REDUCTIONS OF ABELIAN SURFACES OVER GLOBAL FUNCTION FIELDS

DAVESH MAULIK, ANANTH N. SHANKAR, AND YUNQING TANG

ABSTRACT. Let A be a non-isotrivial ordinary abelian surface over a global function field of char-
acteristic p > 0 with good reduction everywhere. Suppose that A does not have real multiplication
by any real quadratic field with discriminant a multiple of p. We prove that there are infinitely
many places modulo which A is isogenous to the product of two elliptic curves.
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1.1. The main results. Let p be an odd prime and let Ao denote the moduli stack of principally
polarized abelian surfaces over F,,. We view Ajy as (the special fiber of the canonical integral model
of) a GSpin Shimura variety and let Z(m) denote the Heegner divisors in As for an integer m > 1;
more precisely, Z(m) parametrizes abelian surfaces with a special endomorphism s such that s o s
is the endomorphism given by multiplication by m (see .

Theorem 1. Assume p > 5. Let C' be an irreducible smooth quasi-projective curve with a finite
morphism C — A, 7, Assume that the generic point of C corresponds to an ordinary abelian
surface.

(1) If the image of C is not contained in any Heegner divisor Z(m), and if C is projective, then

there exist infinitely many Fp—pomts on C which correspond to non-simple abelian surfaces.

(2) If the image of C is contained in some Z(m) such that p f m, then there exist infinitely

many F,-points on C which correspond to abelian surfaces isogenous to self-products of

elliptic curves.
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In Theorem , note that the elliptic curve may vary for these points. An equivalent statement
is that there exist infinitely many F,-points on C which correspond to abelian surfaces whose Néron—
Severi ranks are strictly larger than that of the generic point of C'. Note that in the case (2)), any
irreducible component of Z(m) C Ay is an irreducible component of a Hecke translate of some
Hilbert modular surface associated to the real quadratic field F' = Q(y/m) (if m is a square number,
then we obtain a Hecke translate of the self-product of the modular curve).

Remark 2. The assumption that the generic point is ordinary is necessary (especially if we formulate
the theorem in terms of the Néron—Severi rank). For instance, in the case , we may take C to
be an irreducible component of the non-ordinary locus. If p is inert in F, then all the points on C
are supersingular and the Néron—Severi rank does not jump. If p is split in F', then the only points
where the Néron—Severi rank jumps are the finitely many supersingular points.

Remark 3. We make the (technical) assumption that C' is projective in because the Heegner
divisors Z(m) are all non-compact and we plan to remove this assumption in future work. On the
other hand, the Hilbert modular surfaces considered in do contain compact special divisors (see
the second half of §2.2] for the definitions of special divisors in the Hilbert case, and §4.3.3] for a
criterion of when these special divisors are compact) whose Fp points parameterize abelian surfaces
isogenous to a self-product of elliptic curves. By working exclusively with these compact special
divisors, we no longer need assume that C' is projective.

Remark 4. A modification of our argument shows that with the same assumption in , for a fixed
real quadratic number field F, there are infinitely many ordinary Fp—points on C such that the
corresponding abelian surfaces admit real multiplication by F E| Here we need to assume p > 7 if p
is ramified in F'. Otherwise, p > 5 is enough.

The proof of Theorem applies to the case when p is split in F'/Q; and for the other cases,
one needs to carry out a more general study of the local behavior at supersingular points (see the
arXiv version |MST) §9, Appendix A] for the details).

To prove Theorem , we consider the intersection number of C' and Z(¢£?), where / is a varying
prime number. If we consider Z(¢) with ¢ = 3 mod 4 instead, we prove

Theorem 5. Suppose we have the same assumptions as in Theorem . Then there are infinitely
many ordinary Fp—points on C such that, for each of these points, the corresponding abelian surface
admits real multiplication by the ring of integers of some real quadratic field (note that the quadratic
fields may vary for these points).

It would be interesting to find Fp-points of complex multiplication by maximal orders, but our
current method only asserts real multiplication by maximal orders.

1.2. Previous work and heuristics. Theorem [l is a generalization of [CO06|, Proposition 7.3],
where Chai and Oort proved Theorem with A; x A; taking the place of a Hilbert modular
surface. Their proof crucially uses the product structure of the Shimura variety, as well as the
product structure of the Frobenius morphism. Following the discussion in §7 of [CO06|, Theorem
is related to a bi-algebraicity conjecture. See §1.4 for more details.

We offer the following heuristic for Theorem . Using Honda and Tate’s classification of Fy-
isogeny classes of abelian varieties in terms of Weil-¢" numbers, the number of F »-isogeny classes
of abelian varieties is seen to equal ¢™3/2+°(1)  Similarly, the number of split Fn-isogeny classes
in Aj is seen to equal ¢"(1+°W) If we treat the map from C (Fgn) to the set of Fyn-isogeny classes
as a random map, we expect that the number of Fy» points of C' which are not simple is around

LWe note that only finitely many of such points admit endomorphisms by the maximal order of F'. More generally,
the precise order of F' depends on the Fp-point.
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¢"/2(+o(M) " Letting n approach infinity, this heuristic suggests that infinitely many points of C' (F,)
that are split. There are analogous questions in other settings. For the case of equicharacteristic
0, these results are well known (for instance, the density of Noether—Lefschetz loci is discussed in
[Voi02, Prop. 17.20]). In mixed characteristic, the analogue of Theorem is treated in |Chal§|,
[ST20]. The major difference between Theorem 1] and these other cases is that the ordinary generic
point assumption is crucial since the result is simply false otherwise (as remarked in §1.1).

Indeed, this difference hints at the key difficulty in our setting, which is that the local intersection
number at a supersingular point is of the same magnitude as the total intersection number, which
makes the approach more complicated than that of [ST20]; we discuss this in more detail in §1.3.

1.3. Proof of the main results. We view both Hilbert modular surfaces and the Siegel three-fold
as GSpin Shimura varieties attached to a quadratic space (V,@). In each setting, we have a notion
of special endomorphisms and special divisors and, for simplicity, we use the same notation Z(m).
The main idea of the proof is to compare the global and local intersection numbers of C.Z (m)ﬂ
for appropriate sequences of m and show it is not possible for finitely many points to account for
the total global intersection as m increases.
More precisely,

(1) The global intersection number I(m) := C.Z(m) is controlled by Borcherds theory |[Bor98|
(see also [Maul4| and [HMP)).
(2) We prove that as m — oo, the total local contribution from supersingular points is at most
%I (m) by studying special endomorphismsﬂ
(3) We prove that the local contribution from a non-supersingular point is o(I(m)) as m — oo.
This allows us to conclude that, as m — oo, more and more points of C' contribute to the intersection
C.Z(m). In order to prove Theorem , the sequence of m will consist only of squares, and in
order to prove Theorem [5 the sequence will consist only of primes. Note that in Ay, the Heegner
divisor Z(m) for square m parametrizes abelian surfaces which are not geometrically simple, thereby
allowing us to deduce Theorem . Similar arguments allow us to deduce part Theorem , and
also Theorem [Bl
Compared to the number field situation, the main difficulty of the positive characteristic function
field case is that the local contributions at supersingular points are of the same magnitude as the
global contribution. More precisely, taking the Hilbert case as an example, Borcherds theory implies
that the generating series of Z(m) is a non-cuspidal modular form of weight 2; on the other hand,
the theta series attached to the special endomorphism lattice at a supersingular point is also a non-
cuspidal weight 2 modular form since the lattice is of rank 4. Therefore, even without considering
higher intersection multiplicities, the local intersection number of C.Z(m) at a supersingular point
is also of the same magnitude as the growth rate of Fourier coefficients of an Eisenstein series of
weight 2.

Bounding the local contribution from a supersingular point. Let A — C denote the family of prin-
cipally polarized abelian surfaces induced from a morphism C' — Asz, and let SpfF,[[t]] — C
denote the formal neighborhood of a supersingular point. For a special endomorphism s such that
sos=m, we say that s is of norm m.

The local contribution to C.Z(m) from this supersingular point equals >~ 5, (m), where ry(m)
is the number of special endomorphisms of A mod "' with norm m. Therefore, in order to bound
the local contribution, it suffices to prove that, as n — oo, there are many special endomorphisms

2Although C is not a substack of Az, we may define C.Z(m) as the degree of the pull back of Z(m) via C' — Ay 5,
when C is projective.
3Indeed, the ratio depends on p and it goes to 1/2 as p — co.
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of A mod t" which decay rapidly enough (see Definition and Theorem for precise state-
ments).

A similar decay result appears in the mixed characteristic setting (see [ST20|), by a straightfor-
ward application of Grothendieck—Messing theory. In the equicharacteristic case, however, prov-
ing our decay results is much more involved. In particular, we need to use Kisin’s description
[Kis10| §1.4, 1.5] of the F-crystal associated to a certain automorphic vector bundle Ls, whose
F-invariant part is the lattice of special endomorphisms, in order to prove the required decay. See
and the proof of Theorem for more details.

We will focus on the Siegel case from now on. Let Ly denote the lattice of special endomorphisms
of A modt, and let L, C Ly be the lattice of special endomorphisms of A mod t"*!. These
lattices are of rank 5 and are equipped with natural quadratic forms such that A mod t"*! admits
a special endomorphism of norm m if and only if m is represented by L,. Broadly speaking, we
can bound the local contribution by using geometry-of-numbers techniques. To obtain the desired
estimate, we choose the sequence m as follows. We first prove the existence of a rank 2 sublattice
P, C L, that has the following property: for all m bounded by an appropriate function of n, the
abelian surface A mod t"! has a special endomorphism of norm m only if the quadratic form
restricted to P, represents m. This fact follows from the existence of a rank 3 submodule of special
endomorphisms which decay rapidly (Theorem . Furthermore, the discriminant of P, goes to
infinity as n — oo. Therefore, the density of numbers (or primes, or prime-squares) represented by
the binary quadratic form P,, approaches zero, as n — co. We now pick a sequence of prime-squares
m none of which are represented by P, defined by the finitely many supersingular points on C.

The non-ordinary locus is singular at superspecial points. This allows us to prove the existence
of a special endomorphism that decays “more rapidly than expected” (see Definition (3)) Con-
sequently, by the explicit formula of Eisenstein series in these cases by |[BKO01|, we prove that the
sum of local contributions at supersingular points is at most 11/12 of the global contribution.

We remark that our proof is more involved than the proof of [CO06, Proposition 7.3| because
the intersection theory on Hilbert modular surfaces and Siegel three-folds is more complicated than
that on the product of j-lines.

1.4. Additional remarks. The key difference between the number field and function field situation
is the following. Let A be an abelian surface over O, where K is a local field. The Z,-module
of special endomorphisms of A[p>] has rank < 3. This rank equals three if and only if A can be
realized as the limit point (in the analytic topology) of a sequence of CM points. This can happen
in the mixed characteristic case, but not in the equicharacteristic p case unless A is defined over a
finite ﬁeldﬁ Thus, we have a rank 3 decay in the Decay Lemma (Theorem .

In the setting of higher dimensional GSpin Shimura varieties, for the same reason, we expect that
generalizations of the Decay Lemma will only yield a rank 3 Z,-module that decays rapidly. This has
the consequence of the existence of formal curves, such that the module of special endomorphisms
of the p-divisible group over these formal curves have large rank. An interesting bi-algebraicity
question is whether such formal curves can be algebraic without being special. In the ordinary case,
Chai has the following conjecture:

Conjecture 6 (|Cha03, Conj. 7.2, Remark 7.2.1, Prop. 5.3, Remark 5.3.1]). Let X be a subvariety
in a mod p Shimura variety passing through an ordinary point P. Assume that the formal germ of
X at P is a formal torus in the Serre-Tate coordinates. Then X is a Shimura subvariety.

1.5. Organization of paper. In §2] we recall the notion of special endomorphisms, special divisors
and crystalline realization Leis of the automorphic vector bundle of special endomorphisms. In §3]
we recall the lattices of special endomorphisms of a supersingular point and compute L¢is on its

4Ordinaury abelian varieties which have CM are defined over finite fields.
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deformation space. In §4] we recall Borcherds theory and the explicit formula for the Fourier coef-
ficients of vector-valued Eisenstein series due to Bruinier—Kuss; we use them to compare the global
intersection number and the mod ¢ local intersection number at a supersingular point. Sections
and §0] are the key technical part of the paper. We prove the decay theorems for special endo-
morphisms, which we will use to bound the higher local intersection multiplicities at supersingular
points. Section §7] provides the outline of the main proofs and by geometry-of-numbers arguments,
we prove Theorem in §8/ and prove Theorem and Theorem [5|in .

In order to get the main idea of the proof, the reader may focus on Theorem and start from
§47I8 and refer back to §§3}[5| when necessary.

1.6. Notation. We write f < g if f = O(g),g = O(f). Throughout the paper, p is an odd prime.
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grant DMS-1159265. A.N.S. is partially supported by the NSF grant DMS-2100436. Y.T. is par-
tially supported by the NSF grant DMS-1801237. We would like to thank the anonymous referees
for thorough readings and valuable suggestions which have greatly helped improve this paper.

2. SPECIAL ENDOMORPHISMS

In this section, we first introduce quadratic lattices (L, @) such that the associated GSpin Shimura
varieties will be A and certain Hilbert modular surfaces related to the Heegner divisors Z(m). The
definition of special endomorphisms and Heegner divisors are given in

2.1. The global lattice L. For a quadratic Z-lattice (L, Q), let C(L) (resp. C*(L)) denote the
(resp. even) Clifford algebra of L. Let (—) denote the standard involution on C(L) fixing all
elements in L given by (vy---v,) = v, ---v; for v; € L. Let V denote L ® Q endowed with the
quadratic form Q. There is a bilinear form [—, —] on V given by [z,y] := Q(z + y) — Q(z) — Q(y).

Let Lg be the rank 5 Z-lattice endowed with the quadratic form Q(x) = $% + 129 — w374 fOr
x = (0, -+ ,x4) € Z5. This quadratic form has signature (3,2) and Lg is an even lattice, maximal
among Z-valued sublattices in Lg ® Q. For p > 2, Lg is self-dual at p. A direct computation shows
that C(Lg) = My(Z). Let

vo = (1,0,0,0,0),v; = (0,1,1,0,0),v = (0,1,—1,0,0),v3 = (0,0,0,1,1),v4 = (0,0,0,1,—1).
Then § = vy---vs € C(Lg) lies in the center of C(Lg) and &' = §,62 = 1. Therefore, there
is an isomorphism between quadratic spaces given by Lg — 6Lg C Ct(Lg). (See for instance
[KRO00, App. A].)

Given a vector € Lg such that Q(x) = m,m € Z¢, the orthogonal complement zt C Lg
endowed with the restriction of Q on z is a quadratic Z-lattice of signature (2,2) and let Ly C
z ® Q be a maximal lattice containing z+. If m is not a perfect square, let F' denote the real
quadratic field Q(y/m). A direct computation shows that there is an isomorphism Ly ®Q = Q?@ F
such that Q((a,b,7)) = ab+ Nmp/q v (see for instance [HY12, Prop. 2.2.2 (3)] and its proof)ﬂ The
assumption p { m and p > 2 implies that z1 and hence Ly are self-dual at p.

Now let (L, Q) have signature (n,2), and let p be a prime such (L, Q) is self-dual at p. As in
[AGHMP18, §4.1 §4.2|, |[KR0O, §1], there is a GSpin Shimura variety M attached to (L, Q) and
this Shimura variety also admits a smooth integral model M over Z, since L is self-dual at p; the

Shimura variety (and its integral model) recovers the moduli space of principally polarized abelian
surfaces when L = Lg (see Remark for details) and it is a Hilbert modular surface when

50One way to see that |[HY12| applies here is to use the moduli interpretation of the GSpin Shimura variety
associated to L as described in the paragraph right above Definition [2.2.8| and thus Ly ® Q is V(HE(A,Z)) for
some abelian surface A with real multiplication by F in the notation of [HY12].
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L = Ly (see for instance [HY12, §2.2, §3.1]). We may write M and M/, to emphasis on the
dependence on L.

To prove Theorem [I|(1) and Theorem 5] we will take L = Lg and to prove Theorem [I|(2), we will
take L = Lgy.

2.2. Special endomorphisms and special divisors. We first introduce the notion of special
endomorphisms when L = Lg and M is the moduli space of principally polarized abelian surfaces.
Given an M-scheme S, let Ag denote the pullback of the universal principally polarized abelian
surface on M via § — M; let 1 denote the Rosati involution on Ag.

Definition 2.2.1. A special endomorphism of Ag is an element s € End(Ag) such that s = s and
Trs = 0, where Tr is the reduced trace on the semisimple algebra End(Ag) ® Q.

Remark 2.2.2. Our definition of special endomorphisms is essentially the same as the one given by
Kudla—Rapoport (JKR00, Def. 2.1, Eqn. (2.21)]). Indeed, as in [KRO00, §§1-2|, the moduli problem
indicates that every M-scheme S gives rise to a principally polarized abelian scheme Bg over S
with ¢ : CT(L) < End(Bg) and a polarization such that the induced Rosati involution { satisfies
v(c)t = u(cT), where (=)T is the transpose on Ct(L) ~ My(Z) (see condition (iii) and the first
paragraph of [KR00, p.701]); moreover, for each £ # p, there is an isomorphism C*(L)®Z, ~ T;(Bs),
where T; denotes the ¢-adic Tate module, compatible with the C*(L)-action (it acts on itself via
left multiplication; see [KROO| p.703])ﬁ Therefore, via ¢, we have Bg =2 A%, where Ag is an abelian
surface and by the compatibility of the polarization with ¢ (see also [KR00, Eqn. (1.9), (1.10)]),
and the polarization on Bg is induced by the self-product of a principal polarization on Ag. Hence
M parameterizes principally polarized abelian surfaces. Moreover, an element sp in End(Bg) =
M4(End(Ag)) commuting with «(CT (L)) is of form diag(s, s, s, s), where an endomorphism s of Ag.
In the sense of Kudla—Rapoport, such sp is special if and only if it is traceless and fixed by the
Rosati involution on Bg; this is equivalent to that s is traceless and fixed by the Rosati involution
on Ag. Therefore, our definition is the same as that of Kudla—Rapoport.

Definition 2.2.3. Let D denote the Dieudonné crystal over M, (i.e., the first relative crystalline
homology of the universal family of principally polarized abelian surface over Mp,). Let Lers C
End(D) denote the sub-crystal of trace 0 elements fixed by the Rosati involutionm

By definition, when S is a My, -scheme, an element s € End(Ag) is a special endomorphism if
and only if the crystalline realization of s € End(IDg) lies in Leyis s-

Definition 2.2.4. For the p-divisible group Ag[p™], we say s € End(Ag[p™>]) is a special endomor-
phism if the image of s in End(IDg) lies in Leyis g

Remark 2.2.5. In [MP16, §4.14], there is a definition of Leys as a direct summand of the endo-
morphism of the first relative crystalline cohomology of the Kuga—Satake abelian scheme over Mg, .
More precisely, the left multiplication of GSpin(V, Q) € C*(V)* acting on C(V') induces a variation
of Hodge structures on C(V') over M; this gives rise to the Kuga-Satake abelian scheme AXS over M
and the Kuga—Satake abelian scheme extends over M. The 8-dimensional abelian scheme consid-
ered by Kudla-Rapoport is a sub abelian scheme of AXS via the natural embedding C*+ (V) c C(V).
(Note that in [KR00], v € GSpin(V, Q) acts on C* (V) by the right multiplication by v and C* (V)
acts on CT (V) by left multiplication, which is opposite to the convention in [MP16|. This difference
is due to the different choices of the symplectic pairing on C* (V) and C(V) in [KR00, (1.9)] and

6Although Kudla—Rapoport uses abelian schemes up to isogeny to give the moduli interpretation, one may translate
it into abelian schemes up to isomorphism; see also JAGHMP17, §2.2].

"Note that Frobenius is not an endomorphism on End(D), due to the existence of negative slopes. However, we
will abuse terminology, and still treat End(D) and Les as F-crystals in the sense that we will view Frobenius as a
map from End(D) to End(D)[1/p], while remembering the integral structure, and similarly for Leyis.
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[MP16l §1.6]. If we use the symplectic pairing in [MP16| for the discussion in [KROO0|, then we
obtain similar results as in [KR00| but with the convention consistent with that in [MP16].)

Let DS denote the Dieudonné crystal of AKS over Mp,; Madapusi Pera defined Leyis C End(]D)KS)
by the crystalline realization of the absolute Hodge cycle induced by the GSpin(V,@)-invariant
idempotent which realizes V' C End(C(V)) as a direct summand. Since the element § given in
lies in the center of C((L), then it induces an isomorphism End(C(L)) D L = 6L C End(C*(L))
compatible with GSpin(V, @Q)-action. Therefore, § induces an isomorphism between the crystals
Leris in our sense and the one in the sense of Madapusi Pera; in particular, the notions of special
endomorphisms coincide under the identification via d. Also, for a special endomorphism s in both
cases, $0s is a scalar multiple Q(s) on the suitable abelian scheme; since 62 = 1, hence Q(s) remains
the same for images of s under various identification of special endomorphisms. By [MP16| Lem. 5.2],
Q(s) > 0 for all nonzero special endomorphism s.

Definition 2.2.6. For m € Z~¢, the special divisor Z(m) is the Deligne-Mumford stack over M
with functor of points Z(m)(S) = {s € End(Ag) special |Q(s) = m} for any M-scheme S. We use
the same notation for the image of Z(m) in M. By for instance [AGHMP18| Prop. 4.5.8], Z(m) is
flat over Z,) and hence Z(m)p, is still a divisor of Mp,; we denote Z(m)g, by Z(m).

Lemma 2.2.7. Every Fp—point of Z(m?) corresponds to a geometrically non-simple abelian surface.

