Geometric adaptive smoothed aggregation multigrid for DG discretisations

Yulong Pan, Michael Lindsey, Per-Olof Persson

Department of Mathematics, University of California, Berkeley Mathematics Department, Lawrence Berkeley National Laboratory

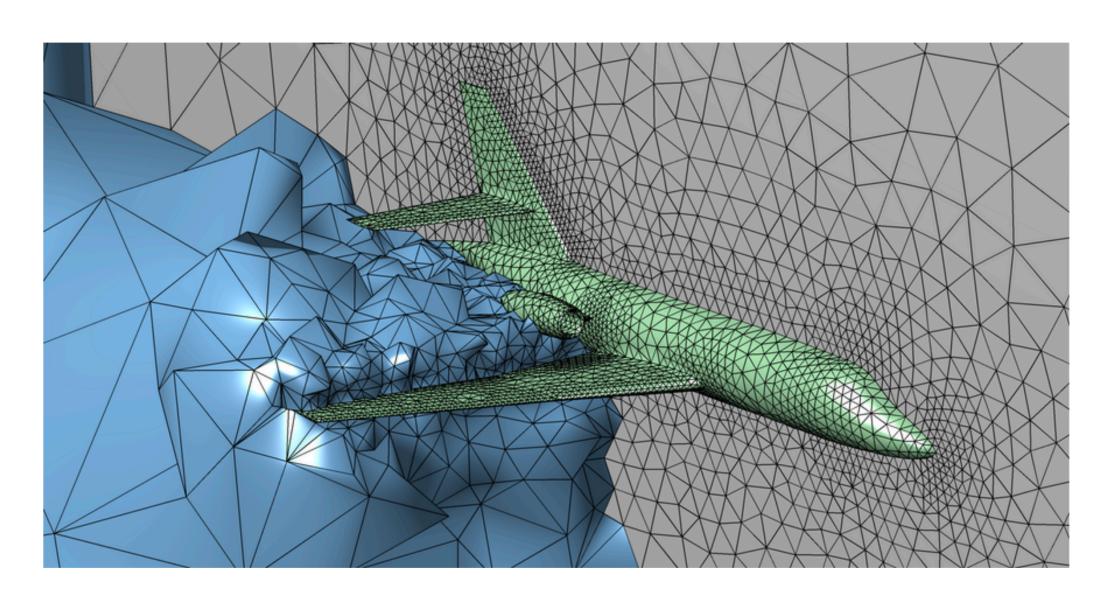
ICOSAHOM Montréal 2025

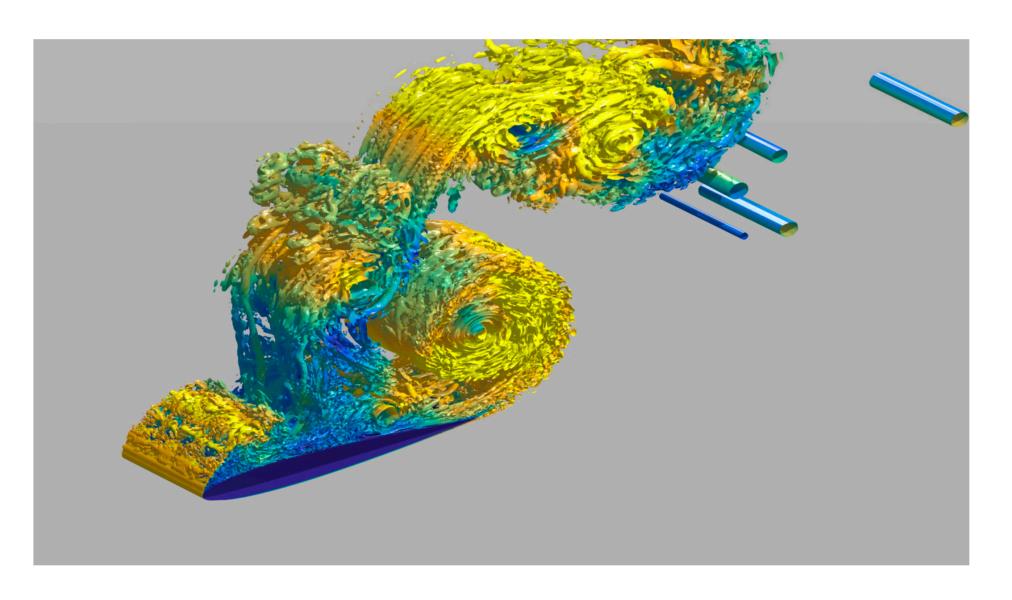
July 15, 2025

Background

Discontinuous Galerkin (DG) methods

- Variant of Finite Element method allowing for discontinuities along element boundaries, with Finite Volume fluxes used for stabilisation
- Popular for discretisation of convection-diffusion equations in fluids and beyond
- High-order accurate, suitable for use on unstructured meshes in 2D/3D
- However, expensive to apply in practice, more work required to resolve large complex linear systems





Linear solvers

- One advantage of DG block sparsity patterns
- Some examples of popular solvers
