3 surfaces. The generic Picard rank equals the Picard rank of any specialization.

2. Let H denote the mod p special fiber of a Hilbert modular surface associated to a real quadratic
field split at p. Let C ⊂ H denote the non-ordinary locus, and let A/C denote the family of
abelian surfaces parameterized by points of C. It is easy to see that only supersingular points
of C parameterize split abelian surfaces. More generally, let SFp denote the special fiber at
p of the canonical integral model of a GSpin Shimura variety associated to a quadratic space
that is split over Qp. Let N ⊂ SFp denote the unique (closed) Newton stratum that contains
the supersingular locus Nss as a codimension 1 subvariety. Every special divisor Z(m) has the
property that Z(m) ∩ N is contained in Nss! Therefore, let C ⊂ SFp denote a curve whose
generic point is contained in N \ Nss. Then, such a curve C is also a counter-example to
Theorem 4.4!

These two counterexamples are the “obvious” obstructions to Theorems 4.2 and 4.4 being true
in full generality. We strongly expect that these are the only obstructions. Indeed, Ruofan Jiang
has proved the following theorem:

Theorem 4.15 ([Jia23]). Let C/Fp be a smooth irreducible quasi-projective curve with a finite map
to A2 whose image is generically almost ordinary. Let A/k(C) denote the abelian surface over the
function field of C induced by this map. Suppose that A has no extra endomorphisms50. Then there
are infinitely many points of C that parameterize non-simple abelian surfaces.

In joint work with Ruofan Jiang, Davesh Maulik and Ziquan Yang, we are working on general-
izing Theorem 4.15 to the case of non-ordinary K3 surfaces.

5 Related conjectures and results

5.1 S-integral theorems

In [BIR08], Baker, Ih, and Rumely prove the following beautiful result. Let E/K be an elliptic
curve over a number field, and suppose that P ∈ E(K) is a non-torsion point. Let S be any finite

48Using the terminology in [MP19, §§3.2, 3.3], these rational rays are exactly the monodromy operators.
49Compare to the discussion in [MP19, §3.3].
50This condition rules out the possibility of the image of C being contained in a Hilbert modular surface
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set of places of K containing all the Archimedean places. Then there are only finitely many torsion
points in E(K) that are S-integral with respect to P . In other words, there are only finitely many
integral torsion points in the affine curve E \ {P}.

A natural question is to replace the elliptic curve E by the j-line, and to replace P and torsion
points by a K-rational point and CM points respectively. In other words, we expect the following
conjecture to hold:

Conjecture 5.1. Let j0 ∈ Y (1)(K) denote a fixed K-point, and let S be any finite set of places of
K containing the places of bad reduction of j0 and Archimedean places. Then there are only finitely
many CM j-invariants jCM ∈ X(1)(K) S-integral with respect to j0.

In [Hab15], Habegger proves this conjecture when j = 0. In [HMRL21], the authors prove this
conjecture when j is any CM j-invariant. The general case of this conjecture, however, is unsolved.
An approach to this conjecture, which was already used in the [Hab15] and [HMRL21] in special
cases, is very similar to Charles’ intersection-theoretic setup on the modular curve. For simplicity,
let j0 ∈ Y1(Z) and let S = {∞, p} where p is a single prime. Then the conjecture reduces to
proving that given any CM j-invariant jCM outside a finite set, there exists a prime ℓ ̸= p such that
j0 ≡ jCM mod v where v is a non-Archimedean place of Q(jCM ) dividing ℓ. Setting Archimedean
places aside, Charles’ setup reduces the conjecture to proving that ip(j0, ji) = o((j0, ji)) where
{ji}i∈Z>0 is the set of all CM j-invariants, (j0, ji) is the Arakelov intersection of j and ji, and
ip(j, ji) is the sum of the v-adic contributions over the places v of Q(ji) dividing p. This is exactly
the p-adic transcendence question alluded to in Section 4.6. This question can also be posed in
the setting of higher dimensional GSpin Shimura varieties, with Z(m) taking the place of CM j-
invariants. Our methods are able to prove these bounds on average over m, but we would need
these bounds for individual m to prove this conjecture.