Proof. Let s be a special endomorphism of an abelian surface A such that s o s = [m?]. Then
(s —[m]) o (s+ [m]) = 0. Since Trs = 0, then s £ [m] # 0 and hence s + [m] are not invertible.
Then ker(s — [m]) defines a non-trivial sub abelian scheme of A. O

We now discuss the case when L = Ly. We keep the same notation as in §2.1} For simplicity,
we first discuss the case when Ly = z+, where z € Lg and Q(z) = m with p { m; for the general
case, the following discussion still holds true when replacing endomorphisms with suitable elements
in End ®Q (see the end of this subsection). When Ly = 2 C Lg, the Shimura variety (and its
integral model) M, defined by L is naturally a sub-Shimura variety of M, the moduli space of
principally polarized abelian surfaces, and hence a point on M, corresponds to a polarized abelian
surface with real multiplication by O := Z[x]/(2? — m). Let o denote the ring automorphism on O
satisfying 27 = —x. As before, let S be a M, -scheme, and let Ag denote the abelian surface over
S with real multiplication by O.

Definition 2.2.8 (|[HY12, §3.1 p.26]). A special endomorphism (resp. special quasi-endomorphism)
of Ag is an element s € End(Ag) (resp. s € End(Ag) ® Q) such that s' = s and so f = f7 o s for
all feO.

We still use D to denote the pullback to My, r, the Dieudonné crystal over My, in Defini-
tion [2.2.3} since the abelian surfaces over My, admit an O-action, the Dieudonné crystal I is also
endowed with an O-action.

Definition 2.2.9. Let Lis C End(DD) denote the sub-crystal of elements v fixed by Rosati involu-
tion and so f = f? o s for all f € O. For the p-divisible group Ag[p*], we say s € End(Ag[p™]) is
a special endomorphism if the image of s in End(Dg) lies in Ly g.

Remark 2.2.10. By Remarkand [AGHMP17, Prop. 2.5.1, Prop. 2.6.4], in order to show that the
above definitions of special endomorphisms and LL.;js can be identified with those by Madapusi Pera,
we only need to show that for an endomorphism s (of either the abelian surface or of its Dieudonné
crystal D) fixed by the Rosati involution is traceless and orthogonal to x if and only if sox = —zos.
To see this, note that if Trs = 0, then s L z if and only if Q(s+2z) —Q(s) —Q(x) = sox+xzos = 0;
on the other hand, if soz = —zos, then 27! o s o2 = —s and hence Trs = 0.

7



2.2.11. In general (i.e. when xt C Ly), we may still use the same definition for Lc,js and special
endomorphisms of p-divisible groups, as ' is self-dual at p and hence 21 ® Zyp = Lg ® Zyp. On the
other hand, we consider special quasi-endomorphisms s € End(Ag) ® Q which satisfy the following
integrality condition: the f-adic realizations of s lie in Ly ® Zy, C End(Ty(Ag) ® Qy) for all £ # p
and the crystalline realizations of s lie in Leys 5. As in Definition the special divisor Z(m) is
the Deligne-Mumford stack over Mp,,, with Z(m)(S) given by

{s € End(Ag)®Q special quasi-endomorphism satisfying the integrality condition above | Q(s) = m}

for any M-scheme S. By the proof of ]AGHMP18, Prop. 4.5.8|, where they used [MP16, Prop. 5.21],
Z(m) is flat over Z,. We use Z(m) to denote the image of Z(m)r, in Mg, F,, which is a divisor
in MLHJFp'

2.3. Lattices of special endomorphisms of supersingular points. For a fixed supersingular
point, let A denote the abelian surface attached to this point.

Definition 2.3.1. Let L” denote the Z-lattice of special endomorphisms of A (resp. special quasi-
endomorphisms when L = Lpg). Let L” ¢ L'’ € L”" ® Q be a Z-lattice which is maximal at
all £ # p and L ® Z, = L' @ Z,. Let Q" denote the natural quadratic form on L’ given by
sos=[Q'(s)] € End(A) ® Q. By the positivity of the Rosati involution, @’ is positive definite (see
for instance [MP16, Lem. 5.12]).

Even though there seem to be choices involved here, we will see that for our computation, these
choices do not matter and the result will only depend on the Ekedahl-Oort stratum where the
supersingular point lies in. The information of L’ ® Z,, will be provided in

Lemma 2.3.2. (L' ® 7y, Q") = (L ® Zy,Q) for £ # p.

Proof. Both lattices shall be maximal at £ and by [HP17, Rem. 7.2.5], (L’ ® Q;, Q') = (L ® Qy, Q).
Then we conclude by the fact that there is a unique isometry class of Zy-maximal sublattices of a
given Q-quadratic space (see for instance, [HP17, Thm. A.1.2]). O

Remark 2.3.3. Actually, for the case of Hilbert modular surfaces, the essential part of the above
lemma is [HY12, Prop. 3.1.3]. For the Ay case, we can explicitly compute L” as follows and it is
maximal. By |Eke87, Prop. 5.2|, for any ¢ # p, there is a unique class (up to GL4(Zy)-conjugation) of
principal polarizations on the Tate module T;(A). Therefore, to compute L” ® Z,, we may assume
that A = E? and endowed with the product principal polarization, where E is a supersingular
elliptic curve. Hence the quadratic form on the lattice L”, which is the trace 0 part of H?(A), is
given by x% + Nm, where Nm is the quadratic form given by the reduced norm on the quaternion
algebra End(E).

3. THE F-CRYSTALS L¢yis ON LOCAL DEFORMATION SPACES OF SUPERSINGULAR POINTS

Let p be an odd prime. In this section, we compute the lattices (L” ® Z,, in Definition of
special endomorphisms of supersingular points with the natural quadratic forms following Howard—
Pappas [HP17, §§5—6]E| In conjunction with |[Kis10, §1], we then obtain L;s (see Definition m
and Definition on the formal neighborhoods of supersingular points in the Shimura variety
M. As a direct consequence, we obtain the local equation of the non-ordinary locus in §3.4] These
are the key inputs to §§5H6} in particular, we use the explicit descriptions of this section to prove
our decay results.

80ne may also carry out the computation following Ogus [Ogu79l §3].
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3.1. A brief review of the work of Howard—Pappas and Kisin. Since both [HP17| and |Kis10]
apply to GSpin Shimura varieties of any dimension, we first recall their results in the general setting.

Let (V,Q) denote a quadratic Q-vector space of signature (n,2) and let L C V be a maximal
even lattice which is self-dual at p. Let M denote the smooth canonical integral model over Z, of
the GSpin Shimura variety attached to (L, @) in |Kis10].

Set k = F,,W = W(k),K = W[1/p]. In this section, we consider a fixed supersingular point
P € M(k). In the case of abelian surfaces considered in §2| (with L = Lg or Ly ), P supersingular
means the corresponding abelian surface over P is supersingular. This in turn is equivalent to the
action of the crystalline Frobenius ¢ on Leis p(W) being pure, with slope 0. In the general setting,
let D denote the Dieudonné crystal of the universal Kuga—Satake abelian variety over Mg, and let
Leris € End(D) denote the sub crystal corresponding to L € C(L) defined in |[MP16;, §4.14]E| Let
¢ denote the crystalline Frobenius on Dp(W) and Les p(W). Then we say P is supersingular if ¢
acts on Leis p(WW) with pure slope 0 (see for instance [HP17, Lem. 4.2.4, §7.2.1]).

By Dieudonné theory, we have L” ® Z,, = Leyis p(W)#=". In order to compute L” ® Z, and the

p-action on Leyis p(WW), we introduce another free W-module Lﬁ(W) following [HP17, §6.2.1]

Definition 3.1.1. The filtration on Dp(W) is given by Fil! Dp(W) := ¢~ (pDp(W)). We define
LEW) := {v € Lais p(W) @w K | v Fil' Dp(W) C Fil' Dp(W)}.

3.1.2. By [HP17, Thm. 7.2.4], studying supersingular points and their formal neighborhood in M
reduces to study the points and their formal neighborhood in the associated Rapoport—Zink spaces
and hence we use results in [HP17, §§5-6].

By |[HP17, Prop. 5.2.2], @(Lﬁ(W)) = Leris, p(W). In particular,
L' ® Zp = Lais,p (W)#=" = LE(W)#=".

Recall that in Definition we endow V' := L" ® Q, with a quadratic form Q’; let [—, —]" denote
the bilinear form on V' given by [z,y] = Q' (z +y) — Q'(x) — Q'(y). Hence

V' = (Leis, p (W) @w K)?=

Since P is supersingular, we have n = rky Leis p(W) = 1kz, L” = dimg, V'.

Let Ap C V' denote the dual of L” ® Z,, with respect to [—, —]". Then by [HP17, Propositions
5.2.2, 6.2.2], Ap is a vertex lattice, i.e., Ap is a Z,-lattice in V' such that pAp C A}, C Ap. The type
tp of Ap is defined to be dimp, (Ap/A}). By [HP17, Prop. 5.1.2, (1.2.3.1)], there is tyax € 2Z which
only depends on n and det(V’) = det(V@pﬂ such that tp € 27Z and 2 < tp < tpax. Moreover, there
exists a vertex lattice A C V' of type timax such that Ap C A. Indeed, the proof of [HP17, Prop. 5.1.2]
constructs all possible isometry classes of A (with the quadratic form) for all (V, Q) (note that in
loc. cit., they proved that for given (V, @), the isometry class of A is unique).

Therefore, given (V, @), we first obtain the isometry class of A of type tmax and then all isometry
classes of the lattices of special endomorphisms L” ® Z, attached to all supersingular points are
given by the duals of the vertex lattices contained in A.

From A, we may compute all possible isomorphism classes of Leyis p(WW) and ]Lﬁ(W) as rank
n free W-modules endowed with a quadratic form/bilinear form and a o-linear Frobenius ¢ (here
we use o to denote the Frobenius action on W) following |[HP17, Prop. 6.2.2, §5.3.1]. Indeed,

INote that in the cases L = Lu,Ls in §2, we still take D to be the Dieudonné crystal of the universal abelian
surfaces, not that of the Kuga—Satake abelian varieties.
ONote that in [HP17], they use y to denote a point in M (k) and L% (W) is denoted by L, while Leyis,p(W) is
denoted by L¥.
Hgee |HP17, Prop. 4.2.5]; the determinant det(V’) is the determinant of the Gram matrix ([z:, ;] )i j=1....nt2,
where {z;}]"} is a Qp-basis of V'; we view det(V’) as an element in Q) /(Q;)?.
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Lﬁ(W) C A®z, W =: Ay is the preimage of a Lagrangian fﬁ C Aw /Ay, with respect to the
quadratic form p@’ mod p such that

(3.1.1) dim(Z} + B(L})) = tumax/2 + 1,

where we use ¢ to denote the o-linear map on Ay given by Id ®c and $(v) := ¢(v) is well-defined
for v € Ay /Ay, with alift v € Ay. The quadratic form and g-action on Lﬁ(W) are the restrictions
of the quadratic forms and g-action on Ay. We then obtain Leis p(W) = @(Lﬁ(W)). Note that
by [HP17, Prop. 5.1.2], the even dimensional F,-quadratic space (A/AY,pQ’ mod p) does not have
a Lagrangian defined over F,, and hence is nonsplit; see [HP14} §§3.2-3.3] for a discussion on how to

find all such fﬁ.

Definition 3.1.3. For a supersingular point P, we say P is superspecial if tp = 28 we say P is
supergeneric if tp = tmax # 2.

By |HP17, Prop. 5.2.2], P is superspecial if and only if
(3.1.2) GLEW)) C LEW) + o(LE(W)).

By [HP17, (1.2.3.1)], in the setting of we have tpax < 4 and hence the supersingular points
in question are either superspecial or supergeneric.

Remark 3.1.4. By [MP16| Prop. 4.7 (iii) (iv)|, GSpin(L, Q)w acts on Dp(W) and Leyis, p(W); more-
over, as W-quadratic spaces, Leis,p(W) = L @ W (we use Qw to denote the quadratic form on
L"®Z,) and for & € Leis p(W),z 02 = Qw(x) -1d € End(Dp(W)). Therefore Q' on L"” ® Z,, is the
restriction of @ on Leyis,p(W) to L” ® Z,. We introduce the notation Q" to emphasize that Q" and
Q@ (as Zy-quadratic forms) are restrictions of Qw to Z,-lattices in different Q,-subspaces. Hence

GSpin(L7 Q)W = Gspin(Lcris,P(W), Q,)

3.1.5. We now describe the F-crystal L5 over the formal completion M p along the supersingular
point P following [Kis10l §§1.4-1.5] and [Moo98, §4.5]; see also [HP17, §§3.1.4, 3.1.6].

The Hodge filtration Fil' Dp(W) mod p C Dp(k) corresponds to a cocharacter 7 : Gy, —
GSpin(L, @), and we pick a cocharacter p : Gy, w — GSpin(L, Q)w which lifts @. Let Up C
GSpin(L, @Q)w denote the opposite unipotent of the parabolic subgroup defined by pu; and let
ﬁl\a denote the formal completion of Up along the identity. Pick coordinates and write l/]}\: =

Spf W{[z1,...,x4]] such that 1 = --- = 24 = 0 defines the identity element in Up. Let o denote
the Frobenius action on W{[z1,...,z,4)] which lifts the o-action on W and for which o(z;) = 2.

Let R denote O m,p, the complete local ring of M at P. Then there exists an isomorphism
from Spf R to Up (and we still use o to denote the Frobenius action on R via the identification to
Wl[x1,...,z4]]) such that

(1) D(R) =Dp(W) @w R and Leis(R) = Leris p(W) @w R as R-modules;
(2) and under the above identifications, the o-linear Frobenius action, denoted by Frob, on D(R)
and Leyis(R) is given by u - (¢ ® o), where u denotes the universal W[z, ..., z4]]-point in
Up and ¢ is the crystalline Frobenius on Dp (W) or Leis, p(W) given in 11
On Ly, the GSpin(L, @Q)w action factors through the quotient SO(L,Q)w. So from now on,

since we will only care about Frob on Ls, then by Remark we will work with p : G, w —
SO(Leyis,p(W), Q') and Up the opposite unipotent of p in SO(Leyis p(W), Q").

1211 the settings in P is superspecial if and only if the corresponding abelian surface is isomorphic to the
product of two supersingular elliptic curves, which is the usual definition for an abelian surface to be superspecial.
10



In the rest of this section, we will apply §§3.1.2, [3.1.5] to the setting in §2and we will work with
the coordinates on Up. When L = Ly, we write Up = Spf W{[z,y]] and when L = Lg, we write

o~

Up = Spf W{[z,y, 2]]. We will use € € Z to denote an element which is not a perfect square in Z,.

Let Zy2 (resp. Qp2) denote W (F,2) (resp. W(F,2)[1/p]) and let X € Z; be an element such that

o(X) = =X (for instance, we can take A to be a root in Z,2 of #* — e = 0). We will use {v; )72

to
=1
denote a W-basis of Leyis, p(W) and {wi}?jf to denote a Z,-basis of A} = Leyis p(W)?=1; note that

Spany,{w;} is a W-sublattice of Leyis p(W).
3.2. The Hilbert case L = L. Recall that as in Theorem [1{[2), we have p{ m € Z~y.

3.2.1. Assume that p is inert in Q(\/’I’T’L)H then we have tyax = 4.
The vertex lattice with type tmax is A = Spanzp{el, fi} & Z, where

[Zvel]/ = [27 fl]/ = [61781]/ = [flvfl]l =0, [617f1]l = 1/]?, Z = Zp27 Ql(x) = xa(m)/p, Vo € Z.

Hence AY = pA. Set e3 = (1@ 14+ (L/A)@N)/2, fo=1®@ 1+ (-1/X) ® \)/2 € Zy2 @z, Z. Then,
as elements in Ay,

pler) = e, @(f1) = f1,p(e2) = fa, o(f2) = ea, ez, €2) = [f2, f2] = 0,[ea, fo] = 1/p.

All possible fﬁ are given by two families of Lagrangians in k-quadratic space spanned by
€1, €2, f1, f2 € Aw/A}}, with quadratic form pQ satisfying (3.1.1):

L7 = Span,{é1 + 0 (@) fo, &2 — 0 L@ fi}, or L} = Spany{e, + o 1 (&)és, oL (@) fi — fol,
where ¢ € kE Therefore, we have that

Leris, p(W) = Spany, {e1+cez, cfi— fa, pea, pfi}, or Lews p(W) = Spany, {ei1+cfa, ea—cfi1,pf1,pf2},

where ¢ € WH Moreover, by (3.1.2)), P is superspecial if and only if c~!(c) — o(c) € pW, which is
equivalent to the Teichmuller lift of ¢ lying in Z,2. Note that if ¢ — ¢’ € pW, then ¢, define the
same Les p(W). Therefore, without loss of generality, from now on, we will only work with ¢ € W
which is the Teichmuller lifting of ¢ € k. Hence P is superspecial if and only if there exists ¢ € Z,»
such that Les p(W) is given by the above form.

In order to compute the F-crystal Leis, we pick the following W-basis {v1, ..., va} of Leys p(W)
such that the Gram matrix of [—, —]" with respect to this basis is [(j). é] , where I denotes the 2 x 2
identity matrix. For the first family, take

v1 = fo—cfi,v2 = €1+ cea — o (e)efi + 07 () f2,v3 = pea — poH(¢) fr,va = pf;
for the second family, take

v1 = eg — cfi,va =0 t(c)ea — ot (c)efr +e1 + cfa,v3 = pfa — pot(c) f1,v4 = pfi.

BlfmeZisa perfect square, then by convention, we view every prime p to be split in Q[z]/(2*> — m) and the
discussion of the split case still holds.

14Indeed, as dimy Aw /Ay, is small, in this case, all Lagrangians satisfy . There are two families and
each is parametrized by P! (k) so more accurately, we shall view ¢ € P! (k), i.e., there are two more Lagrangians
Span,{f1, f} and Span, {&2, f1}; however, since the role of ¢; and f; are symmetric, the computation for these two
cases are equivalent to Span, {&1, &>} and Span, {€1, fo} so we may safely omit them and only take ¢ € k. Moreover,
we use 0~ 1(¢) to be the parameter here because eventually we want to work with Less, (W) = (L% (W)).

15Here we mnotice that  swaps two families of Lﬁ(W); in particular, the general formula for Leyis,p (W) is the
same as that for L?},&(W) (other than swapping between the two families). This observation holds true in general by
[HP14] Rmk. 3.5].
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Then on Leyis, p(W), with respect to {v1,...,vs4}, we have

0 o(c)—o ) p O

. 0 1 0 0

p = bo, with b = 1/p 0 0 0
() —al@)/p 0 0 1

The filtration on Leys p(k) is given by
Flll IL'v:ris,P(k) = Spank{ES}a Fllo ILcris,P(k) = Spank{fv% U3, 1_}4}7 Fﬂ_l ILcris,P(kj) = Lcris,P(k)a

so we may choose p : Gpw — SO(Lens p(W), Q') to be t + diag(t1,1,¢,1). Then Up =
Spf W[z, y]] with the universal point

1z —ay y —ay/p—ay/p at+x p y
{01 —y 0 _ . _ —y/p 1 00
u= 1y 0 L 0 and Frob = ubo, with ub = 1/p 0 0 ol
00 —z 1 —x/p—a/p 0 01

where a = o(c) — o7 !(c); we have a = 0 if P is superspecial and a € W* if P is supergeneric.
When P is superspecial, {w1 = pvi + v3, ws = A(pv1 — v3), w3 = v2,ws = v4} is a Zy-basis of
L" ®Zy. Using {w1, ..., ws} as a K-basis of Leis p(W)[1/p], we have

Ty Ay oz oy
2p 2p 2p 2p
_ry Ty oz Y
(3.2.1) Frob= [T+ | 22 20 2w 20| |oo0.

When P is supergeneric, {wy = v4,wy = pv1 + v3 + (¢ + 071 (c))vg, w3 = A(pv1 — v3 + (¢ —
o7 (c))vs), ws = pvg — cvs — po~t(c)vy — coT(c)vs} is a Zy-basis of L” ® Z,, and with respect to
this basis, Frob = (I 4+ %A + xB) o o, where

—c = =) 0 0 —1+cy/p Acy/p+ A —c2y/p
A | Y20 xSz o 100 —y/(2p)  My/(2p)  1/2+4ey/(2p)
1/ (OZA) c/ i g /2N | 8 —y/ g%p) y/ %219) 1/(2)) +Ocy/ (2pA)

3.2.2. Assume that p is split in Q(y/m); then we have tyx = 2 and hence every P is superspecial.
The vertex lattice with type tmax is A = {(z1, z2, 23, 24) € Z;l)} with

Q' (w1, 9, 3, 74)) = x% — ex% — p_lx?), + ep_laci;

we have AV = Spanzp{el,eg,peg,pe4}, where e; is the vector with z; = 1 and z; = 0 for j # 1.

Recall that we take € = A\?; we then havﬂ that

1 1 1 1
Leris,p(W) = Spany,{v1 = 5(63—{—)\_164),1)2 = 5(61"‘)\_162),’03 = —5(p63—)\_1pe4),v4 = 5(61—)\_162)}.