 - General purpose: block Jacobi/block Gauss-Seidel
 - Hyperbolic: Incomplete LU factorisations
 - Elliptic: Multigrid
- However many techniques scale optimally OR cannot be applied general purpose for large classes of equations
- More work needed

Convection-diffusion equation

Model equation for this talk:

$$\mathbf{v} \cdot \nabla u - \mu \Delta u = f$$

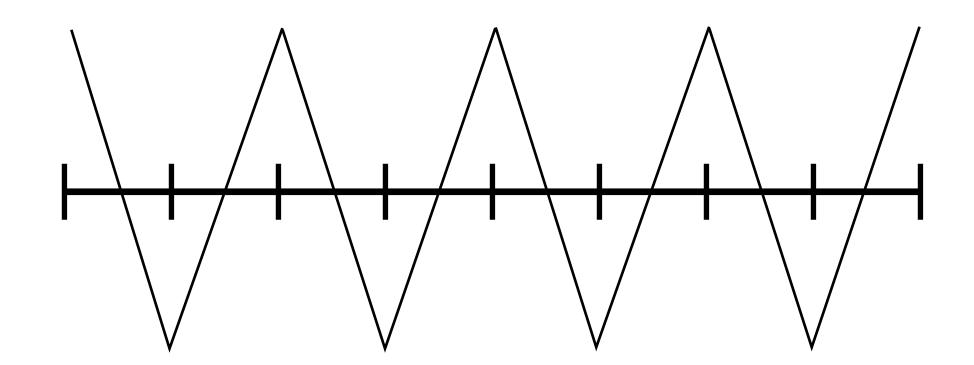
After discretisation gives general linear system of form:

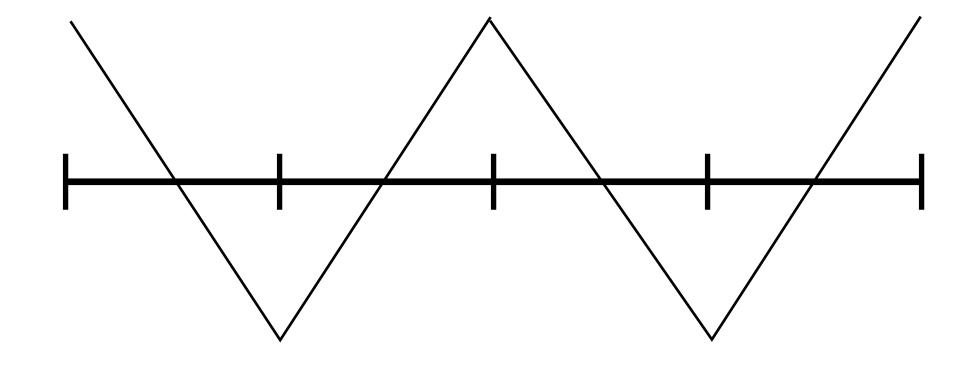
$$Au = f$$

- Challenges with this system:
 - Mesh of underlying domain is unstructured
 - Equation has both hyperbolic and elliptic character
 - Equations might be stiff

Multigrid (MG) methods

- Originally designed for elliptic equations on structured domains
- Main idea:
 - Recursively solve linear algebra problem on nested hierarchy
 - Successive levels resolve distinct high frequencies
 - Achieve asymptotically optimal linear O(N) runtime