This question can also be posed in the characteristic p case. Ruofan Jiang proves this conjecture
in the setting of the almost-ordinary locus of A2 in [Jia23].

5.2 AIM conjecture

In a recent AIM workshop, a group consisting of the authors, Luis García, Debanjana Kundu, Lucia
Mocz, Congling Qiu, Ari Shnidman, Salim Tayou, Yujie Xu, and Shouwu Zhang made the following
conjecture (that massively generalizes the work of [Cha18], [CO06], [ST20], [SSTT22], [MST22],
[MST22b], [Tay24] and [Jia23]):

Conjecture 5.2. Let S denote the canonical integral model of a Shimura variety and let X,Y ⊂
S denote subschemes. We will assume that either X and Y are generically ordinary irreducible
subvarieties of SFp where p is a prime (of the reflex field E) of good reduction for S and that
dimX +dimY = dimSE, or we will assume that X and Y are flat over Z[1/N ] (for a large enough
integer N), and that dimXQ +dimYQ = dimSE − 1. In either case, X and Y have complementary
dimension when thought of as arithmetic subschemes of S. Then the set {(x, y) ∈ X × Y : x ∈⋃

T T (y)}, where T runs through Hecke correspondences on S, is Zariski dense in X × Y .

We let S be a GSpin Shimura variety as in prior sections. By setting X = C (or X =
SpecOK [1/N ]), and Y = Z(m)Fp (or Y = Z(m)), Conjecture 5.2 implies all the main results
of loc. cit.. We will now briefly explain how the results of [Cha18],[ST20], [SSTT22] and [Tay24]
implies Conjecture 5.2 when X = SpecOK [1/N ] and Y = Z(m). Set Z1 := {(x, y) ∈ X × Y : x ∈
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⋃
T T (y)},51 and let prX ,prY denote the projections of X × Y onto X and Y respectively. The

main theorems in [Cha18,ST20,SSTT22,Tay24] imply that #prX(Z1) = ∞, and therefore we have
that prX(Z) is a non-empty Zariski open subscheme of X. Note that Y is a special divisor, and
therefore a GSpin Shimura variety in its own right, and thus is equipped with its own set of Hecke
correspondences (we remark that these Hecke correspondences induce Hecke correspondences on S,
and that these give a subset of the set of Hecke correspondences on S). By definition, Z1 is stable
under the Hecke correspondences on Y (where these Hecke correspondences act trivially on the first
coordinate, and the usual way on the second coordinate). Therefore, Z, the Zariski closure of Z1,
is also stable under these Hecke correspondences. We now pick a place v contained in prX(Z) such
that Xv = X mod v is ordinary.52 The ordinary Hecke orbit conjecture applied to Yv = Y mod v
yields that prY Z must contain Yv for all such primes. Therefore, we have an infinite set of places v
of K such that Z contains Xv×Yv. It suffices to show that the fibers of the map Z → X generically
have dimension dimY . The map Z → X is generically flat, and therefore by replacing X with a
Zariski open subscheme (and Z with its restriction to the preimage of this Zariski open subscheme),
we may assume that Z → X is faithfully flat. For any place v of X, the dimension of Zv is the
same as the dimension of ZQ → XQ. The result now follows from the infinitude of ordinary places
v and the observation that the fiber of Z over such places v is just prY (Zv) = Yv.

Now, consider the case when S is as above, X = C ⊂ SFp
is a generically ordinary curve,

and Y = Z(m)Fp . Defining Z1 analogously, the above argument would apply verbatim if we
knew that prX(Z1) contained a Zariski dense set of X. This follows from the main results of
[MST22] and [Tay24] when S = A2, and we expect this to be the case in general (using the ideas
of [MST22,MST22b,Tay24]).