L6There are exactly two Lagrangians and the other one is given by replacing A by —A. Since A and —\ play the
same role in our later computation, there is no loss of generality here.
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The Gram matrix is [0 I] and on Leyis p(W), the Frobenius ¢ = bo with

I 0
0 0 —p O
b— 0 0 0 1
~|-1/p 0 0 O
0 1 0 0

The filtration on Leis, p(k) given by ¢ is the same as in §3.2.1) and hence we may use the same
and u there. Therefore, on Leis(W/[[z,y]]), we have

ry/p y —p x

_ . |y 0 0 1
Frob = ubo, with ub = Sifp o 0 0
z/p 1 0 0

Moreover, {w; = pv1 — v, w2 = A(pv1 + v3), w3 = Vg + V4, wa = A(vg — v2)} is a Z,-basis of L @ Z,,
and with respect to this basis,

zy _dzy zty —AE—y)
2p 2p 2p 2p
(3.2.2) Frob= | I + L‘*‘IZ)/ @) Op 5} oo.
ooy —(-y)
T,\y 2 0 0

3.3. The Siegel case L = Lg. We now compute L. for Theorem and Theorem In this
case, we have ty.x = 4.
The vertex lattice with type tmax is A = Spang, {e1, fi} & Zg, where Zg = {(21, 22, 23) € Zg}

[ZSael], — [ZSa fl], — [61761]/ — [fla fl]/ — 07 [617f1]/ = ]‘/p7 Ql((ajl)x27x3)) = C(—Eig—p_lfﬁgﬂ—ep_l.f%),

for some ¢ € ZY. Since detA = detL € Q)/(Q))* and detL = 2, we have ¢ = —1. Let

9= (1,0,0) € Zg and Z = Spany_{(0,1,0),(0,0,1)} C Zg. Then A/AY = Spanﬂrp{él,fl} VA
Note that Spanzp{el, fi} & Z is exactly the same quadratic Z,-lattice which is denoted by A in
hence the same computation there applies to find Leyis p(W) C A®@W. More precisely, there
exist vy,...,v4 € Spany{e1, f1i} ® Z @ W and ¢ € W which is the Teichmuller lift of ¢ € k such
that

(1) Leyis, p(W) = Spany,{v1, ..., v4,v5}, where vs = g;

0 I 0
(2) the Gram matrix of [—, —]" with respect to {v1,...,vs}is |I 0 0|, where I is the 2 x 2
0 0 2
identity matrix;
(3) The Frobenius ¢ on Leis p(W) with respect to the basis {v;} is
0 oc)—o ) p 0 0
0 1 0 0O
¢ = bo, with b= 1/p 0 00 0|;
(c71(c) —a(c)/p 0 010
0 0 0 01

(4) P is superspecial if and only if o2(c) = c.

We may choose pt @ G — SO(Leris, p(W), Q') to be t — diag(t™1,1,¢,1,1). Then Up =
Spf W[z, y, z]] with the universal point
13



1 z —a;y—i—i Yy oz _—%(xy—k‘i—&)—% a+z p oy z
01 -y 00 ~2 1 000
u= (0 0 1 0 0| and Frob = ubo, with ub = % 0 0 0 O
0 0 —x 10 —JjjT“ 0 010
_z
0 0 5 01 I —= 0 0 0 1]
acting on Leyis(W([[x,y, 2]]), where a = o(c) — 0~ %(c); note that a = 0 if and only if P is

superspecial.

For the proofs of Theorem and Theorem [5, we only need to study superspecial points so
we only give the matrix of Frob with respect to a basis of L¢s @ K consisting of elements in
L" ® Z, when P is superspecial; we refer the reader to the appendix for the discussion when P is
supergeneric.

We now assume that P is superspecial. Let w; = A(pv; — v3),ws = pv + v3, w3 = v, Wy =
vy, w5 = v5. Then L' ®Z, = Spang, {wi,...,ws}. We view {w;}2_; as a K-basis of Leys p(W)® K,
then the Frobenius on Leyis(W ([, y, 2]]) is given by

_ ) ) -
ﬁ(war%g) —ﬁ(myﬂLfg) 5 T %
alay+a) —day+s) £ L &

(3.3.1) Frob= | I + \y —y 0 0 0 oo.

AL —x 0 0 0
A
L % 5 0 0 0]

3.4. Equation of non-ordinary locus. We now use the computation in §§3.2 to obtain the
local equation of the non-ordinary locus in a formal neighborhood of a supersingular point P using
results in |[Ogu01]. Although |Ogu01] only focuses on the case of K3 surfaces, the results that we
recall here apply to any GSpin Shimura varieties. We follow the notation in For a perfect field
k' of characteristic p, for P" € M(k'), we say P is ordinary if the slopes of the crystalline Frobenius
@ on Leys pr (W) are —1,1 with multiplicity 1 and 0 with multiplicity nm

The cocharacter i defines a filtration Fili, i =—1,0,10n Leys p(k), which is the Hodge filtration in
[Ogu01] and in particular, dim Fil! Leris,p(k) = 1,dim Fil° Leris,p(k) = n + 1,dim Fil~! Leris p(k) =
n + 2 and the annihilator of Fil! Leris,p(k) in Leys p(k) with respect to @ is Fil° Lcris’p(kﬁ).@ Th
Hodge filtration over the mod p complete local ring R @y k at P is given by Fil' Leis(R Qw k) :=
Fil' Leyis p(k) @5 (R ® k). Note that Frob(Fil® Leys(R ®w k) C Fil® Leis(R @w k), so we have a
well-defined map pFrob : gr_; Leis(R @w k) — gr_; Leis(R @w k), where gr_; Leis(R Qw k) =
Fil ! Leyis (R @w k) / Fil° Leyis (R @w k).

Lemma 3.4.1 (Ogus). For a supersingular point P, The non-ordinary locus (over k) in the formal
neighborhood of P is given by the equation

pFrOb ‘gr_l ]Lcris(R®Wk) = 0

Proof. By |Ogu01, Prop. 11], the discussion of the conjugate filtration on |[Ogu01, p.333-334|, and
the fact that the annihilator of Fil' Leys(R® k) in Leis(R® k) with respect to @ is Fil® Les(R® k),
we have that the equation defining the non-ordinary locus is the projection of the conjugate filtration

TWhen L = Ly, Ls, the point P’ is ordinary if and only if the corresponding abelian surface over k' is ordinary
by the definition of Lcyis.
1856¢ also |Ogu82l p.411] for the definition. Note that here we directly work on the crystalline cohomology without
using the canonical isomorphism to the de Rham cohomology. Note that our filtration is shifted by 1 when comparing
to the filtration in [Ogu0l| because his Frobenius is p times our Frobenius.
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(denoted by F2 in loc. cit.) to gr_j Les(R ® k). By definition, F2,, = pFrobLeis(R ® k) and
then the lemma follows. 0

Corollary 3.4.2. When L = Ly, the local equation of the non-ordinary locus in a formal neighbor-
hood of a supersingular point P is xy = 0 if P is superspecial and is y = 0 if P is supergeneric; when
L = Lg, the local equation is xy+2z2/(4€) = 0 if P is a superspecial point and (x+a)y+22/(4€) =0
if P supergeneric, where a € W (k)* depends on P.

Proof. We will prove this corollary in the case L = Lg, since the other case is handled the same
way. Recall we have the basis v1...v5 of Leys, with Fil™ 1 = L4 and Fil° being spanned by
v9,v3,v4 and vs. Therefore, using the explicit formulas from the previous section, we see the map
pFrob: gr_; Leis(R®w k) — gr_q Lais(R @w k) is given by pFrob(vy) = —(zy + % + ay)vy. Our
result now follows from Ogus’s description of the non-ordinary locus. O

4. ARITHMETIC BORCHERDS THEORY, SIEGEL MASS FORMULA, AND EISENSTEIN SERIES

We use arithmetic Borcherds theory [HMP)] to control the global intersection number of a curve C
with special divisors. More precisely, we use the work of Bruinier and Kuss in |[BK03| to study the
Fourier coefficients of the Eisenstein part of the (vector-valued) modular form arising from Borcherds
theory. In order to compare the global intersection number with the local contribution later in the
paper, we also apply the computations in [BK03| and the Siegel mass formula to the Eisenstein part
of the theta series attached to a supersingular point and reduce the question to a computation of
local densities and determinants of the lattices L and L’ introduced in and Definition (in
§4.2, we will summarize the properties of L'). We use Hanke’s method in [Han04] to compute the
local densities. Throughout this section, p is an odd prime such that L is self-dual at p. For a prime
¢, we use vy : Zy\{0} — Z>¢ to denote the ¢-adic valuation.

4.1. Arithmetic Borcherds theory and the explicit formula for the Eisenstein series.
Recall the special divisors Z(m) from Definition [2.2.6{and §2.2.11} The following modularity result
is the key input to the estimate of the intersection number Z(m).C.

In order to state the result using vector-valued modular forms, for p € LY/L,m € Qso, let
Z(m, u) denote the special divisors over Z in M defined in [AGHMP18, §4.5, Def. 4.5.6]. By
definition, Z(m, 0) is the divisor Z(m) defined in and roughly speaking, Z(m, 1) parametrizes
abelian surfaces A with a special quasi-endomorphism s such that Q(s) = m and the f-adic and
crystalline realizations of s lie in the image of (u + L) ® Z and (u + L) ® Z;, in End(Ty(A) ® Q)
and End(D ®@yw W[1/p]) respectively, where D is the Dieudonné module of A . By the proof of
[AGHMP18|, Prop. 4.5.8] and [MP16, Prop. 5.21|, the assumption that L is self-dual at p implies that
Z(m, u) is flat over Z,,. Let Z(m, u1) denote Z(m, p)r,. Let (e,),ecrv /1 denote the standard basis of
C[LY/L]. Let w € Pic(Mp,)q denote the Hodge line bundle in the Q-Picard group of Mg, ; in other
words, w is the line bundle of weight 1 modular forms (see for instance [AGHMP18, Thm. 4.4.6] for
a definition of w).

Theorem 4.1.1 (Borcherds, Howard-Madapusi-Pera). Assume (L, Q) is a mazimal quadratic lat-
tice of signature (n,2) such that L is self-dual at p. The generating series

w ey + Z Z(m, pn)q"e,, where g = 2T
m>0,ucLY /L
lies in My 2 (pr)@Pic(Mg, )q. Here, pr, denotes the Weil representation on C[LV /L] and My z(pr)
denotes the space of vector-valued modular forms of Mps(Z) with respect to pr, of weight 1 + %H

191 [Bor99|, [BKO01|, [BKO03|, they work with (L, —Q) and the modular form is with respect to the dual of the
Weil representation of (L, —@Q), which is the Weil representation of (L, Q). Our convention is the same as the one in
[HMP| and [Brul7|.

15



In particular, for any Q-linear functional o : Pic(Mr,)g — C, the vector-valued power series

a(w eg + Z a(Z(m,p))q"e,
m>0,ucLY /L

is the Fourier expansion of an element of MH%(,OL).

Proof. By abuse of notation, we also use w to denote the Hodge line bundle over M. By |[HMP,
Thm. B, the generating series w™leq + > msopery /L Z(m, p)qmey € Mipn(pr) @ Pic(M)q. Since
Z(m, p) are flat over Zj, then the desired assertion follows from intersecting with Mg, . O

4.1.2. In the setting of Theorem (i.e. the case when L = Lg), we work with curves C
that are not necessarily proper. We therefore need a version of the above modularity result that
holds for the special fiber a toroidal compactification of M. To that end, let M’ denote a
toroidal compactification of M, and let D1, ..., Dy denote irreducible components of the boundary
Mfﬁ: \ Mp,. In [BBGKO07, Theorem 6.2], the authors prove the modularity result for M, which

will directly imply the modularity result for M%Zr. The constant term is still given by the Hodge line
bundle, still denoted by w, on pr‘;r and the special divisors Z(m, u) are replaced bym Z'(m, p) +

tor

E(m,u), where Z'(m, u) is the Zariski-closure of Z(m,pu) in Mg, and E(m, u) is a “correction
term”, and has as its irreducible components the D; with appropriate multiplicity. Crucially, when
Z(m, u) is proper (see for when this happens), the multiplicities of the D; in correction term
E(m, p) are all zero and hence E(m, u) is trivial. Therefore, compact special divisors stay as they
are in the modularity theorem for Mfﬁ:ﬂ

4.1.3. Recall that we have a finite morphism 7 : C'— Mg . When C is proper, for Z € Pic(Mp, )q,
we define C.Z as the degree of 7*Z € Pic(C)g. For Theorem [If2), we pick a toroidal compactifica-
tion M™" of the Hilbert modular surface M and let C’ denote the smooth compactification of C
and the finite morphism 7 extends to a finite morphism 7’ : ¢/ — M%‘: . Then for a proper divisor

Z in Mp,, we use C.Z to denote degq/(7*Z); since Z is proper, C' N Z = C'N Z so we only need
to consider points in Mg .

4.1.4. We apply Theorem and §4.1.2/to a(Z) := C.Z defined in §4.1.3|for Z € Pic(Mp,)q (and
we further assume that Z is proper when L = Ly). We decompose the modular form —(w.C)eq +

omsopery/r Z(m, 1).Cq™e, as E(q) + G(q), where E(g) € My (pr) is an Eisenstein series and
G(q) € My42(pr) is a cusp form. Note that the constant term of E(g) is —(w.C)eo.

We now recall the vector-valued Eisenstein series Ey(7) € M1+g(/?L) which has constant term
¢o. This Eisenstein series has been studied in [Bru02} §1.2.3], [BKO01} §4|, and [BKO03, §3]. Here we

follow |Brul7, §2.1] as we use the same convention of quadratic forms. We denote an element in

Mpy(Z) by (g,0), where g = [Z Z] € SLy(Z) and o is a choice of the square root of 7 — c1 + d.

Let T, C Mpy(Z) denote the stabilizer of co. Then for n > 3, the following summation converges

200ur notation Z’ + E is different from the notation used in loc. cit.

21We note that in [BBGKO07|, the authors work with Hilbert modular surfaces attached to real quadratic fields
with prime discriminant D and state the modularity result using modular forms with level T'g(D). However, their
proof, which uses Borcherds product for the Fourier expansion and the flatness of Z(m, u), applies for all Hilbert
modular surfaces in the setting of vector-valued modular forms by using the original work of Borcherds [Bor98|. We
hence deduce modularity for M%Zr. Although the integral special divisors (denoted by T (n) in [BBGKO7|) are defined
by taking Zariski closure in M"" of the special divisors on the generic fiber Mg, this notion coincides with our
definition by the flatness of the integral special divisors in both definitions.
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on the upper half plane and we define

Eor)= > o) ®(plg,0) e).
(9,0)€l%\ Mp(Z)
When n = 2, we define Eyp(7) use analytic continuation following [BKO03, §3]. Write 7 = x + iy
and define for s € C,

Eo(r,5) = > ()" (pr(g,0) "y e0)),
(9,0)€lG\ Mpy(Z)

which converges on the upper half plane for s with s > 0 (n = 2 here). By [BKO03|, p. 1697, Eo(T, s)
has meromorphic continuation in s to the entire C and it is holomorphic at s = 0 and we define
Ey(7) to be the value at s = 0 of the meromorphic continuation of Fy(7, s). Moreover, by loc. cit.,
E(7) is holomorphic and hence lies in My,n(pr) if pr does not contain the trivial representation
as a subquotient. In the proof of Theorem (2), we work with L = Ly and this condition for py, is
always satisfied as far as the m in the statement of Theorem (2) is not a perfect square, i.e., M is
not the product of modular curves.

We denote the g-expansion of Eo(T) as 3_,,~0 mez+q(u) 4L(m: 1) ¢y and set g (m) := q.(m, 0)
for m € Z~y.

4.1.5. We fix some notations before we state the explicit formula of gz,(m) given by Bruinier—Kuss.
Given a quadratic lattice L (not necessarily the lattice Ly, Lg), we write det(L) for the determinant
of its Gram matrix. We have |LY/L| = |det(L)|.

For a rational prime ¢, we use 0(¢, L,m) to denote the local density of L representing m over
Zy. More precisely, 6(£, L,m) = limg_oo L4k 4Ly € L)L | Q(v) = m mod ¢4}, |BKO1, Lem.
5| asserts that the limit is stable once a > 1 + 2vp(2m). In particular, if m is representable by
(L ®Zy¢,Q), then 6(¢, L,m) > 0.

Given 0 # D € Z such that D = 0,1 mod 4, we use xp to denote the Dirichlet character
xp(a) = (%), where () is the Kronecker symbol. For a Dirichlet character y, we set os(m,x) =
> ajm X(d)d®.

Theorem 4.1.6 (Bruinier—Kuss; see also |[Brul7, Thms. 2.3, 2.4]). Consider L = Ly, Lg defined
in and m € Zg.
(1) For L = Ly, the Fourier coefficient qr(m) is

B 4m°mo_1(m, Xadet L)

|LV/L|L(27 X4detL) Z\Zdet(L)

(2) For L = Lg, write m = mof?, where ged(f,2det L) = 1 and vy(mo) € {0,1} for all
012det L. Then the Fourier coefficient qr,(m) is

5(¢, L,m).

B 16\/§7T2m3/2L(2, XD) d d d_Qo- p 50.L.m - £_4
SISO o-alf/d) epl;eu((’ m)/(1 =),

where u is the Mobius function and D = —2mgdet LH

Proof. When L = Lg, this is [BKO1, Thm. 11]. When L = Ly, one modifies the proof of [BKO01,
Thm. 11] as follows. Using [BK03| Prop. 3.1| instead of |[BKO01, Prop. 2|, we obtain |[BKO01} Prop. 3]
since Shintani’s formula works in general. To express the formula in [BKO1, Prop. 3] as a product
of local terms, we use [Iwa97, §11.5, p. 196]. The rest of the proof, which computes the local terms
at £+ 2det L, works in the same way (see also |[Iwa97, eqns (11.71)—(11.74))]). O

22Gince det Ls = 2 and more generally for odd rank quadratic lattice L, we have 2 | det L, then D = 0 mod 4.
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If Z(m) # 0, then m is representable by (L, Q) and in particular for every £, m is representable
by (L ® Zy, Q) and hence §(¢, L,m) > 0. By Theorem we have qr,(m) < 0 when Z(m) # 0.

4.2. The lattice L' and the Siegel mass formula.

4.2.1. For a supersingular point P € M(k), we defined L”, the lattice of special endomorphisms, in
Definition and picked L' D L” which is maximal at all £ # p and L' ® Z, = L"” ® Z,. Though
there may be choices for L', the local lattices L' ® Z, are well-defined up to isometry. More precisely,
for £ # p, L' @ Z, is given by Lemma and for ¢ = p, L'®Z, = L" ®Z, is computed in §
Note that given L, the isometry class of the quadratic lattice L' ® Z, only depends on whether P
is superspecial or supergeneric; indeed, following the notation in if tp = tmax (for instance,
when P is supergeneric), then Ap is a maximal lattice with respect to pQ’ and hence its isometry
class (and thus the isometry class of L' ® Z, = AY,) is unique; if tp = 2, i.e., P is superspecial, then
A} is a maximal lattice with respect to ' and hence is unique up to isometry.

In order to compute the local intersection number of Z(m).C' at P, we also need to consider
sublattices L of L' such that L ® Zy = L' ® Z, for all £ # p (more precisely, we will take L to
be the lattices defined in . In particular, det L"” = p?**det L’ for some a € Z>.

Let 61 (q) denote the theta series of the positive definite lattice L, which is a modular form
of weight rk L'/2; we decompose 0p(q) = Epm(q) + Gpn(q), where Epmw is an Eisenstein series
and Gpw is a cusp form. Let grn(m) denote the m-th Fourier coefficients of Ep» (at the cusp
00). The following theorem asserts that g~ (m) only depends on the genus of L'’ and gives explicit
formula for gz~ (m). In particular, when we consider the theta series for L', we have that qr/(m) is
independent of the choice of L' above and it only depends on L and whether P is superspecial or
supergeneric.

Theorem 4.2.2 (Siegel mass formula). Notation as in §4.2.1. The Eisenstein series Erm only
depends on the genus of L'". Moreover, for m € Z~g,

(1) when L = Ly,

Am*mo_1(m, Xadet 1) 5(0, 1" m);
L7V JL7L(2, Xadet 1) S

qL/// (m) =
£2detL’

(2) when L = Lg,

16v/2m%m3/2L(2, xpr) ) A
QL”’( ) - :u X’D’ d 0-73(f/d) 5(& Lmv m)/(l - ) 9
3/IL"™ [L"I¢(4) cqu é2£ltL’ ( )

where we write m = mof? with ged(f,2det L') = 1 and ve(mg) € {0,1} for all £ 2det L'
and D' = —2mqdet L’

Proof. The first assertion follows from the Siegel mass formula; see for instance [IK04, Thm. 20.9,
eqn. (20.121), and pp. 479-480|. In order to obtain the formula above, we note that the proof of
IBKO1, Thm. 11] using |[BKO01, Thm. 6] also applies to L and hence we conclude that the formula
in |[Brul7, Thms. 2.3, 2.4| also applies to L and obtain the formulae in the theorem with all
L’ replaced by L. Note that by the computations in §§3.2}3.3] we have p | det L’, and hence
0| 2det L" if and only if ¢ | 2det L'; also X4det 17 = Xadet 1/ and XD/ = X—2my det L7 Hence using
L’ (instead of L") for x, D’ and the product £ | 2det L’ yields the same formulae. O

4.3. The asymptotic of gz (m). The discussion of this subsection also applies to gz (m) when m
is representable by (L, Q"), but we only focus on gz,(m) here.
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4.3.1. Assume that m is representable by (L ® Zy, Q) for every prime ¢. We will also assume that,
as m varies within a specified set T, there exists an absolute constant C > 0 such that for all
0| 2det L, we have vg(m) < C. As we shall see in we will always be in this situation.

For a given ¢ | 2det L, as in |[Brul7, proof of Prop. 2.5|, by [BK01, Lem. 5|, we have §(¢, L, m)
=k L)ty € L/0°L | Q(v) = mmod £%} with a = 1 + 2C + 2v,(2) and hence ¢o(1-kL)
5(¢, L,m) < 2P

Therefore, given (L, Q), by Theorem we have that |qr(m)| < mo_1(m, X4det ) and hence
M= < |qu(m)] <. m for L= Lyz; and |gp.(m)| = m¥?L(2, xp) X pld)xp(d)d~20_s(f/d)
for L = Lg. As in the proof of [Brul7, Prop. 2.5|, we have }_, p(d)xp(d)d=20_3(f/d) > 1/5 and

S uldxo(dyd 2o _s(£/d) < 3 d 20 a(f/d) < 37 d2(3) < C(2)3);

dlf dlf daf
moreover, by loc. cit., L(2,xp) > ((4)/¢(2) and L(2,xp) < 1_[10(1—1)*2)*1 = ((2). Hence |qr.(m)| <
m3/2 when L = Lg.