Multigrid (MG) methods

- Ingredients in general MG method:
 - Restriction R_k^{k+1}
 - Transfer of residual from higher to lower level
 - Smoother S_k
 - Relax high frequency modes at each level, e.g. Jacobi, Gauss-Seidel
 - Interpolation T_{k+1}^k
 - Transfer of solution from lower to higher level

Geometric multigrid (GMG)

- Hierarchy is formed using mesh discretisation, generally nested mesh constructions are used
- Direct polynomial injection generally used for interpolation operator, restriction taken to be its adjoint

$$R_k^{k+1} = \left(T_{k+1}^k\right)^T$$

• BUT, hard to form on unstructured meshes, some approaches include element agglomeration¹, mesh decimation, non-nested triangulations

¹Yulong Pan, Per-Olof Persson. Agglomeration-based geometric multigrid solvers for Compact Discontinuous Galerkin discretisations on unstructured meshes. *J. Comp. Phys.*, Vol 454, 110906, April 2022. https://arxiv.org/abs/2012.08024

Algebraic multigrid (AMG)

- Introduced as an alternative to geometric multigrid methods
- Multigrid hierarchy is constructed blind to the underlying mesh, instead hierarchy is formed using only entries of the matrix
- Help ease the problem of constructing unstructured mesh hierarchies
- Two main variants: Classical Ruge-Stuben and Smoothed Aggregation AMG

- However, reliance on the matrix means its entries must be readily accessible
- Can be difficult to make fully matrix free

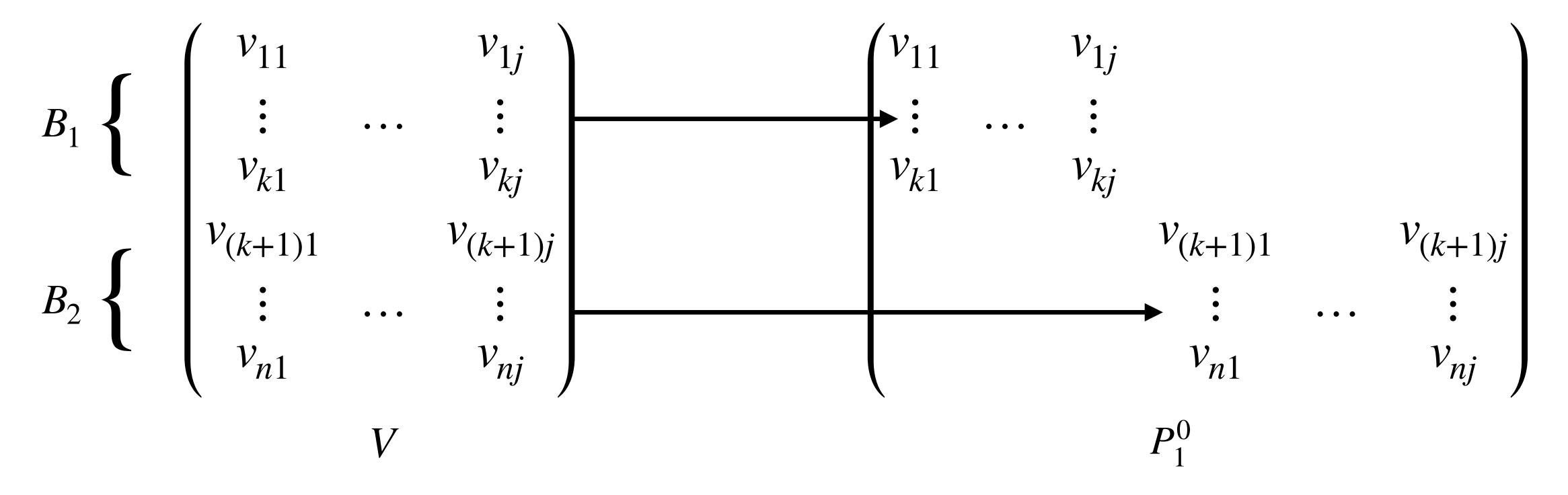
Smoothed aggregation (SA)