Charles explained to us an inductive argument for arbitrary X and Y being a special cycle
associated to a positive definite sublattice of L over Z[1/N ] in a GSpin Shimura variety associated
to a quadratic lattice L to show that #prX(Z1) = ∞ using a theorem of Green (see for instance
[Voi03, Prop. 17.20]) and main theorems in [ST20, SSTT22, Tay24] for X = SpecOK [1/N ] case.
Indeed, his idea combined with our argument above can show that for these X and Y , we have
Z = X × Y as follows. From the same dimension argument above, we only need to show that there
exists a Zariski dense subset X1 ⊂ X such that ∀x ∈ X1, we have {x} × Yk(x) ⊂ Z. For the ease of
exposition,53 we directly use [TT23, Thm. 1.7] to conclude that there exists a Zariski dense subset
X2 ⊂ XQ such that ∀x ∈ X2, we have x ∈ Y ′(x), where Y ′(x) is a special cycle of S such that
dimY ′(x)Q = dimYQ + 1 and Y ′(x) contains a Hecke translate of Y . Then by applying our proof
above for Conjecture 5.2 to the extension x̃ of x over SpecZ[1/N ] in the GSpin Shimura variety
Y ′(x), we conclude that {x̃} × Y ⊂ Z. We then obtain Conjecture 5.2 for X and Y by taking
X1 = {x̃ | x ∈ X2}.

Unitary Shimura varieties with signature (n, 1) are another class of Shimura varieties with special
divisors. All the above mentioned theorems also hold for these unitary Shimura varieties. See
[SSTT22, §9.3] and [MST22b, Rmk. 8.12].

51The precise meaning is that for each Hecke correspondence T on SQ, we only consider it defined over S away
from primes dividing the degree of T ; this convention also applies later to Hecke correspondences on the Shimura
subvariety Y .

52See the work of Joshi–Rajan [JR01], Bogomolov–Zarhin [BZ09], and unpublished work of Sawin [Saw16b] on
density 1 of ordinary reductions of a K3 surface over a number field (after suitable finite field extension); their proofs
apply to Kuga–Satake abelian varieties.

53Since we only need a Zariski dense subset of X with the desired propoerty (no requirement for equidistribution
properties), we may argue inductively on dimension of X using Green’s theorem following Charles’s idea.
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When neither X nor Y is special, Tayou and Tholozan [TT23] prove the complex-analytic setting
of this conjecture in full generality. Asvin G. uses Chai–Oort’s work to prove this conjecture when
S is a product of modular curves in [G22]. In [GHS22], Asvin G. and Qiao He, and the first-named
author prove this conjecture for mod p Hilbert modular surfaces associated to real quadratic fields
split at p by observing that these surfaces admit a local product structure which facilitates the use
of Chai–Oort’s ideas from [CO06].

5.3 Generalization of Elkies theorem

Elkies proved in [Elk87] [Elk89] that any elliptic curve E over a number field K with at least
one real embedding has infinitely many primes of supersingular reduction. In his proof, Elkies
considered the 1-cycle associated to E in the j-line over Z and reached the conclusion by studying
its intersections with well-chosen CM cycles. Later on, there are generalizations of Elkies’s theorem
to certain abelian surfaces A over Q with quaternionic multiplication (i.e., such an abelian surface
admits infinitely many supersingular reductions). See the work of Jao [Jao03], Sadykov [Sad04], and
Baba–Granath [BG08]. We refer to the readers for the precise theorems in their papers, but remark
that all the abelian surfaces that they consider are parametrized by Shimura curves associated
to some quaternion algebras over Q which are of genus 0 with suitable level structure. One may
use Lang–Trotter heuristics and its higher dimensional generalizations to see that in the above
cases for E/Q and A/Q with no more extra endomorphisms, the number of supersingular primes
less than X should equal X

1
2
±ϵ for any ϵ ≥ 0. In particular, the set of supersingular primes is

known to be density 0, which is proved in the work of Serre [Ser13, #133][Ser81], Katz and Ogus
[Ogu82, Prop. 2.7, Cor. 2.9], Sawin [Saw16].