IA I

Lemma 4.3.2. We fiz the same assumptions as in §4.5.1. For m > 1, we have Z(m) # () and the
intersection number Z(m).C' = —qr.(m)(w.C)+o(|qr.(m)|). More precisely, when L = Ly, the error
term can be bounded by O (m'/?>*€) and when L = Lg, the error term can be bounded by O(m>/*).

Proof. We follow the discussion in . Let g(m), m € Z~( denote the m-th Fourier coefficients of
¢o-component of G/(¢), which is also a cusp form of weight 14-% with respect to a certain subgroup of
Mpy(Z) which is the preimage of a congruence subgroup of SLy(Z) depending on L. When L = Ly,
by Deligne’s bound (|Del73,Del74]), we have |g(m)| < m!'/2a0(m) <. mY/?t¢ = o (m'~¢) =
o(|qr.(m)|) for any 0 < € < 1/4. When L = Lg, the trivial bound yields |g(m)| < m®* = o(m?/?)
(see [Sar90, Prop. 1.3.5]). Therefore by Theorem [1.1.1] Z(m).C = —qr(m)(w.C) + o(|qr(m)]); in
particular, for m > 1, Z(m).C > 0 and hence Z(m) # 0. O

4.3.3. When L = Lg, recall from that the quadratic form is Q(z) = 23 + 179 — w374 and
hence every m € Z~ is representable by (L, Q). In particular, Z(m) # () and §(¢, L, m) > 0 for all
¢. Moreover, in order to prove Theorem [I(1) and Remark {4l we will work with m € T := {Dgq? |
g prime and g # p}, where we take D = 1 for Theorem (1) and D being the discriminant of the
real quadratic field in Remark |4} and for Theorem , we work with m € T := {q | ¢ prime and g #
D, q is a quadratic residue mod p, and ¢ = 3 mod 4}. In particular, for all such m, we have vy(m) <
2 4+ vg(D) and hence the assumptions in are satisfied.

When L = Ly, since L is maximal and isotropic, we have that the quadratic form on L ® Z, is
given by zy + Q1(2), where z,y € Zy, 2 € Z2 and Q) is some quadratic form. Then §(¢, L,m) > 0
for all £; indeed, by [Han04, Def. 3.1, Lem. 3.2|, 6(¢, L,m) > 0 if there exists x,y € Z/¢'T2ve(2)
such that zy = m mod £172%(2) and z % 0 mod ¢ (by the terminology in [Han04], this construct
a good type solution (taking z = 0) for (L, Q) mod £'+2¥¢(2) which can be lifted to Z/¢* for any
k > 142vy(2)). Such z,y always exists and hence every m € Zs is representable by (L ®Zy, Q) for
all £ and hence by Lemma there exists IV € Z~ such that for all m > N, m is representable
by (L, Q). For the proof of Theorem (2), we work with m in

T:={meZ|m>N,ptm,v(m) < C,Vl|2det L, and J¢||m such that ¢ inert in F'},

where F' is the real quadratic field attached to the Hilbert modular surface and the constant C' is
chosen so that this set is non-empty. The existence of ¢ implies that m # Nmp,q v for any v € F

and hence for any v € Ly ® Q such that Q(v) = m, we have v+ C Ly ® Q is anisotropic. Note

23When rk L > 5, for a fixed £, it is well known that 0(¢,L,m) =<1 for all m representable by (L ® Z¢, Q) without
imposing any bound on v;(m); see for instance [Iwa97, pp. 198-199].
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that if Z(m) is non-compact in Mg, then Z(m) parametrizes abelian surfaces which are isogenous
to the self-product of elliptic curves and then v is isotropic. Therefore, for any m € T, we have
that Z(m) is compact in Mp,. Note that T C Z is of positive density.

Lemma 4.3.4. For L =Ly and M > 0, we have } 1<, < prmer lgn(m)| < M2
Proof. By §§4.3.114.3.3] we have for m € T', |qr.(m)| < mo_1(m, x), where x = X4det - We write

Z mo_1(m,x) = Z Zd -x(m/d) = Z d-x(f)

1<m<M,meT 1<m<M,meT d|m 1<d<M1<f<M,df<M,df€T
= > d > xh+ X oxH > d
1<d<Ml/2 1<f<M/d,dfeT 1<f<M1/2 1<d<M/f,dfeT

(> dl > X))

1<d<M/2  1<f<MY/2 dfeT

Note that
Y d Y XD Yo d-(M/d) =0,
1<d<M?/2 1<f<M/ddf€T 1<d<M?/?
C Y de D> xS C Y DY )=0Mm?),
1<d<MY/2  1<f<MY/2 dfeT 1<d<M1/2 1<f<ML/2
The second term is the main term. First let 7/ := {m € Z | m > N,p{tm,ve(m) < C,V¢ | 2det L}
then
ooxtnh D>, d= > X > d,
1<f<ML/2 1<d<M/f,df€T" 1<F<MY/2 ptf 1<d<M/ f,pfd,ve(d)<C,¥¢|2 det L
because vy(df) < C <= wvy(d) < C,Vl | 2det L when v,(f) = 0,V¢ | 2detL and if vy(f) > 0 for
some ¢ | 2det L, then x(f) = 0. Since Z d= C’1 f2 O(M), where Cy and

1<d< M/ f,ptd,ve(d)<C,e|2 det L
the implicit constant only depend on C, L, p. Hence

Z x(f) Z d=Cy M Z x(f)/f2+O0(M3?) < M2,

1<f<M1/2 1<d<M/f,df €T" L<F<ML/2 ptf

To finish the proof, we only need to show that

> x() > d| = o(M?).

1<f<ML/2 1<d<M/f,df €T'\T
Since M/f > M2, by definition of T, #{d | 1 <d < M/f,df € T'\ T} = o(M/f) with implicit
constant independent of f and hence we obtain the desired bound ([l

4.4. Local densities at p and the ratios of Fourier coefficients. We set the same notation

as in § Theorem and Theorem reduce the comparison between gr,(m) and gr»(m)

to the computatlon of the local density §(p, L', m), which we now compute following [Han04}, §3].
Recall that p is an odd prime and wv,(m) < 1 for all m € T defined in For an arbitrary
quadratic lattice (L, @), let a(p, L m) = plfrkL#{fu € L/pL | Q(v) = m mod p}; if we diagonalize
L ® Z, such that @ is given by Z iy alm with a; € Zjp, then we define

o*(p, Lym) = pt ™™ Lt ly = (21,...,29.1) € L/pL | Q(v) = m, Ji such that v,(a;) = 0,2; Z 0 mod p}.

24The complement 7"\ T consists of integers which are norms of ideals from O multiplied by some perfect cube
(which is a density zero set).
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Lemma 4.4.1 (Hanke). If ptm, we have
d(p, L",m) = a(p, L",m);
if vp(m) =1, we have

8(p, L",m) = a*(p, L",m) + p' " a(p, L' ,m/p),
where if we write (L' ® Zp,, Q') into diagonal form Ziif”/ a;x? with a; € Z,, we define so = #{a; |
vp(a;) = 0} and LY is the quadratic lattice with quadratic form Zifﬁl alx?, where a; = pa; if

177
vp(a;) =0 and a; = p~a; if vy(a;) > 1.

Proof. If p 1 m, the assertion follows from |[Han04, Rmk. 3.4.1 (a), Lem. 3.2|; If v,(m) = 1, then
we only have good type and bad type I solutions in the sense of [Han04, Def. 3.1, p. 360] and the
assertion follows from |HanO4, Lem. 3.2, p. 360, Rmk. 3.4.1 (a)]. O

We first compute d(p, L', m) by Lemma We always pick e € ZX\(ZX)? as in §3.1.2,

4.4.2. Consider L = Ly and recall that p t m,¥m € T. Let F denote the real quadratic field
attached to the Hilbert modular surface defined by L.

1) Assume that p is inert in F and P is supergeneric. By §3.2.1, L' ® Z, = AV = pA and hence
P
p| Q' (v),Yv € L'; in particular, §(p, L',m) = 0.

(2) Assume that p is inert in F' and P is superspecial. By §3.2.1, Q'(v) = xy + p(2? — ew?),
where w; are given right above (3.2.1)) and v = zws + yw4 + 2w + wwe with z,y, z,w € Z,.
Hence §(p, L',m) = a(p,L',m) =1—1/p.

3) Assume that p is split in F'; hence P is superspecial. By §3.2.2l L' ® Z, = AV with
P
Q' (v) = 22 — ey? — pz? + epw?, where v = ze1 + yea + 2(pes) + w(pes) with z,y, z,w € Z,.
Hence §(p, L';m) = a(p,L',m) =1+ 1/p.

4.4.3. Consider L = Lg.
(1) Assume that P is superspecial. By we have Q'(v) = zy + ez + pw? — peu?, where
v = zws + Yyws + 2ws + wwe + vwy with x,y,2,w,u € Z, and w; are given right above
(3.3.1). Hence if p ¥ m, then §(p, L’,m) = a(p,L’,m) < 1+ 1/p by |Han04, Table 1]. If
vp(m) = 1, then the quadratic form of L is p(xy + €2?) + w? — eu? and hence &(p, L', m) =
a*(p, L';m) +p~2a(p, Li,m/p) = (1 —p ) +p 21 +p ") =1+p7°
(2) Assume that P is supergeneric. By L' ® Z, = AV and hence the quadratic form is
pry + €2? + pw? — peu?. If p { m, then §(p, L', m) = a(p,L';m) = 0 or 2; if v,(m) = 1,
then the quadratic form of L} is pez? + zy +w? — eu? and hence 6(p, L',m) = o*(p, L', m) +
a(p,Ly,m/p) =0+1+p 2=1+p 2 by [Han04, Table 1].

We now estimate 6(p, L, m) for sublattices lattices L' of L' defined in §4.2.1}
Lemma 4.4.4. If p{m, then 6(p, L' ,m) < 2.

Proof. By Lemma d(p, L",m) = a(p,L",m). Write the quadratic form @’ on L” into

the diagonal form Z;if " aix% with a; € Z, and we may assume that there exists a; such that

hS]

*

p 1 a;; otherwise §(p, L"”";m) = 0 then we are done. Now let L" denote the quadratic form
ZlgigrkL”/,Mai a;z?. Then by definition, a(p, L"”,m) = a(p,L",m). Since p | discL’, then
p | disc L and vk I’ < vk " — 1 < 4. Then by [Han04, Table 1], a(p, L”",m) < 2 and hence
d(p, L ,m) < 2. 0

Lemma 4.4.5. Assume that L = Lg and v,(m) = 1. We have d(p, L"',m) < 2+ 2p. Moreover, if
P is superspecial and [L': L] = p, then §(p, L' ;m) < 4.
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Proof. By Lemmal4.4.1} 6(p, L",m) = o*(p, L" ,m)+p'~*0a(p, L}, m/p) < a(p, L" ,m)+pa(p, L', m/p).
By the proof of Lemma we have a(p, L"',m) = a(p, L, m) < 2. The same argument implies
that a(p, L}, m/p) < 2 if rk(f”’) < 4. If k(L") = 5, then it is isotropic and we write the quadratic
form as xy+Q1(2). The equation zy+Q1(z) = (m/p) mod p has (p—1)p? solutions in IFZ with z # 0
and has at most p* solutions with z = 0. Hence a(p, L, m/p) = a(p, L" ,m/p) < 2. Therefore,
6(p, L', m) <2+ 2p.

If P is superspecial and [L' : L"] = p, then sy > 1 and hence 6(p, L",m) < o*(p,L",m) +
a(p, L', m/p) < 4. O

The following lemma, which is the main goal of this subsection, will be used to compare the local
intersection number at a supersingular point P with the global intersection number.

Lemma 4.4.6. Notation as in §4.2.1) and consider m € T (defined in §4.5.5).
q(m) < 1 .
—q(m)L ~ p—1
/ 2
(2) If L = Lg and P is supergeneric, then a(m)r < .
—q(m), ~ p* -1

g 2
(3) If ptm, then —q(m)p, S \/|(L'” ® Zp)V /(L @ Zyp)| (1 — p=2) '

amer _ 2
—(m) = 7@ L) (L7 & Z)(1-p )

" 4
over, if P is superspecial and [L' : L"'] = p, then a(m)r < = )
—q(m), ~ p*—1

Proof. Recall from §4.2.1| that L"” ® Zy = L ® Zy, ¢ # p; hence for £ # p, we have 6(¢, L, m) =
§(¢, L,m) and det L"" = p* det L for some k € Zx. Since L is self-dual at p, then p { det L; by §3.1.2

det L' = p?* det L for some b € Z~q (concretely, one may deduce this fact by the explicit formula

of @ in §§4.4.204.4.3) and hence k € 2Z~o. Thus xsdet£(d) = Xadet 1/(d) and x_omg det £(d) =
X—2mgdet L’ (d) if p "r d.
Therefore, by Theorem and Theorem we have that for L =Ly, ptm

q(m)pm o(p, L™, m) < S(p, L, m)
)z~ TG L) [T & Bl XaaasPp?) VD" 8 Zy) (L7 D Zp)l(1 — p2)
for L = Lg, vy(m) < 1, we observe that mg remains the same for L and L and p{ f and hence
g(m)pn O, L m)A —xp(P)p™?)  _ 3(p, L",m)
—am)r /(" L)V [(L" @ Lp)(L = p~) ~ /I(L" @ Zy)Y [(L" @ Lp)|(1 —p~2)

Therefore, (1)(2) follow from §§4.4.2] (3) follows from Lemma[d.4.4} (4) follows from Lemmal[4.4.5|
U

(1) If P is superspecial or L = Ly, then

(4) Assumption as in Lemmal4.4.5, then ; more-

I

5. THE DECAY LEMMA FOR SUPERSINGULAR POINTS AND ITS PROOF IN THE HILBERT CASE

The goal of this section is to prove that special endomorphisms “decay rapidly”. More precisely,
consider a generically ordinary two-dimensional abelian scheme over F|[[t]] whose special fiber is
supersingular. We consider the lattice of special endomorphisms of the abelian scheme mod tV as N
varies, and establish bounds for the covolume of these lattices. These bounds are exactly what we
need to bound the local intersection multiplicity SpfF,[[t]] - Z(m) — see Lemma . The precise
definitions and results are in Definition [5.1.1] and Theorem [5.1.2]

Throughout this section, as in k=TF, W=W(k), K=W]|[1/p]. We focus on the behavior
of the curve C in Theorems [I] and 5| in a formal neighborhood of a supersingular point P, so
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we may let C' = Spf k[[t]] denote a generically ordinary formal curve in My which specializes to
P. As in §3.1.5 o denote both the Frobenius on K and the Frobenius on the coordinate rings
Wiz, y], W[z, y, 2]] of M p, which is the unique extension of the Frobenius action on W for which
o(x) = 2P, 0(y) = yP,0(z) = 2P. For a matrix M with entries in K[[z,y]] or K[[z,y,z]], we use
M) to denote ™ (M). Also recall we set \ € Z;Z such that o(A) = —\. We use o} to denote the
Frobenius on K{[t]] which extends o on K and sends ¢ to tP.

5.1. Statement of the Decay Lemma and the first reduction step. The map C' — M, gives
rise to a local ring homomorphism from k[[z, y]] — k[[t]] (in the Hilbert case) or k[[z,y, z]] — k[[t]]
(in the Siegel case), and we denote by z(t), y(¢), and z(¢) the images of z, y, and z respectively.
Let v; denote the t-adic valuation map on k[[t]]. Let A denote the t-adic valuation of the local
equation defining the non-ordinary locus in Corollary [3.4.2] More precisely, if P superspecial, then
A = vi(zy) in the Hilbert case and A = vy(zy + %) in the Siegel case.

Definition 5.1.1. Let w denote a special endomorphism of the p-divisible group at P (i.e., w is an
element in L' ® Z,; see Definition and Definition [2.2.9)).

(1) We say that w decays rapidly if p™w does not lift to an endomorphism modulo t4»*! for all
n € Zso, where A, = [A(p" +p" L+ +1+ %)]; here [z] denote the maximal integer y
such that y < z.

(2) We say that a Z,-submodule of L' ® Z, decays rapidly if every primitive vector in the
submodule decays rapidly.

(3) We say that w decays wvery rapidly if p"w does not lift to an endomorphism modulo
tAn—1+a"+1 for some constant a < A/2 (independent of n), for all n € Zsq, where A,
is defined in (1) and we define A_1 = [A/p].

We remark that the value a will be one of the valuations of a local coordinate equation, used to
prove Proposition below.

Theorem 5.1.2 (Decay Lemma). Assume P is superspecial. There exists a rank 3 Zy-submodule
of L' ® Z,, which decays rapidly and furthermore, there is a primitive vector in this submodule which
decays very rapidly.

Here we only state the decay lemma for a superspecial point since we do not need to work with
supergeneric points to prove Theorems [1] and |5, We refer the reader to the appendix of [MST] for
a decay lemma when P is supergeneric.

Proposition 5.1.3. Assume P is superspecial. With respect to the w;-basis in §§3.3{3.3, there
exists a rank 3 Zyp-submodule of L' @ Z, such that for every primitive w in this submodule, the
coefficients of 1 =10, ... tAQFPE4P") Gy the power series p™b € (K[[t])* (or (K[[t]])?) do not all
lie in W4 (or W3) for all n € Zso (property DR); moreover, there exist a < A/2 (independent of
n) and a primitive w in the rank 3 submodule such that the coefficients of 1,. .. tA0+TPH+p" ") tap”
in p"w € (K[[t]))* (or (K[[t]])®) do not all lie in W* (or W?) for all n € Z>q (property DvR).

We now prove the Decay Lemma assuming the above proposition.

Proof of Theorem [5.1.3 assuming Proposition[5.1.3. To ease exposition we focus on the Hilbert case
and the proof holds verbatim for the Siegel case. For m € Zxg, let S, denote Speck[t]/(t™) and
let D,, denote the p-adic completion of the PD enveloping algebra of the ideal (¢™,p) in W[[t]]. Let
tm denote the composite map S, — Spf k[[t]] — Spf k[[z,y]]. Then by [dJ95, §2.3], there exists a
functor from the category of p-divisible groups over S,, to the category Dieudonné modules over
D,,,. More precisely, a special endomorphism w0, of the p-divisible group over S;, which specializes
to w € L' ® Z, gives rise to an endomorphism of the Dieudonné module which specializes to w.
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By functoriality of Dieudonné modules, images of special endomorphisms are horizontal sections
of ¢ Leris(Dim) stable under the Frobenius action; here the connection on ¢} Leyis(Dyy,) is the pull-
back of the connection on Leis(W/[[z,y]]) by a ring homomorphism W{[z, y]] — W/[[t]] which liftﬁ
E[[z,y]] — k[[t]] given by C and the o4-linear Frobenius is given in [Mo098, §4.3.3]

The connection on Leys(W{[z,y]]) gives rise to a connection on Leis p(W) @w Kl[z,y]] D
Leris(W{[z,y]]). Let @ denote the horizontal section in Leis,p(W) ®@w K[[z,y]] extending w €
L' ® Zp C Leyis,p(W). Since the image of Wy, in ¢, Leris(Dp) is horizontal and the connection
on ¢} Leis(Dyy,) is the pull-back connection, then w,, = 5 w. Therefore, if w lifts to a special
endomorphism in Sy,, then ¢ @ € v Leris(Dr) C Leris, p(W) @w K[[t]].

The section @ is constructed in [Kis10} §1.5.5] as follows. Recall from §§3.2}{3.3 the Frobenius on
Leris(W{[z, y]]), with respect to a p-invariant basis {w;}, is given by (I + F') o o for some matrix F

o0

with entries in (z,y) K[z, y]. We define F, to be the infinite product H(l + F®), where F® is the
i=0

i-th o-twist of F' (recall o(z) = 2P, o(y) = yP). Since v(y),ve(x) > 1, the product is well-defined

and the entries of F, are power series valued in K[[t]]. The Q,-span of the columns of F, are

vectors of Leis, p(W) ® K|[[z,y]] which are Frobenius stable and horizontal. Then  is the unique

vector in the above Q,-span which specializes to w modulo (z,y); in other words, @ = Fow.

Now we are ready to reduce to the proof of the decay lemma to the following proposition. Indeed,
by Proposition with respect to {w;}, there exists a rank 3 Z,-submodule of L' ® Z,, such that
for every primitive w in this submodule, the coefficient of t*» for some k, < A(1+p+---+p"*1) in
p" does not lie in (p~1W)*; since PLris,p(W) C L' @ W, with respect to a W-basis of Leis, p(W),
the coefficient of t*» in p™b does not lie in W4, On the other hand, for any N < p(A, + 1), we
have p~ N ¢ D4, 1. Note that p(A, +1) > pA(p" +---+ 1/p) = A(p"** +--- + 1) > k,. Hence
p"w does not extend to a special endomorphism over Sy, 1. Thus, this rank 3 submodule decays
rapidly. Moreover, the existence of a vector decaying very rapidly follows by the second assertion
of Proposition via the same argument and the fact that p(A4,_1+ap”+1) > p(A(P" 1+ +
1/p) +ap™) = A(p" + -+ + 1) +ap"*!. O

By a slight abuse of terminology, if a submodule of L' ® Z, satisfies the property DR (with
respect to basis {w;}), we also say that this submodule decays rapidly; if a primitive vector satisfies
property DvR, we also say that this vector decays very rapidly. By the proof of Theorem [5.1.2]above,
property DR (resp. DvR) implies decaying (resp. very) rapidly in the sense of Definition

The rest of this section is devoted to prove Proposition for the Hilbert case and its proof
for the Siegel case is given in In the following, the split/inert case means that p is split/inert in
the real quadratic field attached to the Hilbert modular surface.