- Introduced in Vanek et al., Algebraic multigrid by smoothed aggregation for second and fourth order. (1996)
- Fundamentally a method of constructing interpolation/restriction operators for AMG

- Assume given matrix A, two partitions B_1, B_2 of its degrees of freedom defining next level in MG hierarchy
 - Also assume given a set of vectors $V = \{v_1, \dots, v_j\}$ representing the column space of the next level in AMG hierarchy

Smoothed aggregation (SA)

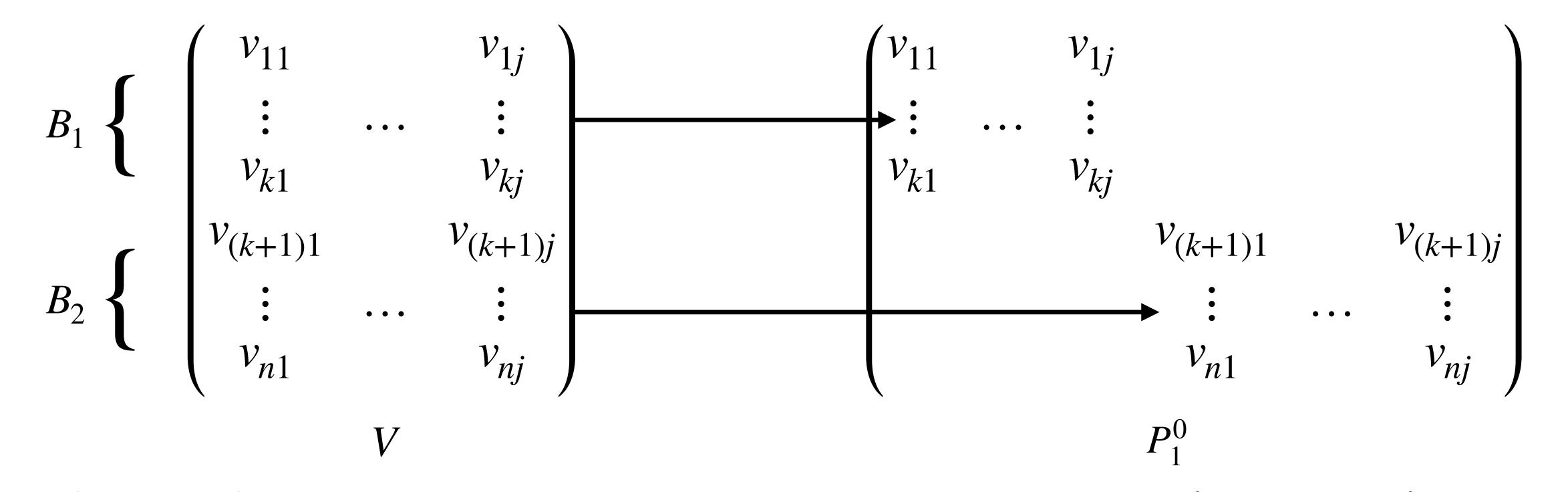
- Assume given matrix A, two partitions B_1, B_2 of its degrees of freedom
 - Also given a set of vectors $V=\{v_1,\ldots,v_j\}$ representing the column space of the next level in AMG hierarchy



ullet Coarse modes V are split according to partitions in block diagonal matrix

Smoothed aggregation (SA)

ullet Coarse modes V are split according to partitions in block diagonal matrix



• To finish defining prolongation operator, smoothing is applied (e.g. Jacobi)

$$T_1^0 = S_0 P_1^0$$

Smooth out high frequency modes introduced by partitioning

GMG vs AMG

Geometric MG

- Mesh hierarchies
- Difficult to generalise on unstructured meshes
- Matrix A not explicitly necessary

Algebraic MG

- ullet Algebraic hierarchies inferred from A
- Entirely blind to underlying mesh
- Matrix A needed explicitly

 Is there a way to combine the two to obtain fast method suitable for unstructured meshes?