More generally, one may expect that for an abelian variety A over Q parametrized by a Shimura
curve has infinitely many non-ordinary reductions. Note that the reflex field of a Shimura curve in
general may not be Q and thus the open Newton strata at many primes may not be ordinary and one
refers to the open Newton stratum as the µ-ordinary one for a given prime. The natural expectation
would be that A admits infinitely many non-µ-ordinary reductions. In the joint work in progress of
Li, Mantovan, Pries, and the second-named author [LMPT], we verify this expectation when A is an
abelian fourfold parametrized by one certain PEL type unitary Shimura curve. Note that although
the reflex field of the Shimura curve is not Q, it admits a natural model over Q and has a suitable
level structure such that the curve is of genus 0. If A does not have extra endomorphisms (than the
ones from being on the PEL Shimura curve), in the joint work in progress of Cantoral Farfán, Li,
Mantovan, Pries and the second-named author [CFLM+], we proved that the set of non-µ-ordinary
primes of A is of density 0.54

Note that all the cases above have the corresponding Shimura curve to be genus 0. To com-
pare with theorems in §4.1, from the heuristics aspect (see §2.1), both settings are about infinite
intersection of the arithmetic 1-cycle given by A and union of divisors in special fibers of the cor-
responding Shimura variety; the key difference is that in theorems in §4.1, the divisors in special
fibers are all from reductions of special divisors Z(m), while in the attempts to generalize Elkies
theorem, one needs to work with the non-µ-ordinary locus in each special fiber, which is varying
from prime to prime. In the modular curve case, Elkies’s strategy is to use CM cycles, which have
supersingular reductions at half of primes, and prove that one can find intersection with the CM
cycles at one of the supersingular primes; similar strategy is used in all generalizations mentioned

54See also [Saw16b] for related results.
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above. Our proofs of theorems in §4.1 do not provide information as in Elkies’s strategy on where
the intersection happens (to our knowledge, the information one may obtain from our proofs is a
very loose estimate on the approximate size of the primes). The genus 0 property is a key input in
Elkies’s type strategy.

5.4 Upper bounds for certain reduction types

The theorems in §4.1, Elkies’s theorem and its generalizations discussed in §5.3 are lower bounds
on the set of primes modulo which A lie in certain isogeny classes for a given abelian variety A over
a number field. There are many more work on upper bounds and we would not be able to provide
a complete list. We only provide a few examples in addition to some of the density 0 of the set of
non-ordinary reductions mentioned in §5.3. We would like to refer the reader to the papers cited
below and their references for a more comprehensive history in these directions.

Zywina [Zyw14, Cor. 1.3] proves that if one assumes the Mumford–Tate conjecture for an abelian
variety A/K,55 the set of primes v such that AFv

is not simple is of density 0 (after possibly
replacing K by a finite extension) if End(AK) is commutative. Indeed, Zywina’s proof provides
an explicit upper bound. The unconditional statement was previously conjectured by Murty and
Patankar [MP08], and some special cases of this conjecture were also previously proved in the work
of Chavdarov [Cha97] and Achter [Ach09,Ach12] (both provide explicit bounds). In the case when
A is an abelian surface, the bounds have been improved by recent work of Wang [Wan23].

The Lang–Trotter philosophy and its higher dimensional generalizations can be used to make
many other conjectures on the behavior of Frobenius traces. There are several results in this direction
— see for instance the work of Katz [Kat09, §1] and the work of Cojocaru, Davis, Silverberg and
Stange [CDSS17]. In [CDSS17], the authors provide an upper bound for the set of primes with
certain Frobenius trace for a given generic abelian variety over Q towards the Lang–Trotter style
conjecture they proposed and this bound has been improved in recent work of Cojocaru and Wang
[CW22]. One may also consider the same question for abelian varieties which are not generic - see
for instance another recent work of Cojocaru and Wang [CW23].
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