In the Hilbert case, by Corollary [3.:4.2] the non-ordinary locus is cut out by the equation zy = 0.
As in the proof of reducing Theorem to Proposition we pick a lift W{[z,y]] — W][t]]
of the local ring homomorphism k[[x,y]] — k[[t]] defined by C. Since C is generically ordinary,
we have that both z and y map to power series in W{[t]] which are non-zero mod p. Without loss
of generality, we assume that v;(z) < v;(y), and that () = t* + ... and y(t) = at® + ..., where
a € W*. We will see that the value a = v:(x) will be the one that is used in the statement of

Proposition [5.1.3]

25We may pick a lift k — W, for instance, the Teichmiiller lift and hence view (), y(t) as power series in W[t]].
26Here we refer to [Moo98| for the existence of an explicit formula of the o;-linear Frobenius, but we do not need
this explicit formula for our purpose. We will always carry out our computation using the o-linear Frobenius; see the
rest of the proof for the details.
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5.2. Decay in the split case. Notation as in the proof of Theorem [5.1.2l We first compute
o0

Fyo = [J(1 + F®), where by (8:2.2),

=0
zy  _Azy zty ZAz—y)
2p 2p 2p 2p
zy _zy zty  —(z—y)
F = 2w 2p 2\p 2p
zty  —A@ty) 0 0
2y~
r—y —\r=y
. 0 0

We remind the reader that (I 4+ F') o o = Frob.
Let Fio(1) and Fio(2) denote the top-left and top-right 2 x 2 blocks of F respectively. To
simplify the notation, defin

G:H _Qi\:|aHu:|:% _ﬂ,HZZ[% _ﬂ,

2X 2

2X 2

2 2
and let F}, F,, and F; denote the top-left, top-right, and bottom-left 2 x 2 blocks of F'. The product
oo

expansion of Frobenius Fi, = H(l + FO) allows for Fy to be expressed as an infinite sum of
i=0

finite products of o-twists of F}, F,, and F;. The following elementary lemma picks out the terms in

F (1), Fio(2) with the desired p-power on the denominators.

m1+2ma
Lemma 5.2.1. (1) Fso(1) is a sum of products of the form H Xi(ni). Here X; is either Fy,
i=0
F, or FIH m1+1 is the number of occurrences of Fy, and me is the number of occurrences of

the pair Fy, Fy and n; is a strictly increasing sequence of non-negative integers. The p-adic
m1+2me

valuation of H XZ»(M) is —(n+ 1), where n = my +ma. The analogous statement holds

=0
for Fso(2).
(2) Fiz values of mi,mgy as above. Among all the terms in the above sum, the ones with minimal
t-adic valuation only occur when n; = i, and either when Xo = X1 = ... = X\, = F}, or
Xo=Xo=...= Xom,—2 = Fy. The analogous statement holds for Fu(2).

mi mo—1
(3) (for Fxo(1)) The product HFt(Z) H Fu(m1+2i+1)Fl(m1+2l+2) (modulo terms with smaller p-
1=0 1=0
power in denominator@ equals

mi mao—1
1+1 HG(i)(xy)(i) 11 H£m1+2i+1)Hl(m1+21+2)(xl—i-p+y1+p)(m1+2i+1).
prT - ,
1=0 1=0

27These three matrices are the same; however, we use different notations to be consistent with the proof for the
Siegel case in
28The terms X; are chosen so that the product makes sense, and has the right size. Note that this would imply
that F,,, F; must occur in consecutive pairs.
29We use here that 2? + ¢” = (z 4+ y)? mod p.
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m1 ) mo—1 4 )
(4) (for Fs(2)) The product HFt(Z) H F£m1+2l+1)FI(m1+21+2) - FlmA2met ) i odulo terms
=0 =0
with smaller p-power in denominators) equals

m mo—1
1+2 l_i G(z) (.CCy)(Z) 12_[ H1(Lml+2i+1)Hl(ml+2i+2) (x1+p + y1+p)(m1+2i+1) . F£m1+2m2+1)
p" =0 =0

5.2.2. Notations. We make the following definition to further lighten the notation.
Let P(1),,,n denote the product

mi mo—1
HG(z‘) H HqsmlJrziH)Hl(mlHiH)-
i=0 i=0

Recall that A = a + b denotes the t-adic valuation v;(zy) of zy and let B denote vy (P! 4 yP+1).
Note that B > a(p + 1) and the equality holds unless a = b.

In order to prove Proposition [5.1.3] we will consider the following case-by-case analysis depending
on the relation between a and b. The following elementary lemmas will be used in the case-by-case
analysis.

Lemma 5.2.3. Let n,e, f be in Zx>y.

(1) The kernel of the 2 x 2 matriz P(1)en, modulo p is defined over F,2 but not over IF.

(2) The reductions of P(1)en and P(1)f, modulo p are not scalar multiples (over k) of each
other if e Z f mod 2. In particular, these reductions are not scalar multiples of each other
if f=e+1.

Proof. As the entries of G, H, and H; are all in W(F,2)[1/p], it follows that G®™) = @ and
Gm+1) — @) (and the analogous statements hold for H, and H;). A direct computation shows
that GGG = G, H,HVH,HY = H,HY, and HYHHEVY H = HVH,. Therefore, if n — e
is odd, then P(1), simplifies to either GG(I)Hqu(l), GG or Hqu(l); if n — e is even, P(1)cy
simplifies to G or GHQ(LI)HZ. A direct computation shows that the matrices GG, Hqu(l) and
GG(l)Hqu(l) (resp. G and GHqsl)Hl) are equal to

L[ 3D

In either case, since A € W (IF,2)\Z,, there is no non-trivial IF)-linear combination of the columns
modulo p which equals zero; this implies part (1). Furthermore, the above matrices are clearly not
scalar multiples of each other, whence part (2) follows. ]

Lemma 5.2.4. Let n,e, f be in Z>g.

(1) The kernel of the 2 x 2 matriz P(1)en—1 - H" modulo p is defined over F 2 but not IF),.

(2) The reductions of P(1)en—1 H and P(1)¢n-1 H modulo p are not scalar multiples
of each other if e Z f mod 2. In particular, these reductions are not scalar multiples of
each other if f = e+ 1.

Proof. We argue along the lines of the proof of Lemma Indeed, if n — e is odd (resp. even),
we are reduced to the cases of GG(I)Hqu(l)Hu, elelD); Hqu(l)Hu, and H,, (resp. GHI(Ll)HZHél)

and GHQ(LI)). The rest of the argument is similar. O
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We now prove Proposition [5.1.3] when p is split in the real quadratic field defining the Hilbert
modular surface. The proof is a case-by-case study in the following four cases based on the relation
of a = v(x) and b = v;(y). The idea is to pick out the term(s) with minimal ¢-adic valuation among
all the terms with the same p-power denominators given in Lemma [5.2.1] Case 4 is the generic
case and it is easy to pick out such terms so we give the proof directly. In Cases 1-3, we first state
the lemmas on the terms with minimal ¢-adic valuation and then prove the decay lemma. For the
convenience of the reader, we summarize the desired vectors which decay rapidly enough at the
beginning of each case.

Case 1: a =b. Recall that A = v(zy) = a + b = 2a.

We will prove that every vector in Spanzp{wl, wa, w; } decays rapidly, where w; = wy if the t-adic
valuation of x — y is > a, and w; = ws otherwise. Moreover, w;, i = 3,4 respectively, decays very
rapidly.

Lemma 5.2.5. (1) Among the terms appearing in Fso(1) described in Lemma with de-
nominator p" 1, the unique term with minimal t-adic valuation is

P(1)07n(3}y)1+p+“'+pn-

(2) Among the terms appearing in Foo(2) described in Lemma with denominator p" !, the
unique term with minimal t-adic valuation is

P(l)O,n—l . Fqgn) (xy)1+p+...+pn_1 )
This lemma follows directly from Lemma and the assumption that a = b.

Proof of Proposition[5.1.5 in this case. We first prove that every primitive vector w € Spanzp{wl, wa}
decays rapidly. Indeed, write w = cw; + dws, by Lemma (1) and Lemma (1), there is a
unique (non-vanishing) term in Fu(1)w with denominator 1/p"*! and minimal ¢-adic valuation
A(l+p+--- +p") given by P(1)gnlc dT (xy)™PT 7" Hence, modulo tA0+P+-+p")+1 the
horizontal section p"w = Fi (p™w) does not lie in W[t]] and hence w decays rapidly.

Secondly, let i € {3,4} be defined as above and we show that w; decays very rapidly. Note
that our definition of w; implies that the first two entries of the i** row of F have t-adic valuation
equalling a. Furthermore, by Lemma (1), P(1)gn—1-v # 0 mod p, where v is the n'* Frobenius
twist of either column of H,. Therefore, among the terms in the i** column of F, with denominator
p" 1, the term with minimal ¢-adic valuation has t-adic valuation 2a(1+p+...+p" 1) +ap™. Hence
w; decays very rapidly since a < (2a)/2 = A/2.

Finally, we show that every vector in Spaan {w1, we,w;} decays rapidly. Let w,, denote a primitive
vector in the span of w1, ws. It suffices to show that every vector which either has the form p™w, +w;
or w, + p"w; decays rapidly, where m > 0. We first prove that every vector which has the form
p"w, + w; decays rapidly where m > 0. Indeed, consider the two-dimensional vector whose entries
are the first two entries of Fi, - p™w,. The t-adic valuation of the coefficient of 1/p"! equals
2a(1+p+...+p"t™). Similarly, consider the two-dimensional vector whose entries are the first two
entries of Fl.-w;. The t-adic valuation of the coefficient of 1/p"*! equals 2a(1+p+...+p" 1) +ap™.
Regardless of the value of m, the latter quantity is always smaller than the former quantity, whence
it follows that p™w, + w decays rapidly. Now, consider a vector of the form w, + p™w;, where
m > 0. Analogous to the previous case, consider the two-dimensional vector whose entries are
the first two entries of F - w,. The t-adic valuation of the sum of all terms with denominator
p"* equals 2a(1 + p + ... + p"). Similarly, consider the two-dimensional vector whose entries
are the first two entries of F., - p™w;. The t-adic valuation of the coefficient of 1/p"*! equals
2a(14p+...+p" ™ 1) 4ap™t™. Regardless of the value of m (recall that m > 0), the latter quantity
is always greater than the former quantity, whence it follows that p™w, + w decays rapidly. ([l
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Case 2: b = p**a for some e € Z>1. We will prove that SpanZP{wl, wy, w} decays rapidly where
w is some primitive vector in Spanzp{wg, wy}. We will further prove that w decays very rapidly.

Lemma 5.2.6. (1) Among the terms appearing in Fso(1) described in Lemma with de-
nominator p" 1, the unique term with minimal t-adic valuation is

P(1)e () P47 g e

(2) Among the terms appearing in Fso(2) described in Lemma with denominator p"t1,
there are exactly two terms with minimal t-adic valuation, and they are

B et - —etl +e—2
P(L)eot - F{TemD (qy) 0oy e AR g

Proof. In the following, we will prove part (1); part (2) will follow by an identical argument.

Note that the t-adic valuation of all the entries of F'(1) is a + b, and the t-adic valuation of the
entries of Fy, and Fj is a . Let k,l be in Z>¢ such that k 4+ =n + 1. Consider the following terms
of F(1) with denominator exactly p"*!:

Xy = F(1)- F)W . p)E=0 . gk pt) - p2i=2) pler2i=1)

Similar to Lemma [5.2.1(2), we observe that among all the terms of Fi (1) with denominator
exactly p"T! given in Lemma |5.2.1|1), for each other term X not listed above, there exists at least
one X (as k and [ vary over all non-negative integers constrained by k + [ = n + 1) such that
v (Xp 1) < v4(X). Therefore, to prove (1), it suffices to show that v, (X} ;) with k =n —e+ 1 and
[ = e is less than v;(X} ;) with any other choice of k, [.

Since b = ap®® and k +1 = n + 1, then f(k) = v(Xp,) = a ((1 —|—p2e)p::11 + pQ(n;k_ﬂ;l)*l k),
and we need to prove that K = n — e + 1 minimizes this expression as k ranges over Z N [0,n + 1].
Note that if we allow k to take all real values in the interval [0, 4 1], a direct computation shows

that f is convex (i.e., f”(k) > 0). Therefore, it suffices to show that f(n —e+ 1) < f(n —e) and
f(n—e+1) < f(n —e+2). These claims can be verified directly and hence we prove (1). O

Proof of Proposition|5.1.5 in this case. We first prove that Spanzp{wl, way} decays rapidly. Indeed,

let w’ be a primitive vector in Spany {wi,ws}. Lemm(l) implies that P(1)c, - w' mod p is

non-zero. This fact taken in conjunction with Lemma [5.2.6{(1) yields that w’ decays rapidly.
Secondly, we prove that there exists a primitive vector w € Spang, {ws, w4} (independent of n)

which decays very rapidly. Set Y ,, := P(l)e,n,l'FénJre*l) (xy)1+p+"'+pn7671xpn7€+pn76+l+“'+pn+672+
P(1)et1n-1 - ") (zy) PP T g T T P T T which s the sum of the two terms
with minimal ¢-adic valuation listed in Lemma (2) The sum Y, is non-zero modulo p by
Lemma (2) Furthermore, up to Frobenius twists and multiplication by scalars, the matrix
Y., mod p is independent of n. Therefore, there exists a vector w € Spanzp{wg,w4} which is
independent of n and does not lie in the kernel of Y, , mod p. The very rapid decay of w follows
from this observation and Lemma (2)

Finally, a valuation-theoretic argument analogous to Case 1 shows that every primitive vector in

Spanzp{wl, way, w} decays rapidly, thereby establishing Proposition in this case. O
Case 3: b = p>t!

where w is some primitive vector in Spang {w1, w2} and that Spany {ws, w4} decays very rapidly.

Lemma 5.2.7. (1) Among the terms appearing in Fso(2) described in Lemma with de-
nominator p" 1, the unique term with minimal t-adic valuation is

a for some e € Z>p. We will prove that SpanZP{wg,w4,w} decays rapidly

P(1)ep-1- Hzgn+e) (902/)1+p+"'+pn7671xP"*e+p"*e+1+...+p"+e.
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(2) Among the terms appearing in Fso(1) described in Lemma with denominator p"t1,
there are exactly two terms with minimal t-adic valuation, and they are

1 n—e—1 n—e n—e+1 n+e—1
P(l)e,n(iﬂy) +p+...+p zP +p +...+p , and

P(1)€+1 n($y)1+P+...+pn_e—2$pn—e—1+pn—e+m+pn+e‘
Proof. The proof of this lemma is identical to that of Lemma [5.2.6] so we omit the details. 0

Proof of Proposition[5.1.5 in this case. Analogous to Case 2, Lemma and Lemma [5.2.7(2) im-
ply the existence of a primitive w € Spanzp{wl, wa} that decays rapidly; and by Lemma |5.2.4(1)
and Lemma |5.2.7(1), Spany, {ws, w4} decays very rapidly. Finally, a valuation-theoretic argument
shows that every primitive vector in Spanzp{w, w3, wy } decays rapidly. ]

Case 4: b # ap® for any value of e.

Proof of Proposition[5.1.5. As this is the easiest case, we will be content with merely sketching
a proof. Analogous to Lemmas [5.2.6] and [5.2.7] it is easy to see that in this case there are
unique terms with minimal t-adic valuations with denominator p"*1 occurring in both F.(1) and
F(2). Tt follows that every primitive vector in Spaan {w1,wa} decays rapidly and every vector
in Spanzp{wg,w4} decays very rapidly. Finally, a valuation theoretic argument similar to Case
1 shows that every vector in the span of wi,ws, w3, ws does decay rapidly, finishing the proof of

Proposition [5.1.3] O

5.3. Decay in the inert case. Notation as in the proof of Theorem [5.1.2] and §3.2.1] Recall that
P is superspecial and we will show that The Z,-span of wy, w2, w3 decays rapidly, and the vector
ws decays very rapidly.

Proof of Proposition[5.1.3. The proof goes along the same lines as the proof of the decay lemma for

split Hilbert modular varieties, so we will be content with just outlining the salient points.
oo

We first compute Fi, = H(l +F(i)), where by (3.2.1)), with respect to the basis {w1, wa, w3, w4},

i=0
F = (Ft Fu>, where

F 0
zy (=1 A 1 x Y -y Ay
Fi= 2 <—1/)\ 1> Fu = 2p (ac/)\ y/)\> = <—a: )\a:> '
Recall that the non-ordinary locus is cut out by the equation xy = 0 and a = vi(x),b = v(y) € Z>o.

Similar to Lemma [5.2.1] it is easy to see that the top-left 2 x 2 block of Fi, with p-adic valuation
—(n + 1) has a term of the form FtFt(l) e Ft(n), and this term is the unique term with minimal
t-adic valuation (equalling (a 4+ b)(1 4+ p+ ...p")). Similarly, the top-right 2 x 2 block of Fi, with
p-adic valuation —(n + 1) has a term of the form FtFt(l) e Ft(”‘l)Fén), and this term is the unique
term with minimal ¢-adic valuation (equaling (a + b)(1 +p+...p" 1) + ap™).

Arguments identical to Lemma[5.2.3]and Lemma[5.2.4] yield that every primitive vector in the Z,
span of wy,wy (and in the span of ws) decays rapidly (very rapidly, in the case of ws). Further, as
the t-adic valuation of FtFt(l) . Ft(m) is different from the ¢-adic valuation of FtFt(l) . .Ft(nfl)Fqsn)
for every pair of integers n, m, it follows that Spanzp {w1,we,ws} also decays rapidly. The argument

is elaborated on in the last paragraph of the proof for Case 1 in §5.2] O
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6. PROOF OF THE DECAY LEMMA IN THE SIEGEL CASE

In this section, we prove Proposition and hence Theorem (for superspecial points) in
the Siegel case. We refer the reader to the appendix for a decay lemma for supergeneric points. The
main idea of the proof is similar to that of the Hilbert case in §f]

6.1. Preparation of the proof. We follow the notation in k=TF, W=W(k), K=WI[1/pl,
A€ Z;2 such that o(\) = —\, and C = Spf k[[t]] a generically ordinary formal curve in My, which
specializes to a superspecial point P. This gives rise to a local ring homomorphism k[[z, y, z|]] — k[[t]]
and we pick a lift W{[z,y, z]] — W][t]] (still a ring homomorphism), and we denote by z(t), y(t)
and z(t) the images of x,y, z respectively.

Let a, b, ¢ denote the t-adic valuations of x(t), y(t) and z(t) respectively. We adopt the convention
that a, b, c may take on the value co if the corresponding power series is 0. As before, v; denotes
the t-adic valuation map on K{[t]] or k[[t]].

Also recall that o denotes both the Frobenius on K and the Frobenius on the coordinate rings
Wz, y, z]] with o(x) = 2P, 0(y) = yP,0(z) = 2P; and for a matrix M with entries in K{[z,y, z]],
M™) denotes o™ (M).

The preparation lemmas of the Siegel case are very similar to that of the split Hilbert case in the
beginning of §5.2

o0
6.1.1. Notations. Recall that F, = H(l + F9), where by (3.3.1)), with respect to the basis
=0
{wh... ,w5}7 - 2 ) 2 . ; L
%(iﬂy‘ng) —m(ﬂfyﬂL?) p 2p 2w
A 1
5(3794';717) —%(xy—kf;) % % %
F= Ay —y 0 0 0
Az - 0 0 0
A
i 5 — 5 0o 0 0

where e = \2 € Z, . We denote by Fy, F,, and Fj the top-left 2 x 2 block, the top-right 2 x 3 block,
and the bottom-left 3 x 2 block of F' respectively. Define

10—l 101 1 A -l
G:[a a],ﬂu:[zf\ 20 2f\],andHl: N o1
7 7 2 2 3 N -1

Let Foo(1) and Fii(2) denote the top-left 2 x 2 block and top-right 2 x 3 of Fi respectively.

By Corollary the non-ordinary locus is cut out by the equation zy + 22/(4¢) = 0. Let
ntA and pt? denote the leading terms of xy + 22/(4€) and xy? + xPy + 2'7P/(2¢) respectively. In
particular, A = v;(xy + 22/(4€)), and B = vy(zy? + 2Py + 2117 /(2¢)).

As in the Hilbert case, the product expansion of Frobenius Fio, = [[32,(1 + F@)) allows for Fi,
to be expressed as an infinite sum of finite products of o-twists of Fi, F,, and F;. The following
lemma picks out the terms in Fio(1), Foo(2) with the desired p-power denominators, analogous to
Lemma [5.2.7] in the Hilbert case.

m1+2ma
Lemma 6.1.2. (1) Foo(1) is a sum of products of the form H Xi(ni). Here, X; is either Fy,
i=0
F, or Flm m1 + 1 is the number of occurrences of Fy, and my is the number of occurrences

30The terms X; are chosen so that the product makes sense, and has the right size. Note that this would imply
that F,,, F; must occur in consecutive pairs.
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of the pair F,, Fy, and {ni}§110+2m2 18 a strictly increasing sequence of non-negative integers.
mi1+2ma
The p-adic valuation of H XZ-(T”) is —(n + 1), where n = my + mg. The analogous
=0
statement holds for Fx(2).
(2) Fiz values of mi,mgy as above. Among all the terms in the above sum, the ones with minimal

t-adic valuation only occur when n; =1 for all i, and either when Xo = X1 = ... X;m, = Fi,
or Xo=Xo=...= Xop,—2=F,. The analogous statement holds for F(2).
mi mo—1
(3) (for Fso(1)) The product HFt(Z) H F£m1+1+2i)ﬁ}(ml+22+2) equals
=0 =0
1 m1 mo—1 1 )
— HG(z’) (zy + 22/2)(1‘) H §H£m1+2i+1)Hl(m1+22+2) (zy? + 2Py + Zp+1)(m1+2i+1).
p 1=0 =0
mi ] mo—1 ' )
(4) (for Fso(2)) The product HFt(l) H F£m1+2z+1)F}(m1+2z+2) . F£m1+2m2+1) equals
=0 =0
1 my mo—1 1 )
— H G(i)(xy + Z2/2)(i) H §H£m1+2i+1)Hl(m1+21+2)(xyp T aPy + Zp+1)(m1+2i+1) . Fl(Lm1+2m2+1)
p . "
=0 i=0
m1 mo—1 1 )
6.1.3. Notation. Let P(1),,, » denote the product H e H §H£m1+2’+1)Hl(m1+2Z+2).
1=0 =0

The following will play a similar role as Lemma [5.2.3]

Lemma 6.1.4. The kernel of P(1)4 51y mod p does not contain any non-zero vector defined over
Fy,. Moreover, if f is odd (resp. even), the kernel of P(1)g f4q mod p does not contain the vector

5 e [ 47

Proof. We prove the assertions by explicit computation as in Lemmas and Note that

L pom) grem 1) _ -1 {1 A‘l] L preme1) gom) _ 1 [—1 )\—1]
3 )

2 |A 1 |’37¢ ! 21 A -1
mo—1 A )
Both these matrices satisfy the relation X? = —X and hence H Hqsml”’“)Hl(mlHHQ) equals,
i=0

up to a multiple of +1, one of these matrices depending on the parity of m;. Similarly, we have

11 . 1 11 A 1
L (@2m) - L. @2m+1) -
G G =5 |:)\ 1 :| , G G = |:)\ 1 :| .