Further challenges

- MG difficult to generalise to both hyperbolic and elliptic equations
 - Some previous work include L-AIR solvers (Southworth et al. 2017)
- MG methods are also sensitive to choice of DG numerical flux
 - In particular for Laplacian, different constructions required for Interior Penalty (IP) vs Local DG (LDG) fluxes (Fortunato et al. 2019)
- Can also struggle on stiff systems

^{*}Apologies for the myriad abbreviations, we know there are a lot of them in this field unfortunately

Geometric adaptive SA multigrid for DG

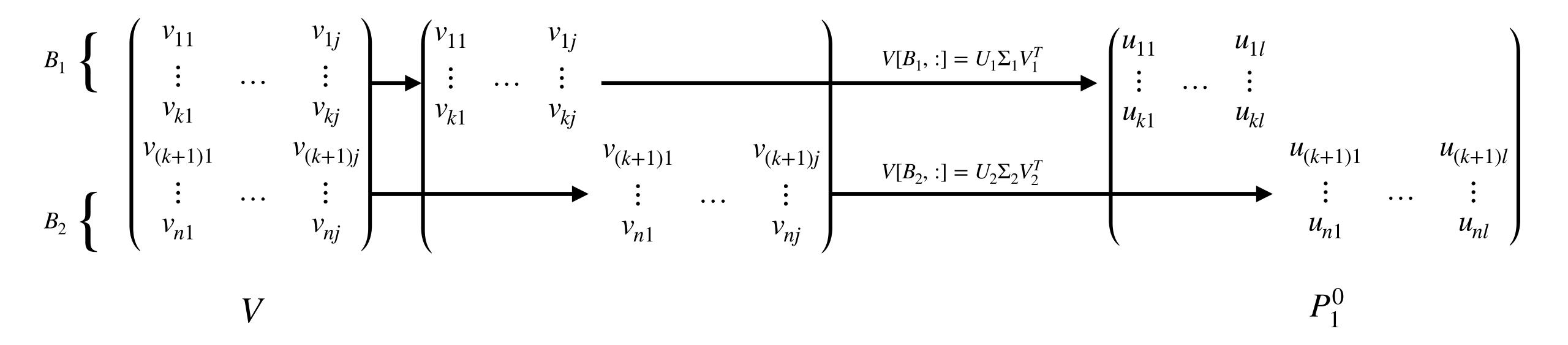
Adaptive smoothed aggregation (α SA)

- Introduced by Brezina et al. Adaptive smoothed aggregation (α SA) multigrid. (2005)
- In original SA algorithm, coarse modes V are given a priori based off expected low frequency modes of Laplacian (e.g. constant mode)
 - Doesn't necessarily generalise to other problems
- Idea of α SA: adaptively find coarse modes by applying MG smoother on some random vectors
- Why? The leftover modes should span the column space of the next level of the hierarchy!

Adaptive smoothed aggregation (α SA)

- 1. Assume given matrix A, and partitions of its degrees of freedom $B_1, \ldots B_m$
- 2. Define smoother S e.g. Jacobi, $S = I \omega D^{-1}A$, $\omega = 2/3$, D = diagonal of A
- 3. Form random matrix with random Gaussian entries $(b_1 \dots b_r)$
- 4. Apply S to each random vector p times to obtain coarse space vectors V
- 5. Partition V according to $B_1, \ldots B_m$
- 6. Apply SVD to each diagonal block to filter which modes to keep
- 7. Form prolongation operator as before

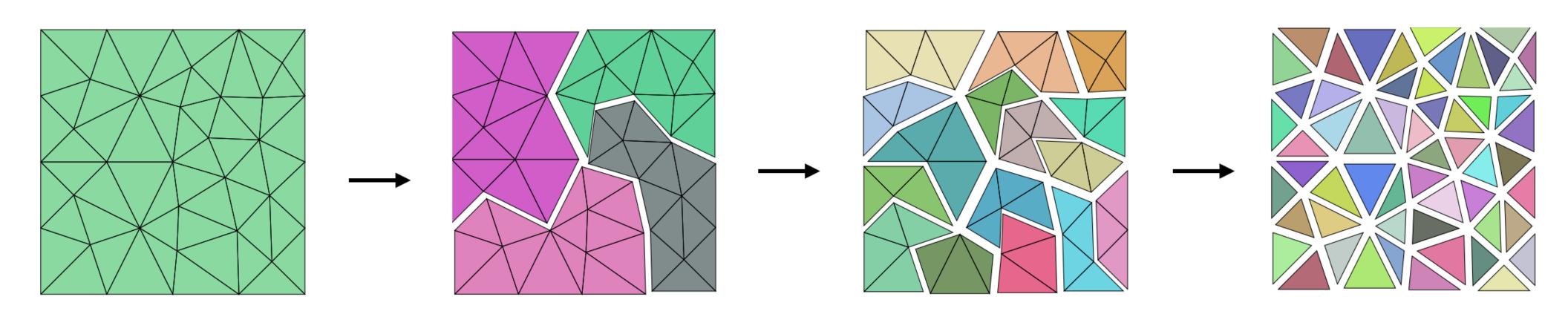
Adaptive smoothed aggregation (α SA)



- Additional SVD step to filter out relevant modes in each block
- Difference in $lpha {\sf SA}$ vs ${\sf SA}$ lies in how V is formed
 - Pre-determined in SA, adaptive found via smoothing random vectors in α SA
- Partitions $B_1, \ldots B_m$ are formed using standard AMG techniques, which we will not delve into in this talk

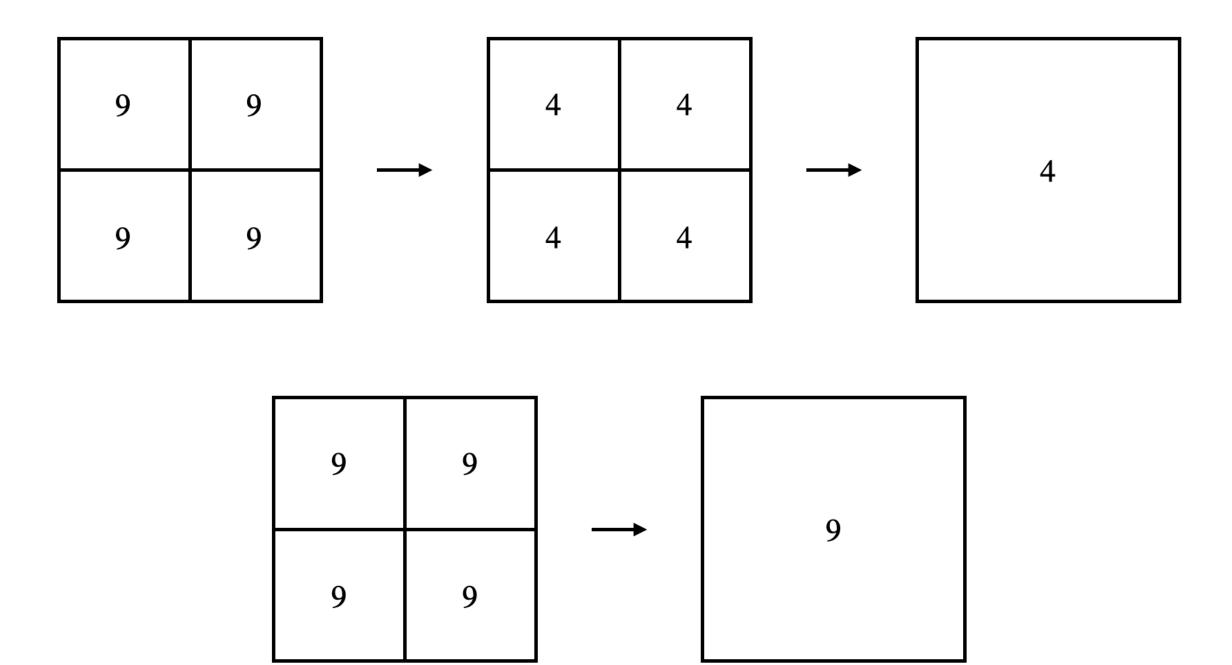
Geometric aSA for DG

- Main idea: Form mesh partitions $B_1, \ldots B_m$ using mesh information
- To form each partition block B_i , agglomerate elements together using graph partitioning algorithms (e.g. METIS)
- Advantage: Removes explicit dependence on matrix A, α SA construction allows for generalisation to unstructured meshes
 - Combine advantages of GMG and smoothed aggregation AMG



h- vs h*- multigrid

- Two types of geometric coarsening possible in DG
 - Inter-element h-multigrid, by combining elements via agglomeration
 - Intra-element h*-multigrid, by coarsening modes within each element (akin to standard p-multigrid)