—1 )1
Therefore, P(1)4, t+4 equals i% [}\ )\1 ] if f is odd, and equals i% [/1\ j\l

lemma then follows immediately. O

] if f is even. The

For fixed n, among the terms listed in Lemma with denominator p™*!, the number of terms
with equal minimal ¢-adic valuation depends on certain numerical relation between A and B. We
then perform the following case-by-case analysis in §§6.2}[6.4] to prove the Decay Lemma. The first
case, while technically the easiest, holds the main ideas in general.
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6.2. Case 1: A< B.
Note that if a + b # 2¢, or more generally, if the leading terms of xy and 22/(4¢) do not cancel,
then A < B.

Proof of Proposition|5.1.9 in this case. For the ease of exposition, we assume that a < b < ¢. Note
that this forces 2a < A. Even though the statement of Proposition [5.1.3is not symmetric in a, b, ¢,
an identical argument as the one below suffices to deal with all the other cases.

We will prove that Spany, {w1, wa, w3} decays rapidly. For a primitive vector w € Spanzp{wl, wa, w3},
write w = agw, + qqws, where w,, is a primitive vector in Spaan{wl, wa}, and oy, oy € Zy. Since
w is primitive, then either o, or o; is a p-adic unit. We may assume that o, is a unit — the other
case is entirely analogous to this one. Suppose that the p-adic valuation of «; is m > 0.

Consider the terms appearing in Fy.(1) described in Lemma with denominator p"*1. As
A < B, the one with minimal t-adic valuation is P(1)g,(xy + 22/(4€)) P+ +P" "and this is the
unique term with this property. Similarly, consider the terms appearing in Fyo(2) with denomi-
nator p"t1*™.  As A < B, the unique term whose first column has minimal ¢-adic valuation is
P(D)osm—t - Fs" ™ (ay + 22/ (4€)) HHototem

Let P denote the 2 x 3 matrix whose first two columns equal P(1),(zy+22/(4€))1FPH++P" (part

of Fis (1)), and whose last column is the first column of P(1)g y4m—1 Pt (zy+22/ (4e))LHpt-tpm T
(part of Fo(2)). Since 1 < a < A, then for any m € Z>o, we have A(1 + ... +p") # A1 +... +
p" T 4 ap™ ™. Therefore, regardless of the value of m, the t-adic valuation of entries of the first
two columns of P are different from the t-adic valuation of the last column of P.

To prove that w decays rapidly, it suffices to prove that among the monomials in Pw with p-
adic valuation equalling —(n + 1), there exists a monomial with ¢t-adic valuation < A(1 +...p").
By the proof of Proposition in Case 1 in this in turn reduces to proving the following
statement: if m > 1, then w, mod p is not in the kernel of P(1)g, mod p; and if m = 0, the vector

o

1
establishing the decay of the rank 3 submodule Spany_ {w1, wa, w3}.

Proposition [5.1.3]in this case follows from the observation that since 2a < A, then ws decays very

rapidly. O

] mod p is not in the kernel of P(1) -1 mod p. Both statements follow from Lemma|6.1.4

6.3. Case 2: A> B,a #b.

Note that if A > B, then a+b = 2¢ (as the only way this can happen is if xy has the same t-adic
valuation as 22/(4€)). We may therefore assume without loss of generality that a < b. It follows
then that a < ¢ < b. Within this case, we will need to consider the following two subcases.

Subcase (2.1)e: B(1+p**71) < A(1+p) < B(1+p?**™) for some e € Z>;. In this subcase, we will
prove that Spaan{wl, wa, w; } decays rapidly, where i € {3,4,5} will be chosen depending on the
values of a,b and c.

The following lemma, in conjunction with Lemma implies (as in Case 1) that Spany {w1, w2}
decays rapidly. It can be proved by the same argument as in the proof of Lemma (1), SO we
omit its proof.

Lemma 6.3.1. Among the terms appearing in Foo(1) described in Lemma with denominator
p" L, the unique term with minimal t-adic valuation is

P(D)en(my + 22/ (4€)) I (gyP 4 gy 4 21FP /(2¢))P" T T T

The t-adic valuation of this term is A(1 4 ...+ p" ¢) + B(p" ¢t 4 pn=et3 4 4 pntel),
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The following lemmas will be used to show that one of ws, w4, ws also decays rapidly. These
lemmas imply that among the terms appearing in Fi(2) with denominator p"*!, for at least one
of the columns of this matrix, there exists a unique term with minimum t-adic valuation.

Lemma 6.3.2. Given g € Z>1,n € Z>q, consider the multiset consisting of numbers of the form
A+ .. +p" I DY+ B +pn T2 p ) L gp | as f waries over Z.0[0,n). If the
minimal number in this multiset occurs more than once, then it must occur for consecutive values

of f.

Proof. For any choice of f, let us denote the expression by v(f). It suffices to prove the following
statement: for f; < fo — 1, if v(f1) = v(f2), then v(f2) > v(fa —1). To that end, suppose that
v(f1) = v(fz2). Then A(L+p+...p~~ =1 = B~ —1)(p/2t 1 +1)/(p* — 1) + gp2 (p> — p/).

To prove v(fz) > v(f2 — 1), note that p~ =2 (v(fp) — v(fo — 1)) = B> +1)/(p+ 1) +
gp?f2=1(p — 1) — A. Multiplying this by (1 +p+ ...+ p/2=/1) and applying the relation of A and
B above, we have

L+p+... +phh-t
pn_fQ

fo—f1 _ 2fa—1 _  fit+fa
(0(f2)—v(fo-1)) = 2 1p)2(p_1 pht)

which is positive since fo > f1 + 1. The lemma follows. O

_i_g(pr*fl_1)(p2f2*1_pf1+f2)’

Lemma 6.3.3. There are at most two numbers g in the set {a,b,c} such that there exists an integer
f (f is allowed to depend on the choice of g ) with A(1+...p"~ T~V +B(p"—+pr=I+24 pntf=2)4
gp"t = A+ . p )+ BT o pr Lt 8y 4 gt/ LB

Proof. Suppose there existed choices of f € Zx> for all three choices of g. Let f1, fa, f3 be the choices
for f. Then, by the proof of Lemma we have that ap?/1~Y(p—1) = A— B(1 +p*'~1)/(1+p),
and similarly bp?2~1(p—1) = A— B(1+p*2~1 /(1 +p), cp*s 1 (p—1) = A-BA+p*~1)/(1+p).
Substituting these expressions in the equality a + b = 2¢ yields the equation

(720 2 A = !
Since A > B > p+ 1, we have A # B/(p + 1) and hence p' =21 4 p!=2f2 — 2p1=2fs — (. Since
f1, f2, f3 € Z>1, we must have f; = fo = f3 and hence a = b = ¢, which is a contradiction. O

Proof of Proposition[5.1.3 in this case. Let h € {a,b,c} be such that there is no f which satisfies
the hypothesis of Lemma @ (indeed, the lemma guarantees the existence of such an h).

We first show the existence of a rank 3 submodule which decays rapidly. Without loss of generality,
we may assume that h = a and we will prove that Spang, {w1,we, w3} decays rapidly (if h =b or c,

the identical proof will show sufficient decay, with wy or ws taking the place of ws).

As in Case 1, Lemmas 6.1.4 and [6.3.1] to [6.3.3) imply that Span; {w:, w2} and Spang, {ws} both
decay rapidly. Therefore, it suffices to show that a,w,+asws decays rapidly, where w,, is a primitive
vector in the span of wq, w2, and either o, or a3 in Zj, is a p-adic unit.

By Lemma the t-adic valuation of the coefficient of 1/p" ! of Foowy, is d(n) = A(1+ ...+
p"¢) 4+ B(ph et 4 pret3 4 4 prterl). Similarly, the t-adic valuation of the coefficient of
1/pm™ttof Fo -wg is e(m) = A1 +...+p™ /=) + B(pm~/ +pm /T2 + .4+ pmH/=2) 4 ap™t for
some f € ZN[0,n]. Asin Case 1, it suffices to prove that d(n) is never equal to ¢(m), regardless of
the values of n and m.

Let c(f,m) = A(L+...4+p™ =) 4 B(pm I 4pm=F+2 4 4 pmt =2y L apm+f’ for any value
of f/ <'m. By the definition of f, ¢(m) = ¢(f,m), and f' = f minimizes the value of ¢(f’, m).

3INote that if the equation holds, then f is independent of n, since the equation is actually independent of n; see
the proof of Lemma
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If n > m, since a < A, then d(n) > c(e,m) > c(f, ) = ¢(m), as required. On the other hand, if
m > n, we have c(m) > A(1+ ...+ p™ /=) + B(p™/ + pm=/+2 4+ . 4 p™t/=2) > d(n), where
the last inequality follows from Lemma [6.33]

Finally, we treat the question of very rapid decay. If we may take h = a or h = ¢, the very rapid
decay of ws or ws is established by the inequality 2a < 2¢ < A. Otherwise, h must be b and for
both a, ¢, there exist fi, f3 satisfying the equation in Lemma [6.3.3] Since a # ¢, then f; # f3 and
at least one f; > 2. By the proof of Lemma @ we have A — B(14p*i~1)/(p+1) > 0 and hence
A > TB > 2b. Thus, wy decays very rapidly. O

Subcase (2.2)c: A(1+ p) = B(1 + p**71) for some e € Z>;. In this subcase, we will prove that
Spaan{wg, wy, ws } decays rapidly. We first need the following lemma.

Lemma 6.3.4. Among the terms appearing in Fyo(2) described in Lemma with denominator
p" L, the unique term with minimal t-adic valuation is

P(l)e—l,n—lFélTL‘Feil) (.’Ey + 22/(46))(1+,,,+pn—5)(xyp + xpy + Z1+p/(26))pn—e+1+pn—e+3+.“+pn+e—3'

The t-adic valuation of the ith column term is A(1 + ...+ p" =€) + B(p" ¢t 4+ pn=et3 4 .. +
pteT3) + gp el where g is either a,b or ¢ depending on whether i is 1,2 or 3.

Proof. It suffices to prove that choice of f = e minimizes the expression A(1 +p 4 ... +p" /) +
B(p I+ 4 pn= 3 pt73) o gpn 1 where f is allowed to range between 0 and n. This
can be verified by direct calculation. O

Proof of Proposition in this case. It follows from Lemmas [6.1.4] and [6.3.4] that w3, w4 and ws
individually decay rapidly, and that w3 decays very rapidly. In order to show that Spany {ws, w4, ws}
decays rapidly, it suffices to show that the t-adic valuations of the coefficients 1/p"*1, 1/p™+1 1 /pnt!
of Foo(w3), Foo(ws), Fioo(ws) are always distinct, regardless of the values of [, m,n. By Lemma[6.3.4]
these quantities equal A(1+p+...4+p!=¢) +B(p! =T 4 pl=et3 4 4 plTe3) fap! Tl AL +p+
. ._f_pm—e) _|_B(pm—e+1 _|_pm—e+3+' . ‘_}_pm-‘y—e—?)) _|_bpm+e—1 and A(l +p+.. ‘_f_pn—e) +B(pn—e+l 4
pn—e+3 4 +pn+e—3) 4 Cpn—ﬁ-e—l.
As a, b, c are all strictly less than B, these quantities will all be different unless two of [, m,n are
equal. In this case, the quantities still differ, because a, b, ¢ are all distinct integers by assumption.
Therefore, SpanZP{wg, wy, w5} decays rapidly. O

6.4. Case 3: A > B and a = b. In this case, a = b = ¢. We may assume that z(t) = t%,
y(t) = Bt + 32,11 Bit", and z(t) = t*+ D2, 1 7it'. Since A > B, we have 4+ /(4e) = 0. We
will break the proof of the Decay Lemma into two subcases and the following lemma will be used
in both cases.

Lemma 6.4.1. Suppose that vy € F,. Let a’ > a denote the smallest integer such that either B # 0
or vg # 0. Then both By and 74 are non-zero and moreover, B > (p — 1)a + 2a’.

Proof. Since v € F, and 8 +~?/(4€) = 0, then € F,. Therefore, in k[[t]],
zy+2°/(4e) = D (Bi+ 70/ + (4)TH Yyttt

i>a’ i,j>a’

oy + Py + 2P /(2€) = Y (B + v/ O+ (B + /)4 (26)7 Y inPtP,
i>a’ i>a’ t,j>a’
If one of B, and 7, were zero, then A = a’ + a, whereas B > a' + pa; this contradicts with the
assumption that A > B. Hence, we obtain the first assertion of the lemma.
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Let a” > o denote the smallest integer such that 3; + v7v;/(2¢) # 0. Then by applying the
Frobenius action, we have %, +~7%,/(2¢) # 0, and B > min{(p + 1)a’,a” + pa}. If B> (p+1)d/,
then the second assertion of the lemma follows.

Therefore, we assume that B = a” + pa < (p + 1)a’. The expansion of 2y + 22/(4¢) above has
a non-zero term of the form (B + Y741 /(2€))t%T%". As A > B, the term (Byn + yyar/(2€))t0+”
has to be cancelled out by a term of the form (4¢)~* Ditjmatal ig>a iyt Therefore, it follows

that 2a’ < a + a” and hence B=a" +pa > (p — 1)a + 2d'. O

Case (3.1)e: B(1+p**™ 1) < (p+1)A < B(1 + p***Y) for some e € Z>1.

The same argument as in Case 2.1 suffices to prove Proposition [5.1.3] unless A = B
2e 26—1)

a(p* —p
Lemma 6.4.2. Among the terms appearing in Fo(2) described in Lemma with denominator
p" L there are exactly two with minimal t-adic valuation. They are:

Pt tF§ D oy 22 (1) 0" oy 4 ay 4 2190 (e

P(l)e,nlewL(Ln—i_e) (-Ty + Z2/(46))(1+“_+p"*€*1)(xyp + xpy T Zl+p/(26))pn—e+pnfe+2+m+pn+e—2‘
Both the terms have t-adic valuation A(14...+p" =€)+ B(p" et ypn—et3 4 | fpnte=3) fqpntet,

Proof. This lemma follows from a similar argument as Lemma [5.2.6(2) and the proofs of Lem-
mas and so we omit the details. [l

Proof of Proposition|5.1.5 in this case. We will show that either w3 or ws decays very rapidly. There

are two terms with minimal ¢-adic valuation as in Lemma appearing in the coefficient of 1/p"*1
of Fo(ws3) and Fo(ws). A direct computation yields that the sum of these two terms equals by
1

2pn+1

1+p2€—1
1+p +

. Therefore, we will assume that this is the case.

2e—1

P(1)on—ec1(zy + 22/ (4€)) HPHFP" TN (X (0)u(t)™ + Y (Hu(t)” )

)

where
e u(t) stands for either z(t) or z(t), according to whether we work with ws or ws,
o X(t)=pF,- FV . pF® . FPD (A1) 1] and
o Y(t) =pF; -quﬁl) -Fl(2) » _qugze—:s) -Fl(26_2) JAHEe=D 1]T. The superscript T stands for

transpose.
The decay of ws and ws is determined by the t-adic valuation of the entries of X (t)u(t)P™ +
Y ()u(t)?*"". For the rest of the proof, it suffices to focus on the second row of X (t),Y (t) and

hence we view them as functions. We prove the very rapid decay of ws or ws in two cases.
(1) Both 8,v € F,,.

In this case, we claim that the t-adic valuation of X (£)u(t)P™ + Y ()u(t)?* " is at most
A+B(p+p3+.. . 4p*3)+a'p*~! for at least one choice of u(t) between x(t) and z(t), where
a’ is defined in Lemma This claim implies that the ¢-adic valuation of the coefficient of
1/p" L of Fi(ws3) or Fio(ws) is at most A(1+4. . .+p" =€)+ B(pn—etlqpn—et3  4prte=3)4
a'p"te=1. This is sufficient to prove the rapid decay of wz or ws. Indeed, this quantity is
strictly less than A(14 ...+ p" /) + B(p" /T 4 p" /3 4 4+ p"t/73) 4 ap™t/ =1 for all
values of f # e,e+ 1 by Lemma and hence the sum of the two terms in Lemma [6.4.2]
gives the minimal ¢-adic valuation term of the coefficient of 1/p"*! in Fi(w3) or Fao(ws).
Moreover, the bounds on a’ in Lemma, proves that ws or ws decays very rapidly.

We now prove the claim by contradiction. Suppose that X (¢)a(t)P™ et

2e

+ Y (t)x(t)P has
t-adic valuation greater than A + B(p + p3 + ... + p*73) + a’p?*~L. Since z(t) = yz(t) +

Yt + ... with v € Fp,var # 0 and we have assumed that A = B 1+f’_i;_1 +a(p® —p*1), it
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follows that there is a unique monomial in X (¢)z(¢)?* + Y (t)z(t)P"  with t-adic valuation
A+ B(p+p®+...+p?*3) +a'p?*~1, thereby establishing the claim for u(t) = z(t).
(2) Either 8 or 7 is not in I,

In this case, as 3 + 7?/(4¢) = 0, we may assume that v ¢ F,. We again consider the
function X (¢)u(t)?* + Y (£)u(t)?* . Suppose that the leading coefficient of X (¢) is yux and
that of Y(¢) is uy. Then, the terms of minimal equal t-adic valuations cancel out in the
case when u(t) = z(t) only if ux + py = 0, otherwise by the same idea as in (1), ws decays
very rapidly. Therefore, we may assume that ux + py = 0. However in this case, if we pick
u(t) = z(t), then the terms terms with minimal equal t-adic valuations cancel out only if
HXsze JFMYVI)%?1 = 0, which is not possible as ’yp2e # 7p2€71. In other words, we show that
in this case, ws decays very rapidly.

As in Case 2.1, Spaan{wl,wg} decays rapidly, and also every vector that can be written as
Wy + ajw; with a; € Z; (1 = 3,5 depending on whether w3 or ws decays) decays very rapidly.
The latter statement follows by the same valuation-theoretic argument as in the proof of Case 2.1,
which also proves that Spanzp {wy,we,w;} decays rapidly. U

Case (3.2)c : A(1+p) = B(1+p?**71) for some e € Z>1.

Lemma 6.4.3. Among the terms appearing in Foo(1) described in Lemma with denominator
p" L, there are exactly two with minimal t-adic valuation. They are:

P(l)&n(.ry _|_ 22/(46))1+"'+pn76 (aj‘yp + :L‘py + Z1+p/(26))pnfeJrl+pnfe+3+m+pn+efl7

P(D) ety + 2%/ (4€) " (@ 4 aPy + 2P /(2€))P
Both these terms have t-adic valuation A(1 + ...+ p"=¢) + B(pn—¢tt fpr—et3 4 prte-l),

n75+2+pn76+4+.”+pn+672

As we have seen many lemmas of this flavor, we omit the proof.

This lemma shows that there are two terms with the same t-adic valuation, which could there-
fore lead to cancellation, and such phenomenon prevents us from proving that Spanzp{wl,wg}
decays rapidly. Nevertheless, the following lemma shows that there is at least a saturated rank one
submodule of Spaan{wl, wo} which decays rapidly.

Lemma 6.4.4. There is a vector wg in Spanzp{wl,wg} which decays rapidly.

Proof. By Lemma and the proof of Lemma|[6.1.4] the coefficient (viewed as a power series in t)
of the sum of the two terms with minimal t-adic valuation among the terms with denominator p™+!
-1 -1

is of the form gy My + po Mo, for some p-adic units p;, where { My, Ma} = { [i\ )\1 } ) B\ 3\1 ] }

As M; mod p and Ms mod p are not scalar multiples of each other, the linear combination pq M7+
p2Ms mod p is non-zero. Therefore, there exists a vector wy defined over F,, which does not lie in
ker(pu1 My + paMs mod p). Choosing wy € Spaan{wl, wa} which lifts wy finishes the proof of this
lemma. O

We are now ready to prove the last remaining case of Proposition m (and also the Decay
Lemma Theorem [5.1.2)).

Proof of Proposition[5.1.5 We will first prove that there is a rank 2 submodule of Spanzp {ws, wy, ws}
which decays rapidly. For ease of notation, let F,, denote the matrix t%Fu evaluated at ¢t = 0.

Let K denote ker(P(l)n,Le,lFiu(nH*l) mod p) N Spaan{wg,w4,w5}. If dimp, K < 1, then
lifting two linearly independent [F,-vectors ¢ K gives the desired rank 2 submodule. Therefore, we
assume that dimp, K = 2 (note that since P(l)n_lye_lF_u(nJre_l)
dimp, K # 3). It follows that 3,y € ).

mod p is not the zero matrix, so
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We will prove that Spaan{wg, wy } decays rapidly. First, since K ﬂSpaan{wg, wy}t = Spaan{ Bws—
wy}, then any primitive vector in Spang, {ws, w4} which modulo p is not a multiple of fws — wy
must decay rapidly. Now we consider Sws — ws. Up to constants, the coefficient of the 1/p"t!
part of the first entry of Fio(Bws — wy) equals Bg At Fp" = )FB(m T pn =2 4pn =9 palpn et
Lemma establishes the required decay as follows: firstly, as ' < B < A, we have that the
vector Sws — wy decays rapidly. Secondly, the exact bound for ¢’ in Lemma implies (as in
the proof in Case 2.1) that Spanzp{wg, wy} decays rapidly. Finally, the very rapid decay of ws,wy
follows from the bound 2a¢’ < B < A.