Geometric α SA for DG

- Overall algorithm (assume given matrix A^k and mesh), at each level k:
 - 1. Form mesh partitions for next level via agglomeration
 - 2. Form smoother S_k , and apply to random Gaussian vectors \boldsymbol{b}_j^k
 - 3. Partition random vectors and form prolongation T_{k+1}^k using $\alpha {\sf SA}$ procedure
 - 4. Form restriction operator $R_k^{k+1} = (T_{k+1}^k)^T$
 - 5. Form operator at next level $A^{k+1} = R_k^{k+1} A^k T_{k+1}^k$
 - 6. Go to next level k+1

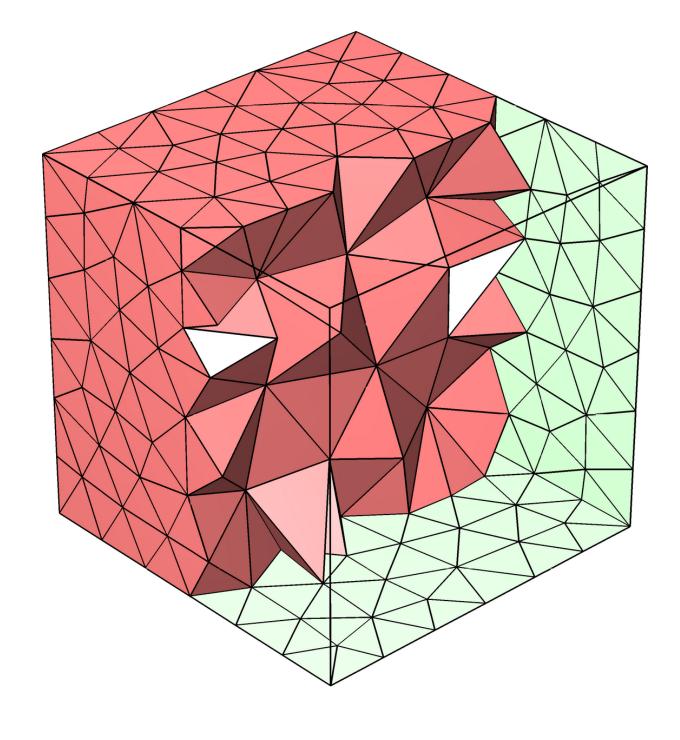
Numerical examples

Poisson's equation (various numerical fluxes)

• Test problem: $-\Delta u = f$ in 3D, $\Omega = [-1,1]^3$, p=1, mesh refinement

nRef	IP	LDG	IP(pCG)	LDG(pCG)
1	7	7	6	6
2	7	8	6	7
3	7	9	6	7

#Iterations



k	dof	nnz
0	32,728	1,835,008
1	5,206	1,706,338
2	882	310,538
3	100	9,422

MG hierarchy at nRef=2

Poisson's equation (h- vs h*- multigrid)