Then, Proposition follows by an argument analogous to that in Case 2.1 with Lemma [6.4.4

O

7. THE SETUP OF THE MAIN PROOFS

In this section, we provide the general setup of the proofs of Theorems[I]and [} As mentioned in
the proofs consist of the following parts:

(1) The sum of the local contributions at supersingular points is at most 11/12 of the global
contribution; and
(2) the local contribution from non-supersingular points is of smaller magnitude.

Proposition makes (1) precise, and is stated in We will prove Proposition and

) in §8 for the Hilbert case and in §9| for the Siegel case. The idea involved in the statement of
Proposition is that we break the global intersection number C.Z(m) into pieces, one for each
non-ordinary point on C, by using the relation between the Hasse invariant and the Hodge line
bundle in §7:I] We also relate the local intersection multiplicity at a point to a lattice-point count.

7.1. The global contribution and its decomposition. Recall that in we list the set T’
of m € Z~¢ for which we will study C.Z(m) to prove our main theorems. In order to study the
asymptotic behavior, we define Thy = {m € T | m < M} for M € Z~y. Moreover, in § we
will construct a subset Sp; C Tjs which consists of bad values of m that we want to rule out.
The total global intersection number that we will consider is > p o C.Z(m). We sum over
m instead of working with individual m because geometry-of-numbers techniques which we use to
bound the local intersection multiplicity (for cumulative m) do not work for individual m. The
following lemma gives the asymptotics of the global term using results in 4]

Lemma 7.1.1. Assume that #Sy = O(M'~¢) = O(#T,; ) for some € > 0 if L = Ly and that
#Sv = o(#Ty) if L = Lg. Then

Yo CZm)=wC) D dam) ol D> la(m))).

meTh—Snm meTr—Sum meTr—Snm
Moreover, we have, for Theorem (2), Y omeTy—sy C-Z(m) < = M?; for Theorem 1(1) and Remark
> meTy -5, C-Z(m) =< M?/log M; for Theorem Y meTy 5y C- /log M.

Proof. By §4.3.1 and the assumption on Sys, we have > ¢ \qL(m)| = O(ZmETM lgr.(m)|). Then
the assertions follow from §4.3.1] Lemma [£.3:2] Lemma Mamd the prime number theorem. [J

For each non-ordinary point P on C N Z(m), we introduce the notion of global intersection
number gp(m) at P using the following (well-known) relation between the non-ordinary locus and
the divisor class of the Hodge bundle. Note that in the proof, we will only use the notion gp(m)
for a supersingular point.

Lemma 7.1.2. The non-ordinary locus in My, and M}ff 1s cut out by a Hasse-invariant H, which
is a section of WPt and hence the number of non-ordinary points (counted with multiplicity) on C
is given by (p — 1)(C.w).
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See for instance |Box15| §§1.4-1.5, Theorem 6.2.3] for an explanation of this fact (and we use the
fact that the ordinary Newton stratum coincides with the ordinary Ekedahl-Oort stratum). For the
last assertion in the lemma, we remark that when L = Ly, the boundary ./\/lfcOlr \ M, is ordinary and
hence the intersection of C’ (in with the non-ordinary locus is the same as the intersection
of C with the non-ordinary locus.

Definition 7.1.3. Let ¢ be the local coordinate at P (i.e., Cp = Spfk[[t]]) and let A = v,(H). We
define gp(m) = ;37lqr(m)].

Note that by the above lemmas, we have the following decomposition

Y gm= Y Jamiwo) = Y czmyrol Y lanm)|@.C).

PeC non-ord mET]w—S]w mETM—S]w mETM—SM mET]u—SM

7.2. The lattices and the outline of the proof. Let B — Spfk[[t]] denote the generically
ordinary abelian surface given by pulling back the universal family over My, to Cp = Spf k[[t]] for
some point P € C. Recall the notion of special endomorphisms from §2.2 and by a slight abuse
of terminology, when L = Ly, we will also refer to a special quasi-endomorphism with certain
integrality condition in §2.2.11] as a special endomorphism. For any n € Zsg, the lattice is special
endomorphisms of B mod t" is a sublattice of B mod ¢, which is equipped with a positive definite
quadratic form Q' (see Definition [2.3.1).

Lemma 7.2.1. The local intersection multiplicity of C.Z(m) at P, denoted by Ilp(m), equals

Z #{ Special endomorphisms s of B mod t" with Q'(s) = m}.

n=1

The lemma follows directly from the moduli interpretation of Z(m). Note that as B generically
has no special endomorphisms, this infinite sum can actually be be truncated at some finite stage
(which will depend on m).

Remark 7.2.2. Given B, the lattices of special endomorphisms of B mod t" have the same rank for
all n € Z~g. Indeed, the work of de Jong, Moonen and Kisin cited in the proof of Theorem [5.1.2
applies to any P and for any special endomorphism w of B mod ¢, we have the parallel exten-
sion w € (K[[t]])* (or (K[[t]])®), which is invariant under the Frobenius on Le;s(W{[t]]). By de
Jong’s theory (here we need the fully faithfulness of the Dieudonné functor, see [dJ95, Cor. 2.4.9]),
whether w extends over modt™ depends on the p-powers in the denominators of the coefficients of
w. Therefore, given n, there exists N such that pNw extends over modt™ and hence these lattices
tensor Zg, ¢ # p are all isomorphic and in particular, the rank of the lattices is independent of n.

Motivated by the Decay Lemma Theorem [5.1.2] we define the following lattices for supersingular
points (note that the notation is slightly different from that in the introduction and we will use the
notation in this section for the rest of the paper).

7.2.3. Assume P is superspecial and recall that A = v;(H), where H is the Hasse invariant and we
use the constants a and A, = [A(p" +p" L+ +1+ %)] as in Definition

Define Lo, Lp1,n € Zso, and Ly 2,n € Z>q to be the lattices of special endomorphisms of B
mod t, mod t4»-1t1 and mod tA»-1+"+1 regpectively. As in Definition we pick a lattice
L;w- C L' such that L, ; C L;m- and for ¢ # p, L;m- ®7Zy =L ®Zy and L;m- ® Ly = Lp; ® Zp. In
particular, Lj; = L' and by Theorem we have L) | : L) o] > pand [L': L, ;] > p*".

Since we assume that C' does not admit any global special endomorphisms, we have N> (L, ; =
{0}. By Remark , the difference between L;w- and L, ; is the same as that between Lg; and
L', we also have N2 oL, ; = {0}.
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Corollary 7.2.4. If P is superspecial, then

tn(in) < A2y o)+ G roafon) + Z A () + raa(m)).

where T, ;(m) = #{s € L, ; | Q'(s) = m}.
Proof. By Lemma [7.2.1] and §7.2.3] we have that for P superspecial

Ilp(m) < (A1 +a)ro1(m) + (Ag — A_1 —a)rg2(m) + Z (ap"rp1(m) + (Ay — Ap—1 — ap™)rp2(m))
=A_1(roa(m) —ro2(m +a2p (rna(m) — rp2(m +ZA (rn2(m) — rpy12(m))
A ~1
< 5(7”0,1( m) —ro2(m Zp Tn,1(m) — rp2(m +Z s L p ) (Tn2(m) = Tag,2(m)),

where the last equality follows from the facts that r, 1 (m) > rn’g(m), Tn2(m) > rpq1,2(m) and a <
AJ2, A, < A(p™+---+p~1). We then obtain the assertion in (1) by rearranging the summations. [J

The main task of the next two sections is to prove that

Proposition 7.2.5. Given C, there exists Sys satisfying the assumption in Lemma such that
for every supersingular point P on C, we have

S m<t X gl Y gp(m).

meTr—Sym meTr—Sum meTr —Sym

Once we have this proposition, we will prove that the local contribution from non-supersingular
points have smaller order of magnitude, whence we conclude that there are infinitely many non-
supersingular points on C' which lie in the desired special divisors.

7.3. Ordinary points. In order to bound [p(m), we need the following decay lemma for ordinary
points, which follows directly from Serre-Tate theory. We thank Keerthi Madapusi Pera for pointing
this out to us. Let B — Spf k[[t]] denote the abelian surface with ordinary reduction given by pulling

back the universal family over My, to Cp = Spf k[[t]] for an ordinary point P.

Lemma 7.3.1. Let A be an integer such that w is not a special endomorphism for the p-divisible
group B[p™®] mod tA*1. Then, pw is not a special endomorphism for B[p>°] mod tPA+!,

Proof. Note that an endomorphism of B[p®>] mod " is special if and only if its reduction on
B[p™] mod ¢ is special. Hence we only need to consider the deformation of endomorphisms. The
statement now follows directly from [Kat81, Theorem 2.1] O

Lemma 7.3.2. Let Ly, L,,n € Z~q be the lattices of special endomorphisms of B mod t and B mod
AP T+ respectively where A € Z~q. Then
(1) for any A, we have vk L, <2 if L = Ly and vky L, < 3 if L = Lg;
(2) there exist a constant A and a Zy-lattice A (depending on P) with tkz, A <1 when L = Ly
and rkz,, A <2 when L = Lg such that L, C (A + "L ® Zyp) N Lg.

In particular, if rky L, = 3 when L = Lg or rky L, = 2 when L = Ly, then (disc Ln)l/2 > pn L

Proof. Note that L, C L, ® Z, C Lo ® Zp = Leyis, p(W)#=1, where Leyis p is the fiber of the F-
crystal L¢ys defined in Definition and Definition and ¢ is the Frobenius action. Since
P is ordinary, then ¢ acts on Leyis, p(WW) with slope —1,1,0,0 (Hilbert case) or —1,1,0,0,0 (Siegel
case) and hence (1) follows.
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Let A’ be the Zy-lattice of special endomorphisms of B[p™]. Since Cp is not contained in any
special divisorﬂ B[p™] admits at most a rank 2 (resp. rank 1) module of special endomorphisms
when L = Lg (resp. L = Lg); indeed, if rkz, A" = 3 (resp. 2), then A’ ® Q, = Lo ® Qp, and thus
the B admits special endomorphisms.

We now mimic the proof of [ST20, Thm. 4.1.1] using Lemmal7.3.1|instead of [ST20} Lem. 4.1.2(2)].
Let A C Lo ® Zjp be the saturation of A’ in Lo ® Zy; then there exists Ag C Lo ® Z, such that
Ly ®Zy, =A@ Ag. Let A, denote (L, ® Z,, + A) N Ag; then L, ® Z, + A = A @ A,,. It suffices to
show that there exists A such that A, C pA,_1 (and this implies that A, C p" tAy).

By definition, none of the elements in Ay extend to Spf k[[t]], then there exists A such that
Ay C pAg. For n > 2, assume for contradiction that there exists a € A, \pA,—1. If & € pA,,_2, then
write & = pf with 8 € A,_». Since p = a € A,,, then by Lemma[7.3.1] 8 € A,,—1, which contradicts
with the assumption that a ¢ pA,,_1. Thus we have a ¢ pA,,_9; by iterating the argument, we have
a ¢ pAp. This is a contradiction since o € A,, C A1 C pAy. O

8. PROOF OF THEOREM

In this section, we use the results proved in §§4}f5] to prove Proposition [7.2.5]in the case of Hilbert
modular surfaces. This, in conjunction with Lemma yields Theorem [1](2).

8.1. The bad set Sj; and the local intersection multiplicities at non-supersingular points.
We first construct the set Syy; the following lemma only concerns ordinary and superspecial points
because we only need to consider such P for the proof of Theorem [I[2). Indeed, if P € Z(m),
then P is either ordinary or supersingular and if P € Z(m),p {f m, then by §8.4.2(1), P is not
supergeneric. Therefore for P € Z(m), m € T, P is either superspecial or ordinary.

Lemma 8.1.1. Notation as in 7.1[7.2.3 and Lemma [7.3.3 Given a finite set {P;} C (C'N
(Umez-oZ(m)))(k), there exists Spr C Tar with #Sy = O(M™¢) for some 0 < € < 1/6 such

that for all i,
(1) if P; is superspecial, then {s € Ly, | 0 # Q'(s) < M,Q'(s) ¢ Su} = 0 where N =
Hlog, M;
(2) if P; is ordinary, then {s € Ly | 0 # Q'(s) < M,Q'(s) ¢ Su} = 0 where N = elog, M.

Proof. Since the union of finitely many sets with cardinality O(M*~¢) still has cardinality to be
O(M'~¢), it suffices to prove the assertion for each P; separately. We follow the idea of the proof
of [ST20, Thm. 4.3.3].

If P; is superspecial, we take Sy = {m € T)y | 3s € Ly, with Q'(s) = m} and then it satisfies
(1) by definition. Note that #Sy < #{s € Liy, | Q'(s) < M}. Then by a geometry-of-numbers
argument (see for instance |[ST20, Lem. 4.2.1]) and Theorem we have

#{s € Liyy | Q'(s) < M} = O(M?/p*N + M2 )p* + M/p" + M'2 [dy),
where dp is the first successive minimum of L’N71 and dy — oo as N — oo because ﬁLEm1 = {0}.
Then #Sy = O(M'~€) by the definition of N.

If P; is ordinary, then rk Ly = 2 by Lemma and the fact that rk Ly = rk Lg is even by the
Tate conjecture. Similar to the superspecial case, we take Sy = {m € Ty | 3s € Ly with Q’'(s) =
m} and then by Lemma [7.3.2) #Sy = O(M/pN + M2 /dy) = O(M'~¢). O
Lemma 8.1.2. Notation as in Lemma|8.1.1. For an ordinary point P = P; € C(k), we have

S 1ol = O — (3%
meTn—Su

32This is the assumption of Theoreml) and Theorem and for Theorem 2), we may assume this as otherwise,
the conclusion is automatic.
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Proof. By Lemmas [7.2.1], [7.3.2| and [8.1.1],
N
Z lp(m) = Z A(ro(m)—i—Z(pn—p” D (m <A2p Z

meTn—Sm meTn—Sm n=1 =
where r,(m) = #{s € L, | Q(s) = m}. By a geometry-of-numbers argument and Lemma
we have E%:l rn(m) = O(M/p™ + M'/?/d,), where d,, is the first successive minimum of L,, and
the implicit constant here only depends on p. Thus > r 5 Ip(m) = O(NM + pN M2 =
O(M*'e), O
8.2. Proof of Proposition in the Hilbert case. We follow the notation in Lemma [8.1.1

and P = P; superspecial. We break } . o [p(m) into two parts and are treated in the
following lemmas.

Lemma 8.2.1. Notation as in Corollary [7.2.4} For any e > 0, there exists ¢ € Zsqo which only
depends on P and € such that

> ZA§”< 1(m) +7p,2(m)) < eM? + o(M?).

meTr—Sy n=c

Proof. By Lemma rni(m) =0forn >N = i log, M and hence

> P amytrasm) =Y Zwml+m DS Al

meTy—Sp n=c meTy—Sp n=c n=cm=1

since rp1(m) > ry2(m).
By a geometry-of-numbers argument, 2%21 Tr1(m) < co(M2/p>+M3/2 [p* + M [pr+M/?/d,,),
where ¢ is an absolute constant and d,, is the first successive minimum of L;%l. Hence

M N N
D AP™ Y raa(m) < AepM? > 1/pP 4> ApTeo(MP2/p + M/p" + M2 /dy,).

Note that Acy Zf:fzc < Acy(p*(1 — p~2))~L, which goes to 0 as ¢ — oo and the second term is

N
O(M3/2) + O((log M)M) + O(M/?) Y " p" = O(M?/?),

Thus we obtain the desired estimate. OJ

Lemma 8.2.2. Notation as in Corollary[7.2-4 For any ¢ € Zso, we have

Z (wro,l(m)Jrglro,z(m)-i-z Agn( 1(m)+7rn2(m))) < a Z gp(m)+o(M?),

meThn —Sm n=1 meTy—Sn

where a < 11/12 is an absolute constant.

Proof. Let 0, ; denote the theta series attached to the lattice L’ We decompose 0,,; = E,; +

Gr.i, where Gy, ; is a cusp form and E,, ; is an Eisenstein series as in and follow the proof of
Lemma m

Let B = 2820 By 1+ S Eoo+ 55y 25 (Bna +Enp), G = 252G 1+ 4 Goa+ 35 25 (G +
Ghn2).

Note that G is a weight 2 cusp form and by Deligne’s Weil bound, we have that its m-th
Fourier coefficient gg(m) = O(m!/?*¢). Hence the total contribution from the cusp form G is

ZmeTM—SM gc(m) = O(M3/2+6)'
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Let ¢ i(m) and ¢(m) denote the m-th Fourier coefficient of E,, ; and E. Recall that for p { m for
m € Thyr; by Lemma and the fact that |L'V/L'| = p?, we have for any n,i

Gn,i(m) 2p q0,1(m) 1
’ < , and — < .
lg(m)r] = (p> = D[ : L7, ] lg(m)L] — p—1
Recall from §7.2.3|that [L": L}, ] > p* and [L' : L], ] > p*"*; therefore,

= ' T : p 4D < + ]
lqz(m)] 2p p—1 2(p*—1)p Z 2 p2— 1( ) 1

2p p?—1

Take oo = %)2 + p2p_ 7, which is < 11/12 when p > 5. We have the left hand side equals
aA 3/2+€
o (gm)+gam) < > ——la(m)| + O(M=),
meTv—Sm meTn—Sm p
which gives the desired estimate by the definition of gp(m). O

Proof of Proposition[7.2.5 when L = Ly. The set Sy is constructed by Lemma [B.1.1] and taking
{P;} to contain all of (the ﬁnitely many) supersingular points in C'N (Upy, Z(m )) T hen the desired

estimate follows from Lemma and Lemma “ by taking ¢ such that e < ﬁ —a. O

Proof of Theorem |1} I( 2). If C is contained in Z(m) with m being a perfect square, then by applying
suitable Hecke translates, we may assume that C is contained in the product of modular curves and
then the assertion is a special case of |[CO06, Proposition 7.3]. Now for the rest of the proof, we
may assume that C' is contained in some Hilbert modular surface and we will use Z(m) to denote
special divisors on the Hilbert modular surface. Note that any point on Z(m) corresponds to an
abelian surface isogenous to the self-product of an elliptic curve. Thus we assume for contradiction
that there are only finitely many points on C' N (UerZ(m)) and take {P;} to be this finite set
and apply Lemma to construct Sys. Since all Z(m) are compact, it makes sense to consider
C.Z(m). We deduce a contradiction by Lemma Proposition [7.2.5] and Lemma O

9. Proors oF THEOREM [I|(1) AND THEOREM [5]

In this section, we prove all of Theorem [I] and Theorem [f] ‘- consists of results pertaining to
squares represented by positive definite quadratic formsﬁ In we prove Proposition _ 5| by
combining results proved in §§4] [6] and 0.1} Finally, we deal Wlth the intersection multiplicities at
non-supersingular points in to finish the proof of the main theorem.

We now set up notation that we will use for For superspecial points P, recall that we defined
L;”- in §7.2 3l Let I(n);,i = 1,...,5 denote the i*" successive minimum of the quadratic form Q'
restricted to L/ ;. Let P, denote a rank two sublattice of Lj, ; with minimal dlscrlmlnant Note that
l(n)1l(n)y < dn, Where d,, denotes the root discriminant of P,. Moreover, since N7 oL;, ; = {0}, we

have I(n); — oo as n — oo.

9.1. Preparation. We need the following results to prove Proposition[7.2.5] Although Lemma[9.1.2]
is stated for the rank 5 lattices L;, ;, the proof does not use the assumption on rank and hence it
holds for the lattices L, for ordlnary points (notation as in Lemma |7 when rky, Lo = 3; see §9.3]
for details.

Lemma 9.1.1. We have I[(n)1l(n)s - --1(n); > pt=2" fori > 3.

33Recall that we must prove our curve intersects special divisors of the form Z (D@Q) at infinitely many points.
This involved dealing with squares represented by quadratic forms, and hence the Geometry-of-numbers arguments
are more involved than in the Hilbert case.
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Proof. Note that if we have two lattices L1 D Lg, then the successive minima of Lo give upper
bounds of that of L;. Thus we may enlarge L;z,i and prove the assertion for the enlarged lattices.
We enlarge L;, ; as follows. For £ # p, we still require L;, ; ® Zy = L' ® Zy; at p, let Ag denote the
rank 3 submodule of L' ® Z, which decays rapidly in the Decay Lemma (Theorem , then we
enlarge L, | such that Lj | ® Z, = p"Ag + L' @ Z,.
For the enlarged L;, 1, we have

l(n)J <<pn7] = 11"'757 l(n)ll(n)Ql(n)5 xp3n’
where the implied constants only depend on the lattice L'. Thus the assertion follows. ]

Lemma 9.1.2. Suppose that d2M = o(p*™) as n — oo. Then for any vector v € L/n,l such that
Q(v) < M, we have that v € P, for n>> 1. In particular, if d, < p™?2, then for any vector v € L;z,l

such that Q'(v) < p"~€ for some absolute constant € > 0, we have that v € P, for n > 1. (All the
implicit constants here are independent of n, M.)

Proof. Recall that {(n); - l(n)2 < dy,. Thus, by Lemma [9.1.1] we have
I(n)1l(n)2l(n)s > p",  U(n)s > p"/dn.

In other words, for any vector v linearly independent to P,, we have Q'(v) > I(n)3 > p?"/d?. Then
the first assertion follows. The second assertion follows directly from the first assertion by taking
M — pnfﬁ. D

Proposition 9.1.3. Fiz D € Z~o. Recall ry, ;(m) from Corollary|7.2.4. Then we have the following
two bounds:
M2te M3/ 2+e .
(1) Z Tn71(m):OE( o + o +M1+).
m=D¢?2 m<M/ prime
/ / /
(2) Z rn1(m) and Z rn1(£) are both O (M:n2 +4 e il M3 M 1 My %1) 2)
m=D{2 m<M [/ prime (<ML prime

Proof. In the proof, for the simplicity of notation, we write Lj,,r,,(m) for L;, 1,751(m).
We note that (2) is a trivial upper bound from a geometry-of-numbers argument. Indeed, both

M
Z rn(m) and Z rn(¢) are no greater than Z rn(m); we then obtain the
m=D{¢2 m<M,/ prime <M £ prime m=1

desired bound by [ST20, Lem. 4.2.1] and Lemma9.1.1]

Now we prove (1). We may assume that there exists a vector vy € L{, such that Q'(vy) = D£3 for
some prime £y. Otherwise r,(m) = 0 for all m = D¢? for any prime £. Let e; denote a primitive
vector in L/, such that e; = pFvg for some k € Z>¢. By definition, p" L) C L/, and thus p"vy € L.,.
Therefore k < n. Since e; is primitive in L], we extend it into a basis {ej, e2,...e5} of L. Let L/,
denote the sublattice of L spanned by f] := vg = e1/p¥, ea,...e5; since L', is a sublattice of L,
then Q'[7, is still Z-valued. We have Q'(f]) = D@3 =:N. Let f; = 2N’ and let f; = e; — f1-[f1, e
for ¢ > 1. Since [f{,e;] € Z for i > 2, we then have fi, fo...fs € (2N)~ 1L’n with [f;, f1]' = 0 for
{ > 2 and SpanZ{flvf?af3 f47f5} > L/

Let Q’ denote the restriction of Q' ® Q to SpanZ{fg, f3, f4, f5} C L ® Q. By the definition of f;,

we have @' is a (2N)~1Z-valued quadratic form. Let l( )1s--- ,l( ), denote the successive minima

of Spany{ fa, f3, fa, f5}. Since (2N)~'L/, = (2N)7IL! + (2N)"1p~*Zey, then I(n), - Z(An/)l >
p(ifl)"*k > p("*Q)" for ¢ > 2 (note that k¥ < n and N is absorbed in the implicit constant as N is
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independent of n, k). Then the standard geometry-of-numbers argument gives
N M2 MB/2
Vo= #ly € Spang (o, fo, fu, f5} | @ 0) < M) = O( g + =2+ M),

On the other hand, on Spany{fi, fo, f3, f1, 5}, for v =2 f1 + y2fo + - - + y5f5, we have Q'(v) =
ﬁaﬂ + a(vy), where vy, = yafa + - +ysf5. If Q' (v) = DI? < M, then @(vy) <Q'(v) <M and
4DOQ (vy) = (2Dlol — x)(2Dlyl + ). For a given v, with Q’(v,) < M, there are at most O(M¢)
ways to factor 4D3Q’(v,) into two factors (recall that N = D£3 is independent of n, M, and hence

gets absorbed in the implicit constant) and thus there are at most O.(M€) possible x such that for
v = xf1 + vy, we have Q'(v) = D¢? < M for some prime £. Since L!, C Spang{fi, fa, f3, f1, f5},

then Z rn(m) = O(MFY,,), which gives the (1) by the above bound for Y,. O

m=D¢2 m<M,{ prime

Proposition 9.1.4. Fiz D € Z~q. The proportion of primes { < (M/D)Y? such that D¢? is
represented by the quadratic form restricted to P, goes to zero as n — 00.

Proof. Let R, denote the imaginary quadratic ring with discriminant —d?. The class group of R,
is in bijection with equivalence classes of binary quadratic forms of discriminant —d?. Let a denote
the ideal corresponding to Q' restricted to P,. Recall that I(n); — oo as n — oo. Thus for n > 1,
we have that a is not equivalent to any ideal whose norm is D, i.e., (P,, Q") does not represent D.
Note that it suffices to deal with primes ¢ which are relatively prime to Dd2.

The correspondence between ideal classes and binary quadratic forms yields that the integer
D?? is represented by (P,, Q') if and only if there exists an invertible ideal b equivalent to a with
Nm b = D¢2. This implies that £ = cjcy (i.e. the prime ¢ splits in R,,), and that b = 0¢? or b = dc2,
where 9 is some ideal such that Nmd = D (the case b = ¢j¢g is ruled out by the above discussion
that a and therefore b is not equivalent to any ideal whose norm is D). In other words, @’ restricted
to P, represents D2 if and only if there exist some ideals ¢,d such that Nm¢ = /,Nmd = D and
¢?0 is equivalent to a.

Let C denote the equivalence classes of ideals ¢ such that ¢? is equivalent to ad~! for some 0 with
Nm©d = D. Since D is fixed, then C' is a finite (independent of n) union of torsors for the 2-torsion
of the class group of R,, when C' is nonempty. By Genus theory, the cardinality of the two-torsion
of the class group of R,, is bounded above by the number of divisors of d2; this is classical and dates
back to Gauss in the case when R,, is the maximal order in its field of fractions, and can be deduced
for non-maximal orders from |[Neu99, Proposition 12.9]. Thus, #C = O(d5,).

We finish the proof in two cases.

(1) Ifd,, < (log M)?, it follows by [TZ18|, Corollary 1.3] that the proportion of primes represented
by the quadratic form associated to any ideal class ¢ is 1/d,, because d,, < the class number
of R,. Thus the total proportion of £ such that Df? is representable is #C/d,, = O(d5 '),
which goes to 0 as d,, — o0.

(2) If d,, > (log M)?, let f. denote the binary quadratic form associated to ¢. Then as in the
proof of [ST20, Claim 3.1.9|, we have

#{0 | £ < (M/D)"? representable by f.} < #{m | m < (M/D)"? representable by f.} = O(M"?/d,+M"*).
Thus by the above discussion,
#{0|Fv € Py, Q' (v) = DE? < M} = (#C)O(MY? /d,, + MY*) = o(M'/? /1og M),
which finishes the proof. O

The following result gives a bound of Fourier coefficients of the cuspidal part of our theta series

in terms of the discriminant of the quadratic lattice.
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Proposition 9.1.5 (Duke, Waibel). Let S be a fized finite set of primes. Let 6 be the theta series
attached to a positive definite quadratic lattice of rank 5 with discriminant Dy such that all prime
factors of Dg lie in S. Write 0 = E + G, where E is an Eisenstein series and G is a cusp form.
Then, there exist absolutely bounded positive constants Ny and C such that for all m € T (the set
T defined in , the m-th Fourier coefficient qg(m) of G satisfies that qg(m) < C’Dévom1+1/4.

By Remark we have that disc L/n,i are independent of n,i away from p and hence all the
theta series attached to these lattices satisfy the assumption on Dy.

An analogous result of Proposition was proved by Duke in the case of ternary quadratic
forms. The main steps of his proof carry through in this case too, so we will be content with just

sketching his proof.

Proof. The proof of [Duk05, Lem. 1] and the discussion on |[Duk05, p.40] apply to rank 5 quadratic
forms (with suitable modification of the power of Dy) and we have that the Petersson norm of G
satisfies ||G|| = O(Dév 1) for some absolute constant Ny (here we use the fact that the level Ny of G
is O(Dg)

Thus to obtain a bound for gg(m), we only need to bound the Fourier coefficients a;(m) for an
orthonormal basis of the space of cusp forms of weight 5/2 and level Ny (with respect to certain
quadratic character determined by 6). Now we apply |[Wail8, Theorem 1|. Using the notation
there, we have that if m = ¢, then t = ;v = 1L,w = 1,(m,Ny) = O(1); if m = D¢? then
t=D,v=<1wx/{(m,Ny) = O(1). Thus |a;(m)| <, m%+ED§ for m = £ and |a;(m)| < m%+ED5,
which gives the desired bound once we combine with the above estimate of ||G||. O

9.2. Proof of Proposition in the Siegel case. Notation as in and Corollary
For a supersingular point P with non-zero local intersection number, we will first prove that it must
be superspecial in the settings of Theorems [I] and [5] and Remark [4] when p splits in F' and then
estimate » .7 g Tni(m) with respect to different ranges of n.

Definition 9.2.1. Given absolute constants €, e; > 0 (we will choose €, €1 in the proof of Propo-
sition [7.2.5)), the ranges of n are defined as follows:

n is small if n < ¢ log, M.

n is in the lower medium range if €y log, M <n < %logp M

n is in the upper medium range if %logp M <n<(1+e€)log, M.
n is large if n > (1 + €1) log, M.

Proof Proposz'tionfor Theorem (1) and Remark with p split in F'. For m € Ty, we have
m = D{? where D is a non-zero quadratic residue mod p. Then by §4.4.3(2), any supergeneric
point does not lie on Z(m). Hence we will only consider P superspecial.

Recall from Lemma that for any Sys such that #Sy = o(#7Tw), we have

Z C.Z(m) =< Z gp(m) =< M?(log M)~L.

meTh —Sm meTv—Sm

We will first prove that there exists Sy such that #Sy = o(#7Tx) and the contribution from
n > eglog, M is o(M?/log M).
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The lower medium range. By Proposition [0.1.3(1),

(3 log,, M] Ay (3 log,, M]
> Y Srummrmam)< Y > Apraa(m)
meTn—Sm n=[eg log,, M m=D2,m<M n=[eg log, M|
(3 log,, M]
— A Z pnOe(M2+€/p2n +M3/2+€/pn + Ml—i—e)
n=[eg log,, M|

= O (M*Fe0 4 M3/2 ¢ log M + M7/*F¢),

which is o(M?/log M) once we take € < min{eg, 1/4}.
The upper medium range. We treat this part in two ways according to whether d,, < M 1/8
where ng = [3 log, M].
(1) If dpy > M 1/8 then we bound this part using geometry-of-numbers.
Since L,y C L, for all n > ng, then by definition, d, > dp, > M8, By Proposi-
tion (2), we have that

[(1+e€1) log, M] Ap? [(1+e€1) log, M]
> Y. G (rmalm) Fraam) <Y S A raa(m)
meTn—Sm n=[%log, M] n=[3log, M] m=D(*m<M

— O((M + M5/4 + M3/2 + M15/8+e1 + M3/2+61)10gM)7

which is o(M?/log M) once we take ¢; < 1/8.

(2) If d,,, < M8, we control this part by putting m’s in this range into Syy.
More precisely, consider Ry := {m € Ty | Jv € L], ;,Q'(v) = m}. By our assumption,
d%OM < M®/* = o(p*™) and by Lemma for M > 1, if m € Ry, then m is represented
by Q' |p,,, which is a binary quadratic form. Then by Proposition (note that ng — oo

as M — 00), #Ry = o(M'/?/log M) = o(#Th). Thus we may choose Sy such that
Sy DO Ry and then

[(14e€1) log,, M] Apn

Z Z 5 (rn1(m) 4+ r2(m)) = 0.

meTn—Sm n=[3log, M

The large n’s. Let ng = [(1+€1)log, M and let Ry, :={m € Ty | v € L}, ;,Q'(v) = m}. We
will show that #R), = o(M'/?/log M) and thus we may choose Sy such that Sy D R}, and then

Z Z Agn (Tn,l(m) + ’f’mg(m)) =0.

meTp—Sm n=[(1+€1) log,, M)

We bound the size of R, case by case depending on the size of dp,,(ng)1.

e Case (1): d,, < M'/?*< for some absolute constant ey < €;/2.
Then d,, < MY < pro/2 and M < p™—€. By Lemma m, for M > 1, it m € R,
then m is represented by Q' |p, . By Proposition |9_14|, #R), = o(M'/?/log M).

e Case (2): dn, > MY?Te for all o < €;/2 and I(ng); > M€ for some absolute constant
ez > 0.
We have # R}, < #{v € L}, 1 | Q' (v) € Tas}, which is O(MY/2=e1 4 MY/2= 24 MV/2/I(ng)1) =
o(M*'/? /1og M) by Proposition 2).
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e Case (3) dn, > MY?%< for some €5 < €1/2 and I(ng); < M€ for some €3 < €.
Then l(no)g = dy,/l(no)1 > M'/2. In other words, any vector v € L/, no,1 Which is not a
scalar multiple of the chosen vector vy of the minimum length has @/, (v) < I(ng)3 > M.
Therefore, any m € R/, has to be represented by the rank 1 quadratic form spanned by vyg.
As M — oo, we have l(n0)1 — 00. Thus once M is large enough such that I(ng)} > D,
then this rank 1 quadratic form would represent at most one element in T3; and hence

#R) = o(#Tr).

In conclusion, taking Sy; = Ry U Ry, we have #Sy; = o(#Ty) and

[e.e]

) > A;,n (rn1(m) + rpa(m)) = o(M?/log M).

meTn—Sn n=[eo log, M|

The small n’s. We follow the notation and the idea of the proof in Lemma [8.2.2
We enlarge L/ n1 as in the proof of Lemma also let w be the vector which decays very
rapidly in the Decay Lemma for buperbpe(nal pornts then we enlarge L/ n,2 such that an ® Ly =

L1 ®%Zy+ p" "1 Zyw. Then disc L, ™ with the implicit constant only depending on P. Note
that Corollary - 4] still holds with the new definitions of L;m
Let
log, M log, M
Ap+2) &M 4 Ap+2) cology M)

E:

A A P
E —F E E G = G —G — (G Gpno).
01+ Eo2+ nzl (En1+En2), 01+ Goat ; 5 (Gna+Gr2)

2p 2p

Note that here the Eisenstein series £ and the cusp form G depend on M.

Since disc L, ; = O(p¥eolor My = O(M6<0) for n < € log, M, then by Proposition the m-th
Fourier coeflicient

[eo log M]
qG(m) < (MGeO)Nom5/4 Z Pt < M(6N0+1)60m5/4
n=0

and 30 cr g qa(m) = O (M (ENo+Deo+7/4) — (M2 /log M) once we take ey < (24Ng + 4)~ !

The computation for the Eisenstein part is the same as in the proof of Lemma [8.2.2] More
precisely, since p { m, by Lemma [4.4.6/(1)(3), we have

m Alp+2 1 A _ g 1 A
q(m) < (p ). + 4 2p + Z (p3n 4 p73n-ly < .
lqL(m)] 2p p-1 2(p*—1)p P —1 12 p-1

Thus we finish the proof by putting all parts together and using Corollary O

Proof of Proposition [7.2.3 for Theorem[5 Since every m € T)s in this case is a non-zero quadratic
residue modp, hence by (2), all supersingular points on Z(m) are superspecial. The idea of
the proof is similar to the case of Theorem (1] (1)

By Lemma we have > o o gp(m) = M5/ (log M)~'. We construct Sy; by large n.
More precisely, we set Sy = {m € Tyy | Jv € L}, 1,Q'(v) = m}, where ng = [(1 + €1) log, M].
Then

#Su < #{ve Ll 1| Q) < M}=O0M2/p*o+M?/p* 0+ M2 p"0+ M [dn,+MY?) = O(M'*+M/d,,),

which is o(M/log M) = o(#T)) if there exists an absolute constant € > 0 such that d,, > M¢€.
If not, then by Lemma we have that for M > 1, all m € Sy representable by the binary
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quadratic form Q’| Py - Since d,,, — 00, the density of primes representable by Q| P, 8oes to zero,
i.e., we still have #Sy = o(#Tas). With this choice of Sys, we have

Z Z Aé)” (rn,1(m) 4 rp2(m)) = 0.

meTn—Sy n=[(1+¢€1) log, M|

For n in the medium range,

[(1+61)10gp M) Apn |'(1+51)10gp M)
> > 5 (1 (m) + 7p2(m)) < Yo Y raalm) = o(M?/log M)
meTn—Sy n=[eglog, M| n=[eo log,, M m<M

since >, pyTn1(m) = O(M®2 /pP™ + M? [p?™ + M?/?/p* + M). The estimate for small n’s is
exactly as in the case for Theorem 1) above and thus we finish the proof. U

9.3. Contribution from non-supersingular points and conclusions. To finish the proof, we
only need to show that >, . ¢ Ip(m) for non-supersingular points P are o(} .7, s, C-Z(m)),

which is o(M?/log M) for Theorem (1) and Remark 4| and is o(M®/2/log M) for Theorem . We
still use the notation in Lemma for ordinary points.

Recall that an abelian surface is ordinary, almost ordinary (i.e., its Newton polygon has slopes
0,1/2,1), or supersingular.

Lemma 9.3.1. If P is almost ordinary or if P is ordinary with rkyz Ly # 3, then

Y dpm)=o( Y C.Z(m)).

meTn—Sm meTh—Snm

Proof. By the classification of endomorphism rings of char p abelian surfaces (see for instance
[Tat71, Thm. 1]), we see that if the abelian surface corresponding to P has almost ordinary reduction,
then its lattice of special endomorphisms has rank at most 1. On the other hand, if P is ordinary,
then rkyz Lo is odd and hence rky Lo = 1. In both cases, let a,z? to denote the quadratic form with
one variable given by @’ restricted to the lattice of special endomorphisms of the abelian surface
mod t". Since the lattice mod t"*! is a sublattice of the one mod ", we have a, | apt1-

Since C does not have any global special endomorphisms, we have a,, — 0o and hence a,z? does
not represent any element in Tyy C {D¢? | £ prime } or Ty; C {¢| £ prime } once n >> 1 (with then
implicit constant only depending on P).

Thus ZmeTM—SM lp(m) = ZmeTM—SM O(M1/2) = O(ZmeTM—SM C.Z(m)). O

Now it only remains to treat the case when P is ordinary and rkz Lo = 3. We first construct Sy,
for such P.

Lemma 9.3.2. Given M, set ng = [(1+ €o)log, M| and Sy = {m € Tas | v € Ly, with Q'(v) =
m}. Then #Sy = o(#Tw).

Proof. By a geometry-of-numbers argument and Lemma [7.3.2] we have
#Sn < {v € Ly | Q' (v) < M} = O(MP? [p" + M/bpy + M [ay,),

where ay,, is the minimal length of a non-zero vector in Ly, and by, is the minimal root discriminant
of a rank 2 sublattice in L,,. Since C' does not have any global special endomorphisms, we have
Ungyybny, — 00 as M — oo. Fix 0 < €1 < €p/4. We prove the desired estimate by a case-by-case
discussion based on the size of ay,, by, -

(1) any < M and by, > M'/?t2¢ Then we conclude as in the proof Proposition for
Theorem [1(1) for large n case (3). More precisely all v € Ly, with Q'(v) < M lie in a rank
1 sublattice of L,, and thus the total number of such v is o(#Ts).
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(2) any > M and by, > M'/?*2¢ Then
#Sar = O(M32Jp0 4 M /bp, + M2 Ja,,) = O(M'?*=) = o(M*/?/log M).

(3) by, < MY2t24 Then po/?2 = M/?+<0/2 > b, and by Lemma m (note the proof of
this lemma applies to this case), for M > 1, if m € Sy, then m is represented by the
binary quadratic form given by restricting @' to the rank 2 sublattice in L,, with minimal
discriminant(=b2 ). Since b, — 00, then we conclude by Propositionfor Theorem (1)
and Remark [f]and by the fact that the density of primes represented by such quadratic forms
goes to 0 for Theorem [5] O

Now we estimate the total local contribution at an ordinary point with rkz Ly = 3.

Proposition 9.3.3. Assume P is ordinary with vky Ly = 3. After possible enlarging Sas in
Lemma (still with #Sy = o(#Tw)), we have 3, cr s Ip(m) =03, cr,,—5,, C-Z(m)).
Proof. Notation as in Lemma By Lemmas Lemma Lemma and Lemma[9.3.2] we

have

[(1+60)logp M] [(l—l—so)logp M)
Soopm)= > A(re(m)+ P —p" Dra(m) < D> Pt > ra(m).
meTn—Sm meTn—Sm n=1 n=0 meTn—Sum

Notation as in Lemma We have Z%:l rn(m) = O(M3/2 /p" + M /b, + M2 /a,,).
For Theorem [5] we have

[(14<0) log, M]
dYoopmy< D pM(MPPpt+ M) = O(M*T0) = o(M*/?/log M),
meTr—Sm n=0

when we take ey < 1/2.
For Theorem (1) and Remark {4} set ny = [4log, M. First,

ip" Y omm) < ip"(M?’/Q/p" + M) =0(M"*) = o(M?/log M).
n=0

= meTr—Sum n=0
Second, for %;ﬁo)log” Ml p" ZmGTM— Sas rn(m), we bound it by studying the following two cases
separately.
(1) bp, > M'/8. As in the first part, we have
[(14+e€0) log,, M) [(14+e€0) log,, M]
Yoot Y mmy< Y pr (MR M/b, + M),
n=ni meTy—Sn n=ni

which is O(M?3/?log M + M?+eo—1/8 4 N3/2+<0) = o(M?/log M) once we take ¢y < 1/8.
(2) by, < M'Y/®. We are going to enlarge Sy to be {m € Ty | Jv € Ly, with Q'(v) = m}.
Since b2 M < MP5/* = o(p*>™), then we conclude, as in the upper medium range Case (2)

in the proof of Proposition for Theorem [I[1), by Lemma and Proposition
T+eo) log, M

that #Sy = o(#T) and Zn:nio) %8p ]p" > Ty 8y, Tn(m) = 0. O
Proof of Theorem ( 1), Remark (4| with p split in F', and Theorem @ Assume for contradiction that
there are only finitely many points on C'N(UperZ(m)). Then we construct Sy, by taking the union
of the Sj; in Proposition for supersingular points and that in Lemma [9.3.2] and Proposi-
tion for ordinary points with rkz Ly = 3. Since it is a finite union, we still have #Sy; =
o(#Thr). We deduce a contradiction by Lemma Proposition Lemma and Propo-
sition [9.3.3) 0
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