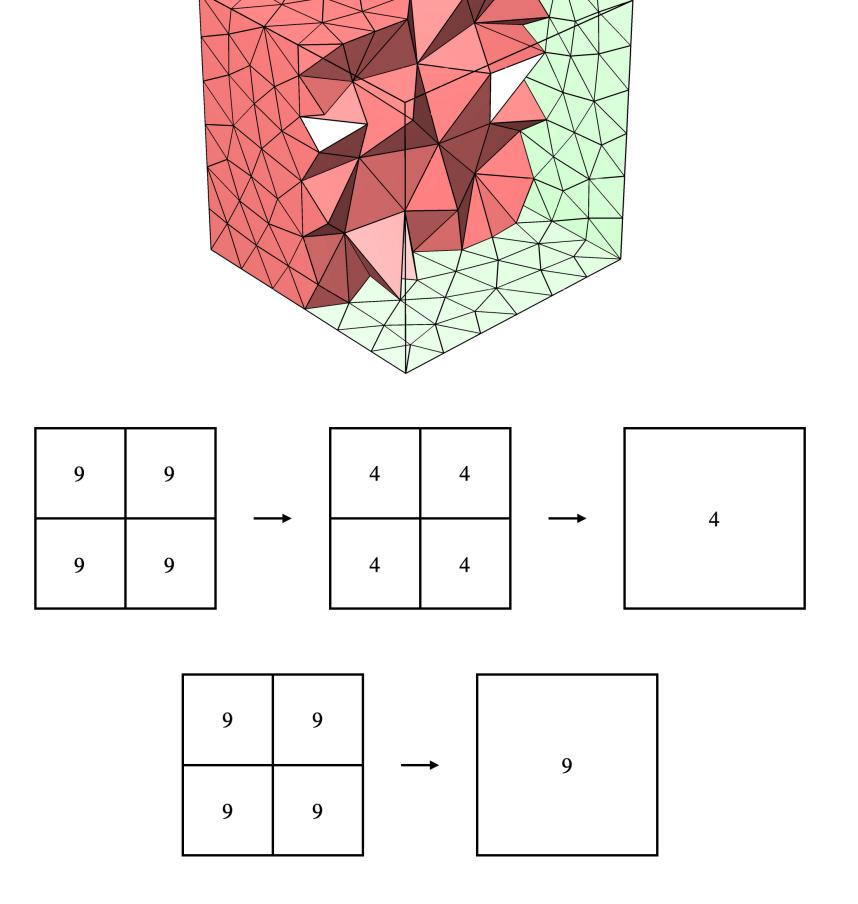
• Test problem: $-\Delta u = f$ in 3D, $\Omega = [-1,1]^3$, fixed mesh, variable p

р	h*-	h-	h*-(pCG)	h-(pCG)
1	8	8	7	6
2	8	9	6	7
3	10	9	7	7

#Iterations

k	dof	nnz
0	110,592	20,901,888
1	56,029	5,411,417
2	9,574	5,387,940
3	3,524	640,246

k	dof	nnz	
0	110,592	20,901,888	
1	18,500	16,494,040	
2	3,104	2,342,854	



h*-MG hierarchy at p=2

h-MG hierarchy at p=2

Convection-diffusion

• Test problem: $\mathbf{v} \cdot \nabla u - \mu \Delta u = f$ in 3D, $\Omega = [-1,1]^3$, p=1, mesh refinement

#Iterations - Pe = 0

nRef	nDof	Our method	block Jacobi	AMG (classical)	AMG (SA)
0	4,188	9	184	38	36
1	29,180	10	430	64	58
2	214,260	11	1462	121	91
3	1,660,556	13	3838	309	185

#Iterations - Pe = 1000

nRef	nDof	Our method	block Jacobi	AMG (classical)	AMG (SA)
0	4,188	10	46	-	-
1	29,180	12	83	-	2473
2	214,260	12	279	719	507
3	1,660,556	17	589	367	325

#Iterations - Pe = 100

nRef	nDof	Our method	block Jacobi	AMG (classical)	AMG (SA)
0	4,188	9	76	61	66
1	29,180	10	181	57	74
2	214,260	12	451	75	100
3	1,660,556	16	892	173	172

#Iterations - $Pe = \infty$

nRef	nDof	Our method	block Jacobi	AMG (classical)	AMG (SA)
0	4,188	9	37	-	-
1	29,180	13	63	-	-
2	214,260	17	118	-	-
3	1,660,556	25	416	_	_

Comparison of pGMRES iterations

Conclusion

Conclusion

- Novel geometric multigrid method suitable for DG discretisations
- Applicable on unstructured meshes
- Can be applied uniformly for a variety of numerical fluxes without each requiring different treatments
- Combines aspects of GMG/AMG solvers to reduce reliance on explicit structure of matrix operators
- Excellent solver performance observed in practice for convection-diffusion problems

Yulong Pan, Michael Lindsey and Per-Olof Persson. Geometric adaptive smoothed aggregation multigrid for discontinuous Galerkin discretisations. Submitted to Journal of Computational Physics. https://arxiv.org/abs/2504.13373